IOPPUBLISHING CLASSICALANDQUANTUMGRAVITY Class.QuantumGrav.26(2009)045012(45pp) doi:10.1088/0264-9381/26/4/045012 Gauge-invariant coherent states for loop quantum gravity: II. Non-Abelian gauge groups BenjaminBahr1andThomasThiemann1,2 1MPIfu¨rGravitationsphysik,Albert-EinsteinInstitut,AmMu¨hlenberg1,14467Golm,Germany 2PerimeterInstituteforTheoreticalPhysics,31CarolineSt.N,Waterloo,OntarioN2L2Y5, Canada E-mail:[email protected]@aei.mpg.de Received4August2008,infinalform27November2008 Published3February2009 Onlineatstacks.iop.org/CQG/26/045012 Abstract This is the second paper concerning gauge-invariant coherent states for loop quantum gravity. Here, we deal with the gauge group SU(2), this being a significantcomplicationcomparedtotheAbelianU(1)caseencounteredinthe previousarticle(Class. QuantumGrav.26045011). Westudygauge-invariant coherentstatesoncertainspecialgraphsbyanalyticalandnumericalmethods. We find that their overlap is Gauss peaked in gauge-invariant quantities, as long as states are not labeled by degenerate gauge orbits, i.e. points where the gauge-invariant configuration space has singularities. In these cases the overlapsarestillconcentratedaroundthesepoints,butthepeakprofileexhibits aplateaustructure. Thisshowshowthesemiclassicalpropertiesofthestates areinfluencedbythegeometryofthegauge-invariantphasespace. PACSnumbers: 02.10.Ox,02.40.Vh,04.60.Pp,11.15.Kc (Somefiguresinthisarticleareincolouronlyintheelectronicversion) 1. Introduction In[1],whichisthefirstofapairofpapers,gauge-invariantcoherentstatesforloopquantum gravity (LQG) for the Abelian gauge group U(1) were considered. It was found that these states, which are defined by projecting the complexifier coherent states [2, 3] onto the gauge-invariantsub-Hilbertspace,arelabeledbypointsoftheclassicalgauge-invariantphase spaceandasemiclassicalityparameter, whichencodeshowwellthestateapproximatesthis classicalpoint. Itwasfurthermorefoundthattheoverlapbetweentwosuchstatesdecreases exponentially, as the two labeling points become distinct. This showed that these states are promisingtoolsforsemiclassicalapproximationsinthegauge-invariantsectorofthetheory. 0264-9381/09/045012+45$30.00 ©2009IOPPublishingLtd PrintedintheUK 1 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann Inthepresentpaper,wewillturntothecaseSU(2),whichisthegaugegroupemployed in full LQG. There, we aim to establish similar results as for G = U(1). The plan for this paper is as follows: in section 2 we will briefly review the kinematical framework of LQG. After describing the Hilbert space and the action of the (Gauss) gauge transformations, we repeatthedefinitionofthecomplexifiercoherentstates(CCS)ofLQGinsection3. In section 4, we will define the gauge-invariant coherent states as the projection of the complexifiercoherentstatesontothegauge-invariantHilbertspace. Weshowhowthelabels of these states can be interpreted as points in gauge-invariant phase space, and comment on the Ehrenfest properties of these states. Furthermore, we will investigate these states on somesimplegraphs,inparticularthe1-flower,the2-flower,the3-bridgeandthetetrahedron graph. In particular, we will compute the overlap between gauge-invariant coherent states onthesegraphs,demonstratingtheirpeakednessproperties. Whileonthe1-flowergraphall calculationscanbedoneanalytically,theshapeofthegaugeorbitsinthetwootherexamples isalreadytoocomplicatedtoallowforananalyticaltreatmentofthesecases. Rather,wewill usenumericalmethodsforinvestigatingtheoverlapofgauge-invariantcoherentstatesonthese graphs,confirmingthequalitativeresultsabouttheirpeakednesspropertiesfromthe1-flower graph. Tocomputetheoverlap,inparticulartheinnerproductofthegauge-invariantcoherent statesaccessibletothesegraphs, analgorithmisusedtoseparatethegauge-dependentfrom thegauge-invariantdegreesoffreedom,whichresemblesagauge-fixingprocedure. Insection5,wewillworkwithageneralformulaoftheinnerproductofgauge-invariant coherent states on arbitrary graphs, in order to establish some qualitative results about the peakednesspropertiesofthesestates. Specifically,wewillbeabletorelatetheinnerproduct ofstatesonarbitrarygraphstothoseonflowergraphs. Again,wewillemploygauge-fixing methodsonthisbehalf. Thiswillallowforaqualitativedescriptionoftheoverlapsofgauge- invariantcoherentstateslabeledbydegenerategaugeorbits. Wewillclosewithasummaryofthepresentwork, aswellaswithaconclusionandan outlook. 2. ThekinematicalsettingofLQG We briefly repeat the kinematical framework of LQG. Detailed expositions can be found in [4–7]andinthereferencestherein. ThestartingpointofLQGisthephasespaceofAshtekarconnectionsAI(x)andelectric a fluxesEb(y),bothfieldsona3-dimspatialmanifold(cid:2),whichcanbethoughtofasaCauchy J surfaceinspacetime. ThePoissonstructureisgivenby (cid:2) (cid:3) (cid:2) (cid:3) AI(x),AJ(y) = Ea(x),Eb(y) =0 (cid:2) a b (cid:3) I J (2.1) AI(x),Eb(y) =8πGβδaδIδ(x−y). a J b J Here G is Newton’s constant, and β is the Barbero–Immirzi parameter. The fields are not free, but subject to so-called constraints, which are phase-space functions, i.e. functions of AI(x) and Eb(y). They encode the diffeomorphism invariance of the theory, and the a J Einstein equations. The reduced phase space consists of all phase-space points A,E where the constraints vanish. On this set, the constraints act as gauge transformations, and the set of gauge orbits is the physical phase space. The set of constraints is divided into the Gauss constraintsG (x),thediffeomorphismconstraintsD (x)andtheHamiltonconstraintsH(x). I a ItisthesetofGaussconstraintsthatisofparticularimportanceintherestofthiswork. Theholonomy-fluxalgebrageneratedbyholonomiesofAI(x)alongedgesandelectric a fields Eb(y) smeared over 2-dim surfaces is the starting point of the quantization program. J Thereisauniquecyclicrepresentationofthisalgebrainwhichthespatialdiffeomorphisms, 2 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann which are generated by the diffeomorphism constraints D (x), act unitarily and leave the a vacuumstate(cid:6)invariant[8]. ThiskinematicalHilbertspaceH ,onwhichtheholonomy- kin fluxalgebraisrepresented,alsocarriesarepresentationoftheconstraintalgebra,andisgiven by (cid:4) H = H . (2.2) kin γ γ∈(cid:8) Here, (cid:8) is the set of all graphs γ in (cid:2) which consist of embedded, regular, analytic edges. Each Hilbert space H is separable. If γ is a graph with E edges and V vertices, H is γ γ isomorphicto (cid:5) (cid:6) H (cid:3)L2 GE,dμ⊗E , (2.3) γ H (cid:5) (cid:6) whereG=SU(2)isthegaugegroupactingonthefields AI,Eb ,anddμ isthenormalized a J H HaarmeasureonG.EachoftheseH isleftinvariantbythegaugetransformationsinduced γ bytheGaussconstraintsG (x). TherestrictionG ofthesetofgaugetransformationstoH I γ γ isisomorphicto G (cid:3)GV, (2.4) γ where V is the number of vertices in the graph γ. The action of an element k(cid:5) ∈ GV on a square-integrablefunctionψ :GE →CinH isgivenbythefollowingformula: (cid:5) (cid:6) (cid:5) γ (cid:6) αk(cid:5)ψ he1,...,heE :=ψ kb(e1)he1kf−(1e1),...,kb(eE)heEkf−(1eE) , (2.5) where b(e ) and f(e ) are the beginning and end points of the edge e . So, the gauge m m m transformationsactonlyattheverticesofagraph. Inparticular,onecanwritedowntheprojectorontothegauge-invariantHilbertspacefor functionsinH : γ (cid:7) (cid:5) (cid:6) (cid:5) (cid:6) Pf h ,...,h := dμ (k ,...,k )α f h ...,h e1 eE H 1 V k1,...kV e1 eE (cid:7)GV (cid:5) (cid:6) = dμ (k ,...,k )f k h k−1 ,...,k h k−1 . (2.6) GV H 1 V b(e1) e1 f(e1) b(eE) eE f(eE) SinceGV iscompact,theintegralexistsanddefinesaprojector, P :H −→H , γ γ ontoasub-HilbertspaceofH . Inparticular,thegauge-invariantfunctionsonagraphform γ asubsetofallsquare-integrablefunctionsonagraph. Thegauge-invariantHilbertspacescan bedescribedusingintertwinersbetweenirreduciblerepresentationsofSU(2),andabasisfor thegauge-invariantHilbertspacesPH canbewrittendownintermsofgauge-invariantspin γ networkfunctions[9]. 3. Complexifiercoherentstates The complexifier coherent states (CCS) are states first constructed for quantum mechanics on arbitrary compact Lie groups [10, 11]. They are natural generalizations of the harmonic oscillatorcoherentstates(HOCS)forquantummechanicsonarealline,whicharegivenby (cid:8)∞ zn |z(cid:7)= √ |n(cid:7). (3.1) n! n=0 TheHOCScanbeseenasminimaluncertaintystates,orstatesthatcorrespondtothesystem ofbeinginaquantumstateclosetoaclassicalphase-spacepointz=q+ip. 3 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann ComplexifiercoherentstatesforquantummechanicsonacompactLiegroupGaregiven byachoiceofacomplexifierCˆ,apositivenumbert >0andapointg ∈GC. Ifonechooses thecomplexifiertobethenegativeLaplacian−(cid:11)onG,thenthestatesaregivenby (cid:8) ψgt(h)= e−λπ2tdπ trπ(gh−1), (3.2) π where the sum runs over all irreducible finite-dimensional representations π of G,λ is the π eigenvalueof−(cid:11)correspondingtotheeigenfunctionh → trπ(h),andd isthedimension π ofπ. InthecaseofG=SU(2),thisreads (cid:8) ψgt(h)= e−j(j+1)2t(2j +1)trj(g−1h), (3.3) j∈1N 2 where tr isthetraceinthespin-j representation,andg ∈SU(2)C =SL(2,C). Thesestates j and their properties have been investigated in [2, 3]. It could be shown that these states are sharplypeakedaroundtheirlabelsg ∈SL(2,C),i.e.theoverlap (cid:9)(cid:10) (cid:9) (cid:11)(cid:9) (cid:9)ψt (cid:9)ψt (cid:9)2 it(g ,g )= (cid:12) g(cid:12)1 (cid:12)g2 (cid:12) (3.4) 1 2 (cid:12)ψt (cid:12)2(cid:12)ψt (cid:12)2 g1 g2 equals 1 for g = g , but for g (cid:10)= g goes to 0 faster than any power of t as t → 0, i.e. is 1 2 1 2 O(t∞). Furthermore, the SU(2) CCS reproduce classical values of quantized phase space functions. For example, let F : SL(2,C) → R be a function on phase space, and Fˆ the correspondingquantizedoperator. Then (cid:10) (cid:9) (cid:9) (cid:11) ψt (cid:9)Fˆ(cid:9)ψt (cid:10)g1 (cid:9)(cid:9) g(cid:11)2 =F(g2)(1+f(g1,g2,t)), (3.5) ψt ψt g1 g2 where f is a function of g ,g ∈ SL(2,C) growing only polynomially in the complex 1 2 directions, and is of order O(t). This gives an immediate interpretation of the labeling parameter g ∈ SL(2,C): it corresponds to a point in the classical phase space, and (3.4), (3.5)showthatψt definesaquantumstatebeingclosetotheclassicalstateg,withquantum g fluctuationsdeterminedbyt. Inparticular,onecanseethatthelimitt →0correspondstothe semiclassicallimitofthetheory,beingclassicalmechanicsonSU(2). TheCCSca(cid:5)nbeuse(cid:6)dintheLQGframework. TheclassicalphasespaceofGRisthespace ofCauchydata AI,Eb ,i.e.theAshtekarconnectionandthecanonicallyconjugatedelectric a J field on the spatial slice (cid:2) (2.1). The easiest example of a complexifier can be constructed by the following method: choose a finite graph γ = {e ,...,e } with E edges and a dual 1 E polyhedronaldecompositionγ∗ = {S ,...,S }of(cid:2), i.e.acollectionofEnon-intersecting 1 E surfacessuchthate ∩S consistsofexactlyonepointifk =l,andisemptyotherwise. Then k l definethefollowingfunctionsofphasespace: (cid:7) (cid:5) (cid:6) h AI =Pexp A∈SU(2) k a (cid:5) (cid:6) ek (cid:7) (3.6) 1 P AI,Eb = ∗E˜ ∈su(2). k a J 8πGβ Sk HerePisthepath-orderedexponential,E˜ isdefinedbyparallelytransportingtheelectricfield Eb tothebeginningpointofe (detailscanbefoundin[2]). *denotestheHodgedual,which J k makes∗E˜ intoansu(2)-valued2-form,whichcanhencebeintegratedoverS . Notethat,due k totheparalleltransport,P dependsonbothAI andEb. k a J Thefunctionsh andP ,k =1,...,Earephase-spacefunctionsthatserveascoordinates k k onafinite-dimensionalsubmanifoldoftheinfinite-dimensionalphasespaceofGR. 4 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann Bytheidentification (cid:5) (cid:6) (cid:5) (cid:6) ePk(AIa,EJb)hk AIa =gk AIa,EJb ∈SL(2,C), (3.7) thissubmanifoldcanbeidentifiedwithSL(2,C)E,wheretheconfigurationspaceisgivenby SU(2)E. This allows the use of the complexifier coherent states for quantum mechanics on SU(2),andresultsinthestates (cid:13)E ψt (h ,...,h )= ψt (h ). (3.8) g1,...,gE 1 E gk k k=1 The connection of the labels g ∈ SL(2,C) with the phase space is given by (3.7): in k thepolardecompositiong = H u intoHermiteanH andunitaryu ,theholonomyofthe k k k k k Ashtekarconnectionalonge isgivenbyu ,andH isconnectedto(theexponentialof)the k k k electricfieldintegratedoverS . k ThesemiclassicalityparameterthereisgivenbythecomparisonofthePlancklength(cid:13) P toaclassicallengthscalea[2]: (cid:13)2 t = P. (3.9) a2 Bychoosingascaleatobethecharacteristiclengthinasituationunderconsideration,onecan arriveatdifferentt. Forclassicalphysics,i.e.a =1cm,onegetst ≈10−70. Thesmallert,the morethequantumfluctuationsaresuppressed,whichisinaccordancewiththeinterpretation oftasasemiclassicalityparameter. The states (3.8) are special cases for the semiclassical states employed in LQG. GeneralizedformscorrespondtodifferentcomplexifiersCˆ onH ,whicharenotconnectedto kin theLaplacian,but,e.g.,tothevolumeoperatorVˆ,havedifferentsemiclassicalityparameters t > 0 for different edges e ,3 or are superpositions of states (3.8) over different graphs. k k Detailscanbefoundin[12,13]. 3.1. Geometricversionoftheinnerproduct In the following we will give a geometric interpretation of the inner product of the SU(2) CCS.ThishasalreadybeendonefortheirU(1)counterpartsin[1]. Westartfromtheformof theCCS(3.2),fromwhichtheinnerproductoftwoCCScanbecomputed: (cid:10) (cid:9) (cid:11) (cid:8) ψt(cid:9)ψt = e−j(j+1)t(2j +1)tr (g†g(cid:14)). (3.10) g g(cid:14) j j∈1N 2 In[2],anapplicationofthePoissonsummationformulawasusedtobring(3.10)intotheform (cid:14) (cid:15) (cid:16) (cid:10)ψt(cid:9)(cid:9)ψt (cid:11)= 2e4t π3(cid:8) z−2πn exp −(z−2πn)2 , (3.11) g g(cid:14) π t sin(z−2πn) t n∈Z where cosz= 1 tr(g†g(cid:14)). (3.12) 2 Notethatby(3.12)zisonlydefineduptoasignandashiftz+2πnforsomen∈Z. But(3.11) hasexactlythecorrespondingsymmetries,suchthattheformulaiswelldefined. In[3],form 3 Wearejustconsideringthesimplecaseofconstantthere,notingthatqualitativeresultscarryovertothecaseof, e.g.,edge-dependentsemiclassicalityparameterstk,whichshouldbeofphysicalinterestforsituationsinwhichthe quantumfluctuationsofgeometryvary,e.g.iftherearespacetimeregionswithlargequantumfluctuationsembedded withinnearlyclassicalspacetimeregions. 5 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann (3.11)waschosenforconvenience. Inthelimitt →0onecan,ifonechoosesRez∈(−π,π), neglectallthetermswithn (cid:10)= 0in(3.11),sincetheyareexponentiallydampedcomparedto then = 0term. Thissimplifiedcalculationsimmensely. Wewillusethesameform, partly for the same reasons, but also in order to show how the inner product between the CCS on SU(2)canbeinterpretedviathegeometryonitscomplexificationSU(2)C = SL(2,C). In ordertodothis,wehavetotalkaboutgeodesicsonSL(2,C). 3.2. GeodesicsonSL(2,C) Theexponentialmap sinz C3 (cid:15)z(cid:5)(cid:16)−→eiz(cid:5)·σ(cid:5) =cosz+i z(cid:5)·σ(cid:5) ∈SL(2,C), (3.13) z where σI,I = 1,2√,3 are the Pauli spin matrices and z(cid:5) ∈ C3, such that iz(cid:5) · σ(cid:5) ∈ sl2C. Furthermore z := z2+z2+z2 is determined up to a sign, but the functions in (3.13) are 1 2 3 symmetricinz,soeverythingiswelldefined. ThisdoesnotonlydefineachartthatcoversallofSL(2,C),butallowsonealsotowrite downthegeodesicsimmediately. Todoso,wefirstnotethatthegroupstructureonSL(2,C) determinesa(pseudo-)metric. OnitsLiealgebrasl C,theKillingform, 2 (A,B)(cid:16)−→−1 tr(AB), (3.14) 2 canbedefinedandisabilinearnon-degenerateformonsl C=T SL(2,C). SinceSL(2,C) 2 is a group, one can pull back (3.14) to every other tangent space(cid:0)on SL(2,C) by right (or, whichgivesthesameresult,left)multiplication. Thisdefinesanon-degenerate,bi-invariant pseudo-RiemannianmetriccalledtheKillingmetric,whichisgivenincoordinatesby h := 1 tr((g−1∂ g)(g−1∂ g)). (3.15) IJ 2 I J From this a connection can be formed, and geodesics can be defined. In particular, the geodesicsgoingthrough1 ∈SL(2,C)aregivenby t (cid:16)−→eitzIσI, (3.16) where z(cid:5) ∈ C3, such that iz(cid:5) · σ(cid:5) ∈ sl C is the velocity vector at t = 0. An immediate 2 consequenceofthebi-invarianceoftheKillingmetricisthat,givenageodesict → γ(t)on SL(2,C), for any g ,g ∈ SL(2,C), also t → g γ(t)g is a geodesic, which allows us to 1 2 1 2 computeallgeodesicsfromg tog bycomputingallfrom1tog =g−1g . Ingeneral,there 1 2 1 2 willbemorethanone,andfrom(3.16)onecanseethatanygeodesicfrom1tog =expiz(cid:5)·σ(cid:5) isgivenby [0,1](cid:15)t (cid:16)−→eitz(cid:5)·σ(cid:5). (3.17) Thus,differentgeodesicsarisefromthefactthatexpiz(cid:5)·σ(cid:5) =expiw(cid:5) ·σ(cid:5) forz(cid:5)(cid:10)=w(cid:5),i.e.z(cid:5)∈C3 isnotuniquelydeterminedbyg ∈ SL(2,C)Wewillclassifythedifferentpossiblecasesas follows. √ Lemma3.1. Letz(cid:5)∈C3. Thenz= z(cid:5)·z(cid:5)isdeterminedonlyuptoasign. Defineg =expiz(cid:5)·σ(cid:5), thenexactlyoneofthefollowingistrue: • Case1: z=0andz(cid:5)(cid:10)=0. • Case2: z=2πnforn∈Z\{0}orz(cid:5)=0. • Case3: z=π +2πnforn∈Z. • Case4: z∈/ 2πZandz∈/ π +2πZ. 6 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann Incase1,thereisexactlyonegeodesicfrom1tog,incases2and3thereareuncountably many,andincase4therearecountablymanygeodesicsfrom1tog. Proof. Inthefirstcase,wherez2+z2+z2 =0,wehave 1 2 3 g =expiz(cid:5)·σ(cid:5) =1+iz(cid:5)·σ(cid:5). (3.18) Letnoww(cid:5) ∈C3withexpiw(cid:5)·σ =g. Thenitfollowsfrom(3.13)thatcosw =1. Inparticular, w =2πnforsomen∈Z. Butifn(cid:10)=0,thensinw/w =0andg =1;hencez(cid:5)=0,whichis excludedinthiscase. Son=0andhenceiw(cid:5) ·σ(cid:5) =iz(cid:5)·σ(cid:5),soz(cid:5)=w(cid:5). Inparticular,thevector z(cid:5)isunique. Hence,thereisonlyonegeodesicfrom1tog. The second and third cases can readily be seen to correspond to g = 1 and g = −1. Also,itcaneasilybeseenthatallgeodesicsfrom1toitselfaregivenby [0,1](cid:15)t (cid:16)−→e2πntφ(cid:5)·σ(cid:5) (3.19) forarbitraryn∈Zandφ(cid:5) ∈S2,i.e.(cid:17)φ(cid:5)(cid:17)=1. Similarly,allgeodesicsfrom1to−1aregiven by [0,1](cid:15)t (cid:16)−→e(2πn+π)tφ(cid:5)·σ(cid:5). (3.20) So,thereareuncountablymanygeodesicsinbothcases. Case4isthegenericcase. Letw(cid:5),z(cid:5)∈C3suchthateiz(cid:5)·σ(cid:5) =eiw(cid:5)·σ(cid:5). Thus,by(3.13)wehave cosw =cosz,so w2 =(z+2πn)2 (3.21) forsomen∈Z. Furthermore,fromthelinearindependenceoftheσ-matrices,itfollowsthat z+2πn w(cid:5) = z(cid:5). (3.22) z Thus we see that, if one chooses z(cid:5) ∈ C3 such that g = expiz(cid:5)·σ(cid:5), then all other w(cid:5) with g =expiw(cid:5)·σ(cid:5) canbeobtainedby(3.22),vialettingngothroughZ. Thus,therearecountably manygeodesicsfrom1tog. Thisfinishestheproof. (cid:2) Knowingthis,wecanturntodefiningthecomplexlengthofageodesic,ormoregenerally of an h-regular curve. Let t → γ(t) be an h-regular curve. That is, γ does not necessarily have to be a geodesic, but the Killing form h shall never annihilate the velocity vector, i.e. h(γ˙,γ˙)(cid:10)=0alongthecurve. Then,withthehelpoftheKillingmetric,thecomplexlengthof γ canbedefinedvia (cid:7) (cid:17) l(γ):= h(γ˙,γ˙). (3.23) γ Notethatthisisincompleteanalogytothedefinitionofthelengthofacurvewiththehelpof aRiemannianmetric,theonlydifferencebeingasignissue. Sincegenericallyh(γ˙,γ˙)willbe complexonthepath,itssquarerootisdete√rmineduptoasign,butsincetheintegrandnever vanishes,thissigncanbechosensuchthat h(γ˙,γ˙)issmoothalongthecurve,andthereare exactlytwosuchchoices. Thus,l(γ)isonlydefineduptoasign. Now, to compute the complex length of a geodesic (3.20) from 1 to g = expiz(cid:5)·σ for z(cid:5)∈C3iseasy. Sincethevelocityvectorisparallelytransportedalonggeodesics,theintegrand in(3.23)isconstantalong[0,1]. Inparticular,itequalsitsvalueatt = 0,whichisnothing buttheKillingformonsl C,i.e. 2 (cid:17) l(γ)= z(cid:5)·z(cid:5)=z. (3.24) 7 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann Notethattherearealsogeodesicst →γ(t)whereγ˙(t)vanishes. Butsincethevelocityvector ofageodesicisparallelytransported,γ˙ vanishesidenticallyforthesecurves,andthuswecan consistentlydefinethecomplexlengthofsuchageodesictobe0. Knowingthis,wearriveatthemainpartofthissection. Lemma3.2. Letg ,g ∈SL(2,C)and 1 2 (cid:10) (cid:9) (cid:11) jt(g ,g )= ψt (cid:9)ψt (3.25) 1 2 g1 g2 be the inner product between complexifier coherent states. Apart from the cases gc = g 1 2 or gc = −g , when there are uncountably many geodesics between gc and g , and 1 2 1 2 g†g = expiz(cid:5) · σ(cid:5) with z(cid:5) · z(cid:5) = 0, when there is only one geodesic between gc and g , 1 2 1 2 theinnerproductisgivenby (cid:14) jt(g1,g2)= 2e4t π3 (cid:8) l(γ) e−l(γt)2. (3.26) π t sinl(γ) γgeodesic fromg1ctog2 Proof. Writeg = g†g . Sinceneithergc = g norgc = −g ,itfollowsthatneitherg = 1 1 2 1 2 1 2 norg = −1. Also, thereismorethanonez(cid:5)withexpiz(cid:5)·σ(cid:5) = g. Thenweknowbylemma 3.1 that there are countable infinitely many geodesics fromgc tog , or equivalently from 1 1 2 to g = g1†g2. Choose a z(cid:5) ∈ C3 such that g = expiz(cid:5)·√σ(cid:5). We have already seen that this amountstochoosingageodesicfrom1 tog. Thenz = z(cid:5)·z(cid:5)isthecomplexlengthofthis geodesic,whichisdetermineduptoasign. By(3.21)weseethatallothercomplexlengths aredeterminedbylettingnrunthroughZ,whichtellsusthat (cid:14) (cid:15) (cid:16) jt(g ,g )= 2e4t π3(cid:8) z−2πn exp −(z−2πn)2 1 2 π t sin(z−2πn) t n∈Z (cid:14) = 2e4t π3 (cid:8) l(γ) e−l(γt)2, (3.27) π t sinl(γ) γ geodesic fromg1ctog2 whichprovesthelemma. (cid:2) Theinnerproductbetweenthetwocoherentstatesisthusafunctionintimatelyrelatedto thegeometryonSL(2,C). Unfortunately,formula(3.26)isvalidonlyiftherearecountably infinitely many geodesics from gc to g . On the other hand, the pairs (g ,g ) that do not 1 2 1 2 satisfythiscondition(i.e.thateitherhaveg = g†g = ±1 org = expiz(cid:5)·σ(cid:5) withanonzero 1 2 z(cid:5)∈C3thathasz2 =z(cid:5)·z(cid:5)=0)areasubsetofmeasurezeroinSL(2,C)×SL(2,C). Theconjugationg → gc can,inthepolardecompositionofg = HuintoHermiteanH andunitaryu,bewrittenas Hu(cid:16)−→H−1u. Forthenormofacomplexifiercoherentstatewethusget (cid:18)2πe4t (cid:14)πt 3(cid:19)−1(cid:12)(cid:12)ψgt(cid:12)(cid:12)2 = (cid:8) siln(lγ()γ)e−l(γt)2 = (cid:8) siln(lγ()γ)e−l(γt)2 γgeodesic γgeodesic fromH−1utoHu from1toH2 (cid:8) = l+2π in e(l+2πtin)2 =elt2(1+O(t∞)), sinh(l+2π in) n∈Z 8 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann withl =|(cid:5)l|,(cid:5)l ∈R3 andH =elIσI. Fortwocomplexifiercoherentstatespeakedonelements g ∈SU(2)⊂SL(2,C),wehave(cid:5)l =0,henceinthiscase (cid:20) (cid:14) (cid:12)(cid:12)ψt(cid:12)(cid:12)= 2e4t π3(1+O(t∞)). (3.28) g π t Notethatthecomplexlength(3.23)ofacurveγ lyingentirelyinSU(2)⊂SL(2,C)isreal, anditssquarel(γ)2 coincideswiththegeodesicdistanced(γ)2 onSU(2)determinedbythe Killing metric. Thus, the overlap of two complexifier coherent states peaked on elements g ,g ∈SU(2)⊂SL(2,C)isgivenby 1 2 (cid:10) (cid:9) (cid:11) (cid:12)(cid:12) ψgt(cid:12)(cid:12)1(cid:9)(cid:12)(cid:12)ψgt2 (cid:12)(cid:12) = (cid:8) d(γ) e−d(γt)2(1+O(t∞)), ψt ψt sind(γ) g1 g2 γgeodesic fromg1tog2 sincegc =gforg ∈SU(2). For states labeled by elements g ,g ∈ SU(2), this immediately shows the nice 1 2 peakedness properties these states have. For two states being labeled by different elements, the overlap is, basically, a sum over terms being proportional to Gaussians in the lengths of geodesicsfromonetotheotherelements. Forsmallt >0,thetermwiththeshortestdistance dominatesallotherterms,andtheoverlapisnearlyproportionaltoaGaussianinthegeodesic distanceonSU(2). 4. Gauge-invariantcoherentstatesforG=SU(2) Inthefollowing,wewillconstructthegauge-invariantcoherentstatesonagraphbyprojecting the complexifier coherent states on the gauge-invariant subspace. This will result in states labeled by gauge-equivalence classes of phase-space points which will be identified with points in gauge-invariant phase space. Afterwards, we will examine these states for some particulargraphs. Therewewillshowthatgauge-invariantcoherentstateslabeledbypoints ingauge-invariantphasespacehaveanoverlapthatvanishesexponentiallyasthetwopoints becomedistinct. Thiswilldemonstratethepeakednesspropertiesforthesestates,whichmake thesestatesusefulforsemiclassicalanalysisinthegauge-invariantsector. Itshouldbenotedthatinthespinfoamapproachofquantumgravityonemakesfrequent useofstatesthathavebeenintroducedbyLivineandSpeziale(see,e.g.,[14])thataregauge invariantandalsocalledcoherentstates. ThesearestatesthatcomefromaPerelomov-type approach,ratherthanacomplexifier. AnotherapparentdifferencebetweentheLivine–Speziale statesandthoseconsideredinthispaperisthefactthattheirstateshavezerouncertaintyinthe fluxes,whilebeingmaximallyspreadwithrespecttotheholonomies,whilethestatespresented here will have a finite spread in both variables. In this sense the Livine–Speziale states do notcorrespondtoapointinclassicalphasespace,whiletheirmuchsimplerformmakesthem excellenttoolsforhandlingexpressionssuchasthespinfoamverticesintheFreidel–Krasnov model [15]. A comparison to a plane wave, rather than a finite Gaussian wave package suggestsitself,althoughverymuchlikethewavepackets,theLivine–Spezialestatesforman overcompletesetratherthananorthonormalbasis. Aclosercomparisonbetweenthesestates andthosepresentedherewouldbedesirable. 9 Class.QuantumGrav.26(2009)045012 BBahrandTThiemann 4.1. Gauge-invariantfunctions TheHilbertspaceH consistsoffunctionsonSU(2)E,squareintegrablewithrespecttothe γ E-foldHaarmeasuredμ⊗E: (cid:5)H (cid:6) H (cid:3)L2 GE,dμ⊗E . γ H Insection2, thegaugeactionoftheGaussconstraintsonthekinematicalHilbertspace hasbeendiscussed,inparticularthegaugetransformationofafunctioncylindricalonagraph (2.5). Denotebyπ :SU(2)E →SU(2)E/SU(2)V theprojectionmapofSU(2)Etothespace oforbitsundertheaction α :SU(2)V ×H −→H (4.1) γ γ (cid:5) (cid:6)(cid:5) (cid:6) (cid:5) (cid:6) α ψ h ,...,h =ψ k−1 h k ,...,k−1 h k (4.2) kv1,...,kvV e1 eE b(e1) e1 f(e1) b(eE) eE f(eE) ofthegaugegroupSU(2)V. Then (cid:5) (cid:6) PHγ (cid:3)L2 SU(2)E/SU(2)V,π∗dμ⊗HE . (4.3) So,theorbifoldSU(2)E/SU(2)V istreatedasgauge-invariantconfigurationspace. Thisspace canbeformulatednicelyintermsofcohomology,inparticular SU(2)E/SU(2)V (cid:3)H1(γ,SU(2)), whereH1(γ,SU(2))isthefirstCˇech-cohomologygrouponthegraphγ withvaluesinSU(2). 4.2. Gauge-invariantcoherentstatesandgaugeorbits Inthefollowingsections,wewilldescribetheprojectionsofthecomplexifiercoherentstates (CCS), (cid:13) (cid:8) (cid:5) (cid:6) ψgt1,...,gE(h1,...,hE)= e−je(je+1)2t(2je+1)trje geh−e1 , (4.4) e∈E(γ)je∈12N ontothegauge-invariantsubspacePH ⊂H . Thiswilldefinethegauge-invariantcoherent γ γ states,andwewillinvestigatesomeoftheirproperties. Sincethegaugeintegralwillbetoo complicatedtoperformexactly,wewillhavetorelyonnumericalinvestigationsinsomecases, whereanalyticalmethodsarenotenough. Bytheexplicitform(4.4),theaction(4.1)alsoinducesanactiononthesetofcoherent states,henceanactiononSL(2,C)E via αk(cid:5)ψg(cid:5)t =αkv1,...,kvVψgte1,...,geE =ψktf(e1)ge1kb−(1e1),...,kf(eE)geEkb−(1eE) =:ψαtk(cid:5)g(cid:5). (4.5) Thegauge-invariantcoherentstatesaretheimageofthecomplexifiercoherentstates(4.4) undertheactionofP (2.6): (cid:7) (cid:17)t :=Pψt = dμ (k(cid:5))ψt . (4.6) [g(cid:5)] g(cid:5) SU(2)V H αk(cid:5)g(cid:5) Naivel(cid:2)y, one cou(cid:5)ld think tha(cid:6)t the labelin(cid:3)g of the gauge-invariant coherent state is now [g(cid:5)] ∈ αk(cid:5)g(cid:5),k(cid:5) = kv1,...,kvV ∈ SU(2)V . However,thisisnotthecase! P canmapstates labeled by g(cid:5) ,g(cid:5) ∈ SL(2,C)E to the same state in PH although there is no k(cid:5) ∈ SU(2)V 1 2 γ suchthatαk(cid:5)g(cid:5)1 = g(cid:5)2. ThereasonforthisistheholomorphicdependenceoftheCCSontheir labelingparameter. Toshedsomelightonthisissue,weneedthefollowinglemma. 10
Description: