ebook img

Non-Abelian magnetic monopole dominance for SU(3) Wilson loop average PDF

0.05 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-Abelian magnetic monopole dominance for SU(3) Wilson loop average

Non-Abelian magnetic monopole dominance for SU(3) Wilson loop average Kei-Ichi Kondo , Akihiro Shibata†, Toru Shinohara and Seikou Kato ∗ ∗ ∗∗ DepartmentofPhysics,GraduateSchoolofScience,ChibaUniversity,Chiba263-8522,Japan ∗ †ComputingResearchCenter,HighEnergyAcceleratorResearchOrganization,Tsukuba305-0801,Japan 1 ∗∗FukuiNationalCollegeofTechnology,Sabae916-8507,Japan 1 0 Abstract. Weshowthatthenon-Abelianmagneticmonopoledefinedinagauge-invariantwayinSU(3)Yang-Millstheory 2 givesadominantcontributiontoconfinementofthefundamentalquark,insharpcontrasttotheSU(2)case. n Keywords: Quarkconfinement,magneticmonopole,dualsuperconductor,Wilsonloop a PACS: 12.38.Aw,21.65.Qr J 4 2 INTRODUCTION confinement. In this case, the problem is not settled yet. In this talk, we give a theoretical framework for ] The dual superconductorpicture proposed long ago [1] describing non-Abelian dual superconductivity in D- h is believed to be a promising mechanicsfor quarkcon- dimensionalSU(N)Yang-Millstheory,whichshouldbe t - finement. For this mechanism to work, however, mag- compared with the conventionalAbelianU(1)N 1 dual p − e netic monopoles and their condensation are indispens- superconductivityin SU(N)Yang-Millstheory,hypoth- h abletocausethedualMeissnereffectleadingtothelin- esizedbyAbelianprojection.Wedemonstratethatanef- [ earpotentialbetweenquarkandantiquark,namely,area fective low-energy description for quarks in the funda- lawoftheWilsonloopaverage.TheAbelianprojection mentalrepresentation(abbreviatedtorep.hereafter)can 2 v method proposed by ’t Hooft [2] can be used to intro- begivenbyasetofnon-Abelianrestrictedfieldvariables 8 ducesuchmagneticmonopolesintothepureYang-Mills and that non-AbelianU(N 1) magnetic monopoles in 4 theoryevenwithoutmatterfields.Indeed,numericalev- the sense of Goddard–Nuy−ts–Olive–Weinberg [17] are 6 idences supporting the dual superconductor picture re- the mostdominanttopologicalconfigurationsfor quark 0 sulting from such magnetic monopoles have been ac- confinementasconjecturedin[18,19]. . 2 cumulated since 1990 in pure SU(2) Yang-Mills theory 1 [3,4,5].However,theAbelianprojectionmethodexplic- 0 itlybreaksboththelocalgaugesymmetryandtheglobal WILSON LOOPANDGAUGE-INV. 1 colorsymmetry bypartialgaugefixingfromanoriginal MAGNETIC MONOPOLE : v non-Abelian gauge group G = SU(N) to the maximal Xi torus subgroup, H =U(1)N−1. Moreover, the Abelian A version of a non-Abelian Stokes theorem (NAST) dominance [3] and magnetic monopole dominance [4] r for the Wilson loop operator originally invented by Di- a wereobservedonlyinaspecialclassofgauges,e.g.,the akonovandPetrov[6]forG=SU(2)wasprovedtohold maximally Abelian (MA) gauge and Laplacian Abelian [7] and was extended to G=SU(N) [18, 20] in a uni- (LA)gauge,realizingtheideaofAbelianprojection. fied way [20] as a path-integral rep. by making use of For G = SU(2), we have already succeeded to set- a coherent state for the Lie group. For the Lie algebra tle the issue of gauge (in)dependence by introducing a su(N)-valued Yang-Mills field Am (x)=AmA(x)TA with gauge-invariant magnetic monopole in a gauge inde- su(N) generatorsT (A=1, ,N2 1),the NAST en- pendent way, based on another method: a non-Abelian A ··· − ablesonetorewriteanon-AbelianWilsonloopoperator Stokes theorem for the Wilson loop operator [6, 7] and a new reformulation of Yang-Mills theory rewritten in terms of new field variables[8, 9, 10] and [11, 12, 13], WC[A]:=tr Pexp igYM dxm Am (x) /tr(1), (1) (cid:20) (cid:26) IC (cid:27)(cid:21) elaborating the technique proposed by Cho [14] and Duan and Ge [15] independently,and later readdressed intothesurface-integralform: byFaddeevandNiemi[16]. For G=SU(N), N 3, there are no inevitable rea- sonswhydegreesoffr≥eedomassociated with themaxi- WC[A]=Z dm S (g)exp(cid:20)igYMZS :¶ S =CF(cid:21), (2) mal torus subgroupshould be most dominantfor quark where dm S (g):=(cid:213) x S dm (gx), with an invariant mea- thecolorfieldn[18]:ForSU(3), suredm onG normal∈izedas dm (g )=1,g isan ele- x x mofenGt),ofthaegtawuog-efogrrmouFp G:=(mdRAor=e p12reFcmnise(xly),dmrxemp∧. DdRx(ngxi)s p=2(pS1U(U(3()1/)[)SU=(Z2),×U(1)])=p 1(SU(2)×U(1))(9) defined from the one-form A := Am (x)dx , Am (x) = tr{r [g†xAm (x)gx+ig−YM1g†x¶ m gx]},by whileforSU(2) p (SU(2)/U(1))=p (U(1))=Z. (10) Fmn (x)= 2(N−1)/N[Gmn (x)+ig−YM1tr{r g†x[¶ m ,¶ n ]gx}], 2 1 p (3) ForSU(3),themagneticchargeofthenon-Abelianmag- neticmonopoleobeysthequantizationcondition[20]: withthefieldstrengthGmn definedby Gmn (x):=¶ m tr{n(x)An (x)}−¶ n tr{n(x)Am (x)} Qm:=Z d3xk0=2p √3g−YM1n, n∈Z. (11) 2(N 1) + N− ig−YM1tr{n(x)[¶ m n(x),¶ n n(x)]}, (4) The NAST shows that the SU(3) Wilson loop operator in the fundamentalrep. detects the inherentU(2) mag- andanormalizedtracelessfieldn(x)calledthecolorfield netic monopole which is SU(3) gauge invariant. The rep. can be classified by its stability group H˜ of G n(x):= N/[2(N 1)]g [r 111/tr(111)]g†. (5) [18, 20]. For the fundamentalrep. of SU(3), the stabil- − x − x p ity group is U(2). Therefore, the non-Abelian U(2) Herer isdefinedasr := L L usingareferencestate SU(2) U(1) magnetic monopole follows from H˜ ≃= (highestorlowestweights|tatieho|ftherep.) L makinga SU(2)× U(1) ,whiletheAbelianU(1) U(1)mag- rep. of the Wilson loop we consider. Note|thiat tr(r )= netic m1,o2,n3o×pole c8omes from H˜ =U(1) ×U(1) . The 3 8 L L =1followsfromthenormalizationof L . adjoint rep. belongs to the latter case. Th×e former case h | i | i Finally, the Wilson loop operator in the fundamental occurs only when the weight vector of the rep. is or- rep.ofSU(N)reads[20] thogonalto some of root vectors.The fundamentalrep. isindeedthiscase.ForSU(2),suchadifferencedoesnot WC[A]= dm S (g)exp igYM(k,X S )+igYM(j,NS ) , exist andU(1) magnetic monopoles appear, since H˜ is Z { } always U(1) for any rep.. For SU(3), our result is dif- k:=d f = df, j:=d f, f := 2(N 1)/NG, ferent from Abelian projection: two independent U(1) ∗ ∗ − X S := dQ S D −1=d Q S D −1, NS :=pd Q S D −1, (6) magneticmonopolesappearforanyrep.,since ∗ ∗ p (SU(3)/U(1) U(1))=p (U(1) U(1))=Z2. wheretwoconservedcurrents,“magnetic-monopolecur- 2 × 1 × (12) rent” k and “electric current” j, are introduced, D := dd +d distheD-dimensionalLaplacian,andQ isanan- tisymmetric tensor of rank two called the vorticity ten- NUMERICALSIMULATIONS sor:Q Smn (x):= S d2Smn (x(s ))d D(x x(s )),whichhas the support on Rthe surface S (with t−he surface element The SU(3) Yang-Mills theory can be reformulated in dSmn (x(s )))whoseboundaryistheloopC.Incidentally, the continuumandona lattice usingnewvariables.For the last part ig−YM1tr{r g†x[¶ m ,¶ n ]gx} in F correspondsto SU(3),twooptionsarepossible,maximalforH˜ =U(1)2 the Dirac string [23, 24], which is not gauge invariant [25,26]andminimalforH˜ =U(2)[21].Inourreformu- anddoesnotcontributetotheWilsonloopintheend. lation,allthenewvariablesCm ,Xm andnareobtained staFteorLSU=(3()0i,n0,t1h)elfeuanddsatmoentalrep.,thelowest-weight fromAm : h | AmA= (nb ,Cnk,Xnb), (13) ⇒ n(x)=gx(l 8/2)g†x∈SU(3)/[SU(2)×U(1)]≃CP2, oncethecolorfieldnisdeterminedbysolvingthereduc- (7) tioncondition: with the Gell-Mann matrix l := diag.(1,1, 2)/√3, 8 whileforSU(2), L =(0,1)yields − ccc [A,n]:=[n,Dm [A]Dm [A]n]=0, (14) h | n(x)=g (s /2)g† SU(2)/U(1) S2 CP1, (8) On a four-dimensional Euclidean lattice, gauge field x 3 x∈ ≃ ≃ configurations Ux,m are generated by using the stan- with the Pauli matrix s :=diag.(1, 1). The existence dardWilson ac{tiona}ndpseudoheat-bathmethod.Fora 3 − of magnetic monopole can be seen by a nontrivial Ho- given Ux,m ,colorfield nnnx aredeterminedbyimpos- motopyclassofthemapnfromS2 tothetargetspaceof ing a {lattice}version of r{edu}ction condition. Then new ACKNOWLEDGMENTS Potential 244 lattice beta=6.0 1.2 1 ThisworkissupportedbyGrant-in-AidforScientificRe- 0.8 s U e2 = 0.0413 (T=6) search(C)21540256fromJapanSocietyforthePromo- tionofScience(JSPS). eR) 0.6 V( 0.4 s V e2 = 0.038 (T=10) 0.2 s M e2 = 0.0352 (T=10) REFERENCES 0 0 2 4 6 8 10 R/ e 1. Y.Nambu,Phys.Rev.D10,4262(1974). G. ’t Hooft, in: High Energy Physics, edited by A. FIGURE1. SU(3)quark-antiquarkpotential:(fromaboveto Zichichi(EditoriceCompositori,Bologna,1975). below)fullpotentialVf(r),restrictedpartVa(r)andmagnetic– S.Mandelstam,Phys.Report23,245(1976). monopolepartVm(r)atb =6.0on244(e :latticespacing). A.M.Polyakov,Nucl.Phys.B120,429(1977). 2. G.’tHooft,Nucl.Phys.B190[FS3],455(1981). 3. T. Suzuki and I. Yotsuyanagi, Phys. Rev. D42, 4257(1990). variables are introduced by using the lattice version of 4. J.D.Stack,S.D.NeimanandR.Wensley,Phys.Rev.D50, changeofvariables[22]. 3399(1994). H.ShibaandT.Suzuki,Phys.Lett.B333, Fig. 1 shows the full SU(3) quark-antiquark poten- 461(1994). tial V(r) obtained from the SU(3) Wilson loop av- 5. K.AmemiyaandH.Suganuma,Phys.Rev.D60,114509 erage W [A] , the restricted part V (r) from the V (1999).V.G.Bornyakov,M.N.Chernodub,F.V.Gubarev, C a Wilsonhloopavierage W [V] , andmagnetic–monopole S.M.MorozovandM.I.Polikarpov,Phys.Lett.B559, C part Vm(r) from eighYM(k,X S )i. They are gauge invari- 6. 2D1.4D(2ia0k0o3n).ovandV.Petrov,Phys.Lett.B224,131(1989). h i ant quantities by construction. These results exhibit in- 7. K.-I.Kondo,Phys.Rev.D58,105016(1998). fraredV dominanceinthestringtension(85–90%)and 8. K.-I.Kondo,T.MurakamiandT.Shinohara,Prog.Theor. non-AbelianU(2)magneticmonopoledominanceinthe Phys.115,201(2006). stringtension(75%)inthegaugeindependentway. 9. K.-I.Kondo,T.MurakamiandT.Shinohara,Eur.Phys.J. C42,475(2005). 10. K.-I.Kondo,Phys.Rev.D74,125003(2006). 11. S. Kato, K.-I. Kondo, T. Murakami, A. Shibata, T. CONCLUSION ShinoharaandS.Ito,Phys.Lett.B632,326(2006). 12. S.Ito,S.Kato,K.-I.Kondo,T.Murakami,A.Shibataand We have shown: (i) The SU(N) Wilson loop operator T.Shinohara,Phys.Lett.B645,67(2007). can be rewritten in terms of a pair of gauge-invariant 13. A. Shibata, S. Kato, K.-I. Kondo, T. Murakami, T. ShinoharaandS.Ito,Phys.Lett.B653,101(2007). magnetic-monopolecurrentk((D 3)-form)andtheas- − 14. Y.M.Cho,Phys.Rev.D21,1080(1980);Phys.Rev.D23, sociated geometric object defined from the Wilson sur- 2415(1981). faceS boundingtheWilsonloopC,andanotherpairof 15. Y.S.DuanandM.L.Ge,SinicaSci.,11,1072(1979). anelectriccurrent j (one-formindependentlyofD)and 16. L.FaddeevandA.Niemi,Phys.Rev.Lett.82,1624(1999). the associated topologicalobject, which follows from a 17. P.Goddard,J.NuytsandD.Olive,Nucl.Phys.B125, non-Abelian Stokes theorem for the Wilson loop oper- 1(1977).E.J.Weinberg,Nucl.Phys.B167,500(1980) 18. K.-I. Kondo and Y. Taira, Mod. Phys. Lett. A15, ator [20]. (ii) The SU(N) Yang-Mills theory can be re- 367(2000).Prog.Theor.Phys.104,1189(2000). formulated in terms of new field variables obtained by 19. K.-I.KondoandY.Taira,Nucl.Phys.Proc.Suppl.83, changeof variablesfromthe originalYang-Millsgauge 497(2000). fieldAmA(x)[21], sothatitgivesanoptimaldescription 20. K.-I.Kondo,Phys.Rev.D77,085029(2008). forthenon-Abelianmagneticmonopoledefinedfromthe 21. K.-I.Kondo,T.ShinoharaandT.Murakami,Prog.Theor. SU(N)Wilson loopoperatorin the fundamentalrep. of Phys.120,1(2008). 22. K.-I.Kondo,A.Shibata,T.Shinohara,T.Murakami,S. quarks.(iii) A lattice versionof the reformulatedYang- KatoandS.Ito,Phys.Lett.B669,107(2008). Millstheorycanbeconstructed[22].Numericalsimula- A.Shibata,K.-I.KondoandT.Shinohara,Phys.Lett. tionsofthelatticeSU(3)Yang-Millstheorygivenumer- B691,91(2010). ical evidences that the restricted field variables become 23. K.-I.Kondo,Phys.Rev.D57,7467(1998). dominant in the infrared for correlation functions and 24. K.-I.Kondo,Phys.Rev.D58,105019(1998). the string tension(infraredrestricted non-Abeliandom- 25. Y.M.Cho,Phys.Rev.Lett.44,1115(1980). inance) and that the U(2) magnetic monopole gives a 26. L.FaddeevandA.J.Niemi,Phys.Lett.B449,214(1999). Phys.Lett.B464,90(1999). mostdominantcontributiontothestringtensionobtained 27. K.-I. Kondo, A. Shibata, T. Shinohara and S. Kato, fromSU(3)Wilsonloopaverage(non-Abelianmagnetic arXiv:1007.2696[hep-th]. monopoledominance).See[27]formoreinformations.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.