Atomic Quantum Simulation of (Non-)Abelian Lattice Gauge Theories: Quantum Link Models UNIVERSITY OF INNSBRUCK Peter Zoller IQOQI Innsbruck ITP Bern AUSTRIAN ACADEMY OF SCIENCES €U AQUTE M. Dalmonte D. Banerjee €U COHERENCE E. Rico→ Ulm M. Bögli M. Müller→ Madrid P. Stebler UQUAM U. J. Wiese D. Marcos K. Stannigel (quantum optics) (high-energy physics) AFOSR Atomic Quantum Simulation of (Non-)Abelian Lattice Gauge Theories: Quantum Link Models UNIVERSITY OF INNSBRUCK Peter Zoller … possible future developments at the interface between IQOQI AMO and cond mat & particle physics AUSTRIAN ACADEMY OF SCIENCES €U AQUTE • Abelian U(1) Schwinger model, D. Banerjee et al., PRL 2012 €U COHERENCE • U(N), SU(N) Non-Abelian QLM, D. Banerjee et al., PRL in print UQUAM • Other - dissipative techniques K. Stannigel et al. - other implementations: superconducting qubits, D. Marcos et al. AFOSR Related work: MPQ-Tel Aviv, ICFO, Cornell, ... … lattice gauge theories [in particle physics] • Gauge theories on a discrete lattice structure K. Wilson, Phys. Rev. D (1974). • Fundamental gauge symmetries: standard model (every force has a gauge boson) non-perturbative approach to fundamental theories of matter (e.g. QCD) a → classical statistical mechanics quarks and gluons lattice Classical Monte Carlo simulations: achievements issues Sign problem in its various flavors: • first evidence of quark-gluon plasma • finite density QCD (=fermions) • ab initio estimate of proton mass • real time evolution • entire hadronic spectrum Quantum simulation (with atoms)? … toy models & simple phenomena 3 Quantum Simulation of Lattice Gauge Theories with Atoms Lattice Gauge Theories Atomic Quantum Simulation gauge field matter field optical lattice Hamiltonian formulation Kogut & Susskind Hubbard models with bosonic and fermionic atoms in optical lattices (Non-)Abelian LGT: ✓QED U(1) ✓QCD SU(N), U(N) ? gauge symmetry as “emergent lattice gauge theory” local symmetry Quantum Simulation of Lattice Gauge Theories with Atoms Lattice Gauge Theories Quantum Link Models (QLM) Example: gauge U(1) / QED field fermionic atoms spin S matter field as matter field as quantum link: “spin ice” (Non-)Abelian LGT: QLM ✓QED U(1) ✓gauge fields in finite dim spaces ✓QCD SU(N), U(N) ✓Abelian & Non-Abelian particle physics: U.J. Wiese et al., Horn, Orland & Rohrlich, … cond mat: … [spin ice, quantum spin liquids] QLM have “natural” implementations with cold atoms in optical lattices 5 • Quantum Link Models (as Hubbard Models for Atoms) U(1) Abelian LGT D. Banerjee et al., PRL 2012 “spin ice” QED + matter L R fermionic atoms spin S Schwinger boson as matter field as quantum link atomic boson-fermi mixtures in optical lattices U(N),SU(N) Non-Abelian LGT D. Banerjee et al., PRL in print fermions L R i (i = 1, 2, 3) x color index fermionic rishons multi-species fermi gases 6 H gauge invariant subspace ⇢ E = 0 � r · Gauss law as a constraint “spin ice” QED + matter Hamiltonians, (local) gauge symmetries, Gauss law etc. an AMO perspective 7 Static vs. Dynamical Gauge Fields on Lattices: U(1) • c-number / static gauge fields particles hopping around a plaquette acquire a finite phase x y 2 ~ ~ ~ �= d f A ˆ · r ⇥ flux i' H = t e xy + h.c. x† y � y ~ ~ matter ' = dl A phase xy ˆ · field x U(1) (abelian) theory & AMO experiments on “synthetic gauge fields” - Hofstadter butterfly - Fractional Quantum Hall, Fractional Chern insulators Review: J. Dalibard et al. Rev. Mod. Phys. (2011) 8 Static vs. Dynamical Gauge Fields on Lattices: U(1) • dynamical gauge fields particles hopping around a plaquette assisted by link degrees of freedom gauge x y field H = t U + h.c. + . . . x† xy y � link operator matter field 9 Static vs. Dynamical Gauge Fields on Lattices: U(1) • dynamical gauge fields particles hopping around a plaquette assisted by link degrees of freedom G G x x y y H = t U + h.c. + . . . x† xy y � gauge (local) symmetry U(1) local conserved quantity V i↵ i↵ [H, G ] = 0 x U e xU e y, gauge bosons xy xy � x �! 8 V fermions ei↵x generator of gauge transformation x x �! i↵ G V = e x x unitary trafo: generator x Y
Description: