ebook img

Non-abelian cohomology of abelian Anosov actions PDF

30 Pages·2000·0.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-abelian cohomology of abelian Anosov actions

Ergod.Th.&Dynam.Sys.(2000),20,259–288 PrintedintheUnitedKingdom (cid:13)c 2000CambridgeUniversityPress Non-abelian cohomology of abelian Anosov actions ANATOLEKATOK†,VIORELNIT¸ICA˘‡§andANDREITO¨RO¨K‡¶ †DepartmentofMathematics,ThePennsylvaniaStateUniversity,UniversityPark, PA16802,USA (e-mail:katok [email protected]) ‡InstituteofMathematicsoftheRomanianAcademy,P.O.Box1–764, RO-70700Bucharest,Romania (Received27January1998andacceptedinrevisedform15May1998) Abstract. We develop a new technique for calculating the first cohomology of certain classesofactionsofhigher-rankabeliangroups(Zk andRk,k (cid:21)2)withvaluesinalinear Liegroup. Inthispaperweconsiderthediscrete-timecase. Ourresultsapplytococycles of differentregularity, fromHo¨lder to smooth and real-analytic. The main conclusionis that the corresponding cohomology trivializes, i.e. that any cocycle from a given class is cohomologousto a constant cocycle. The principalnovelfeature of our method is its geometric character; no global informationabout the action based on harmonic analysis isused. Themethodcanbedevelopedtoapplytococycleswithvaluesincertaininfinite dimensionalgroupsandtorigidityproblems. 1. Introduction 1.1. Basicdefinitions. LetGbeagroupactingonacompactboundarylessRiemannian manifold M by (cid:11) V G(cid:2)M ! M, .g;x/ 7! (cid:11) .x/ (cid:17) gx. Let 0 be some topological g group.Acocycle(cid:12) overtheaction(cid:11)isacontinuousfunction(cid:12) VG(cid:2)M !0suchthat (cid:12).g g ;x/D(cid:12).g ;g x/(cid:12).g ;x/; (1.1) 1 2 1 2 2 forallg ;g 2G,x 2M. 1 2 A geometricinterpretationof a cocycleis the following: considerthe trivialprincipal 0-bundle E D M (cid:2)0 over M. Then the cocycle (cid:12) described above corresponds to a lift of the action (cid:11) to an action (cid:11)Q V G (cid:2)E ! E by principal bundle maps. Namely, §Currentaddress:DepartmentofMathematics,UniversityofNotreDame,NotreDame,IN46556–5683,USA. (e-mail:[email protected]) ¶Currentaddress:DepartmentofMathematics,UniversityofHouston,Houston,TX77204–3476,USA. (e-mail:[email protected]) 260 A.Katoketal g 2 Ginducesthemap(cid:11)Q V E ! E givenby.x;h/ 7! .(cid:11) .x/;(cid:12).g;x/h/. Thecocycle g g equation(1.1)isequivalenttothefactthat(cid:11)Q isanaction,i.e.(cid:11)Q (cid:11)Q D(cid:11)Q . g1 g2 g1g2 If0 D Aut.F/forsomespaceF,thenacocycle(cid:12) V G(cid:2)M ! 0alsocorrespondsto a liftof(cid:11) to anactionbybundlemapson thetrivialbundleM (cid:2)F. Inthiscase g 2 G actsby.x;(cid:24)/ 7! .(cid:11) .x/;(cid:12).g;x/.(cid:24)//. Here‘Aut.(cid:1)/’hasthemeaningappropriateforthe g structureofF. ItcanbeGL.(cid:1)/forF alinearspace,orDiff.(cid:1)/forF amanifold. Thenaturalequivalencerelationforcocyclesisthecohomology. Twococycles(cid:12) and 1 (cid:12) arecalledcohomologousifthereexistsacontinuousmapP VM !0suchthat 2 (cid:12) .g;x/DP.gx/(cid:12) .g;x/P.x/−1; (1.2) 1 2 forallg 2G,x 2M. SuchamapP iscalledatransfermap. Acocycle(cid:12)iscohomologoustoaconstantcocycleifthereexistsacontinuousfunction P VM !0andahomomorphism(cid:25) VG!0suchthat (cid:12).g;x/DP.gx/(cid:25).g/P.x/−1: Inparticular,if(cid:25) isthetrivialhomomorphism,(cid:12) issaidtobecohomologoustothetrivial cocycle.Inorderforacocycle(cid:12) tobecohomologicallytrivial,ithastosatisfytheclosing conditions:(cid:12).g;x/DId forallg 2Gandx 2M suchthatgx Dx. 0 One of the central questions in studying cocycles over group actions is: When is a cocyclecohomologoustoaconstant(trivial)cocycle? Remark. For brevity, we use the term small for a cocycle whose values are close to the identity,onacompactgeneratingsetinthegroupwhoseactionweconsider. Werecallthedefinitionofapartiallyhyperbolicdiffeomorphism. Let M be a compact manifold. A C1 diffeomorphism T V M ! M is called partially hyperbolic if there is a continuous invariant splitting of the tangent bundle TM D Es.T/(cid:8)E0.T/(cid:8)Eu.T/andconstantsC D C.T/,(cid:21)(cid:6) D (cid:21)(cid:6).T/,e(cid:21)(cid:6) De(cid:21)(cid:6).T/, C >0,0<(cid:21)− <e(cid:21)− (cid:20)e(cid:21)C <(cid:21)C,(cid:21)− <1<(cid:21)C,suchthatforn2Z,n(cid:21)0: kDTnvsk(cid:20)C(cid:21)n−kvsk; vs 2Es.T/; kDT−nvuk(cid:20)C(cid:21)−Cnkvuk; vu 2Eu.T/; kDT−nv0k(cid:20)Ce(cid:21)−−nkv0k; v0 2Es.T/; kDTnv0k(cid:20)Ce(cid:21)nCkv0k; v0 2Es.T/: IfE0 Df0gthenthediffeomorphismT iscalledAnosov. The sub-bundles Es.T/ and Eu.T/ are called the stable and, respectively, unstable, distributions. Thesedistributionsareintegrable. We denotebyWs.xIT/ andWu.xIT/, respectively,thestableandunstablemanifoldsofthepointx 2M. Thestableandunstable foliationsareHo¨lderfoliations.IfthediffeomorphismT 2CK.M/,thentheleavesofthe stableandunstablefoliationsareCK too. 1.2. Historic remarks and outline. The study of cocycles over (transitive) Anosov diffeomorphismsandflows(i.e.actionsofZandR,respectively)wasstartedintwopapers Non-abeliancohomologyofabelianAnosovactions 261 byLivsic(moreappropriatelyspelledLivshits)[Li1,Li2],whichbecameveryinfluential andgeneratedextensiveliterature. Livsic provedthat a real-valuedHo¨lder cocyclewhich satisfies the closing conditions is cohomologous to the trivial cocycle [Li1]. He also proved a similar result for small cocycleswithvaluesinafinite-dimensionalLiegroup[Li2]. Inthesamepaperheclaims a globalresult for cocycleswith values in arbitraryLie groups. His argumentworks for solvablegroupsbutitismistakenforthegeneralcase. Thisquestionisstillopen. Some early applications of Livsic’s results appeared in [LS], where, in particular, a necessaryandsufficientconditionforthe existenceofan absolutelycontinuousinvariant measureforanAnosovsystemisgiven. Severalmajor developmentsfollowedthe work of Livsic. One directionis concerned withtheregularityofthe(essentiallyunique,ifitexists)solutionP ofthecohomological equation (cid:12).g;x/DP.gx/P.x/−1: Livsic showed that if a real-valued cocycle (cid:12) over an Anosov system is C1, then the transfermap P is also C1 [Li1]. For some linear actionson a torushe also showed that ifthecocycleisC1, respectivelyC!, thensoisthesolution[Li2]; thiswasobtainedby studyingthedecayoftheFouriercoefficients. 1 LaterGuilleminandKazhdan[GK1,GK2]showedtheC regularityofthesolutions inthecaseofgeodesicflowsonnegativelycurvedsurfaces. Collet,EpsteinandGallavotti [CEG]provedaC! versionforgeodesicflowsonsurfacesofconstantnegativecurvature. 1 ThecompletesolutionfortheC caseappearsinthepaperbydelaLlave,Marcoand 1 Moriyon[LMM]. Theyshowed thatif a real-valuedcocycleovera C Anosovsystem 1 1 is cohomologically trivial and C , then the transfer map is C . This follows from a generaltheoremfromharmonicanalysiswhich asserts thatif a functionis smoothalong twotransversefoliationswhichareabsolutelycontinuousandwhoseJacobianshavesome regularity properties, then it is smooth globally. This theorem was proved in [LMM] using properties of elliptic operators. Later a more general result was proved by Journe´ [J], relying mainly on Taylor expansions and the estimate of the error: if a function is CKC(cid:11) alongtheleavesoftwotransversefoliationswithuniformlysmoothleaves,thenthe function is CKC(cid:11), (0 < (cid:11) < 1, K D 1;2;:::;1). Another approach is presented by HurderandKatok[HK], basedonanunpublishedideaofC. Toll, in whichthe decayof the Fourier coefficients is used to characterize smoothness. The method can be applied forspanningfamiliesoffoliationswhichhavethesamepropertyasthoseusedin[LMM]. Note that foliationsarising from Anosovdiffeomorphismshave this property. Using the approachin[HK],delaLlaveprovedtheanalyticcasein[Ll1]. In [NT1] the second and third authors provedthat a small cocycle with values in the diffeomorphismgroupofacompactmanifoldwithtrivialtangentbundleiscohomologous to the trivial cocycle, provided the closing conditions hold. The regularity results were extendedtococycleswithvaluesinDiffandLiegroupsin[NT2,NT3]. SeeTheorem5.5 laterforsuchastatement. Theresultsin[NT3]areoptimal,asfarastheinitialregularity ofthetransfermapisconcerned. Severalimprovementsof[NT1]arepresentedin[Ll2], aswellasadifferenttreatmentofLivsic’sresults. 262 A.Katoketal ForAnosovactionsofgroupsotherthanZandRthesituationmaybequitedifferent. While in the above cases the closing conditions imply infinitely many independent obstructionstotrivialization,foractionsofmanyothergroupsvariousrigidityphenomena appear. For ‘large’ groups, such as lattices in higher-rank Lie groups, this is related to thesuper-rigiditytheoremofZimmer[Z]andarenotaconsequenceofhyperbolicity.For other groups (e.g. free non-abelian groups) rigidity does not take place. Note, however, thatforgenericactionsofanygroupthatcontainatransitiveAnosovelement,theclosing conditionsstillimplytrivialityofthecocycle(see[NT1,§5]). Ontheotherhand,foractionsofhigher-rankabeliangroups(e.g.Zk andRk fork (cid:21)2), cocyclerigidityappearsinconnectionwithhyperbolicbehavior. Nevertheless, the proofs of these rigidity results relied on harmonic analysis (abelian and non-abelian), more specifically on the exponential decay of Fourier coefficients for smooth functions on a torus and exponentialdecay of matrix coefficients for irreducible representations of semisimple Lie groups. Using these methods, Katok and Spatzier showed in [KSp1, KSp2, KSp3] that real-valued cocycles over certain Anosov Rk and Zk actions, k (cid:21) 2, are cohomologous to constant cocycles. Related results for expansiveZk actionsbyautomorphismsofcompactabeliangroupswerefoundbyKatok and Schmidt [KSch], and for higher-dimensional shifts of finite type were found by Schmidt[Sch1, Sch2]. KatokandKatokprovedin [KK] similar resultsforhigher-order cohomologies. AdifferentapproachwassuggestedbyKatokinthespringof1994,basedonthenotion ofTNS(i.e.totallynon-symplectic)Zk action.Hisoriginalargumentprovidedageometric (i.e. independent of harmonic analysis) proof for some of the results in [KSp1, KSp2]. This method does not require algebraicity of the action, but assumes a special structure of the stable and unstable manifoldsof variouselementsof the action. Using the notion of TNS actions, Ni¸tica˘ and To¨ro¨kprovedcocyclerigidity for some Diff- and Lie-valued cocycles. Thecurrentpaperrepresentsanaccountofthesedevelopments.Werestrictourselvesto thecaseofRandLie-groupvaluedcocycles.Ourresultsgiveapartialanswertoaquestion askedbyKatokandSpatzierintheintroductionof[KSp1]aboutthegeneralizationoftheir rigidityresultstococycleswithvaluesinnon-abeliangroups.Theresultsforcocycleswith valuesindiffeomorphismgroupsarebepresentedelsewhere[NT4]. Theseareusedinthe study of partially hyperbolic actions of higher-rank abelian groups, and to prove local rigidityofsomepartiallyhyperbolicactionsoflatticesinhigher-rankLiegroups. We describethe necessary notionsand formulatethe resultsin §2. In §3 we consider 1 in detailthe case of real-valuedC cocycles. This emphasizesthe maingeometricidea of the method, namely that the expected solution of the cohomological equation is first constructedas a differential1-form,the TNS conditionimplyingthat the formis closed. The fact that this form is exact follows from the hyperbolicity of the induced action on homology. This method can be extended to some situations where the TNS condition does not hold, e.g. Weyl chamber flows [FK]. In that case the constantcocycles do not correspondtoclosedformsanymore,however,theirexteriorderivativesareofaparticular form, and one can show that for an arbitrary sufficiently smooth cocycle the exterior derivativeofthecorrespondingformisalsoofthisspecialform. Non-abeliancohomologyofabelianAnosovactions 263 In §4 we gathered some general results, independentof the TNS property, which are usedforthecaseofLie-groupvaluedorHo¨ldercocycles.Asasubstituteforthedifferential 1-form,oneconstructsaninvariantfoliationbyputtingtogetherthe‘stable’and‘unstable’ foliationsof the generatorsof the skew-productaction determinedby the cocycle. In §5 wecompletetheproofsofthetheoremsgivenin§2. Duetocertaintechnicaldifficulties, forHo¨ldercocycleswerestrictourselvestothecaseofanactiononatorus.Theresultsfor smoothcocyclesareprovenforactionsoninfranilmanifolds. In §6 we use the main result to show that the derivative cocycle of a small C1 perturbationofa linearTNS Zk actionona torusis cohomologoustoa constantcocycle viaaHo¨ldertransfermap. Thederivativecocycleofsuchanactionisnotasmallcocycle, butonecanreduceittothatcasebyconsideringthesplittingintoLyapunovspaces. Some examplesandrelatedquestionsareincludedin§7. 2. Themainresults The only manifolds which are known to admit Anosov diffeomorphisms are tori, nilmanifoldsandinfranilmanifolds. Itisanoutstandingconjecturethatthesearetheonly onessupportingAnosovdiffeomorphisms(see[F2]). A nilmanifoldisthequotientofaconnected,simplyconnectednilpotentLiegroupN byalattice0. Allsuchlatticesarecocompact,torsionfreeandfinitelygenerated(see[Ra, Theorems2.1and2.18]). Aninfranilmanifoldisfinitelycoveredbyanilmanifold. More precisely, let N be a connected, simply connected nilpotent Lie group and C a compact groupofautomorphismsofN. Let0beatorsion-freecocompactdiscretesubgroupofthe semi-directproductNC. Recallthatanelement.x;c/ofNC (wherex 2 N andc 2 C) actsonN byfirstapplyingcandthenlefttranslatingbyx. ByaresultofAuslander(see [A]),0\N isacocompactdiscretesubgroupofN and0\N hasfiniteindexin0. The quotientspaceN=0isacompactmanifoldcalledaninfranilmanifold. Anosov diffeomorphisms on nilmanifolds and infranilmanifolds were introduced in [Sm,F2,Sh]. LetfNVNC !NC beanautomorphismforwhichfN.0/D0,fN.N/DN. Then fN induces a diffeomorphism f V N=0 ! N=0, called an infranilmanifold automorphism. If the derivative DfNj at the identity is hyperbolic, i.e. has all the N eigenvalues of absolute value different from one, then f is an Anosov diffeomorphism. Notethatinthiscasethestableandunstabledistributionsaresmooth. InthesequelweconsiderZk actionsonlyoninfranilmanifolds. Definition. Wecallanactionlinearifitisgivenbyinfranilmanifoldautomorphisms. RecalltheFranks–ManningclassificationofAnosovdiffeomorphismsoninfranilman- ifolds(see [F1, Man] for the case of a Z action and [H1, proof of Proposition2.18] for thecaseofaZk-action). LetM beaninfranilmanifoldand(cid:11) V Zk (cid:2)M ! M anabelian C1 action containing an Anosov diffeomorphism. Assume that (cid:11) has a fixed point x . 0 Then the action (cid:11) is Ho¨lder conjugate to the linear Zk action (cid:11)N V Zk (cid:2)M ! M given byautomorphismsinducedbythemapinhomotopy(cid:11)(cid:3) V Zk (cid:2)(cid:25)1.M;x0/ ! (cid:25)1.M;x0/. Notethattheactionalwayshasaperiodicpoint.Ingeneral,theactionisHo¨lderconjugate to an affine action, whose restriction to a subgroup of Zk of finite index is an action by 264 A.Katoketal linearautomorphisms. RecallthatHurderconstructedin[H2]abelianAnosovactionson thetorusbyaffinemapswithoutfixedpoints. Let(cid:11) V Zk (cid:2)M ! M beanabelianCK action. View(cid:11) asahomomorphismfromZk intoDiffK.M/anddenotebyA(cid:26)DiffK.M/itsimage. InordertoobtaintherigidityresultsaboutcocyclesoverZk actions,weintroducethe following. Definition. We say that an action (cid:11) is TNS, if there is a family S of partially hyperbolic elements in A and a continuoussplitting of the tangent bundle TM D (cid:8)m E into A- iD1 i invariantdistributionssuchthat: (i) the stable and unstable distributions of any element in S are direct sums of a sub- familyoftheE ’s; i (ii) anytwodistributionsE andE ,1(cid:20)i,j (cid:20)m,areincludedinthestabledistribution i j ofsomeelementinS. 1 If, moreover, the action (cid:11) is C and each distribution E is smooth, we say that the i actionissmoothly-TNS. Remarks. (1) It is easy to see that given a TNS action, one can assume that S consists only of Anosovelements. (2) Given a TNS action described by S (cid:26) A with all elements of S Anosov and a splitting TM D (cid:8)m E , one can replace the distributions fE g by the non-zero T iD1 i i intersections E(cid:27).a/.a/,where(cid:27).a/ 2 fu;sg. Indeed,denotethenewsplitting a2S by TM D (cid:8)k F . It obviously satisfies (i), and (ii) can be checked as follows: iD1 i given Fi and Fj, there are 1 (cid:20) i0;j0 (cid:20) m such that Ei0 (cid:26) Fi and Ej0 (cid:26) Fj and a 2 S suchthatEi0;Ej0 (cid:26) Es.a/; thenFi;Fj (cid:26) Es.a/, bythechoiceofthenew splitting. Iftheoriginalsplittingwassmooth,sowillbethenewone. (3) Inviewoftheabove,onecanalwaysassumethatthedistributionsE areintegrable. i (4) By Remarks (1) and (2), any linear TNS action on an infranilmanifold is actually smoothly-TNS.Ifthelinearactionisonatorus,onecanassumethatthedistributions E areconstant(i.e.givenbytranslatesofsomefixedvectorsubspaces). i (5) Consider a TNS Zk action (cid:11) on an infranilmanifoldM. Since it contains Anosov elements, thereis a subgroup0 (cid:26) Zk offinite indexacting witha fixedpoint, say x , andbytheFranks–Manningclassification(cid:11)j isconjugatedtothelinearaction 0 0 (cid:11)N VD.(cid:11)j0/(cid:3)inducedon(cid:25)1.M;x0/. UsingRemark(1)andthefactthattheelements of S (cid:26) Zk can be replaced by their powers, one can assume that S (cid:26) 0 and S consistsofAnosovelementsonly.Then,byRemark(2),theaction(cid:11)N isTNSaswell, becausetheTNSpropertycanbedescribedintermsoftheintersectionsofthestable andunstablefoliationsoftheelementsofS. LetG (cid:26) GL.d;R/beaclosedsubgroup,withthemetricinducedbythematrixnorm onGL.d;R/. The following theorems apply for G-valued cocycles that are small. However, the smallnessassumptionisnotnecessaryintheproofifGDR. SinceanyR-valuedcocycle Non-abeliancohomologyofabelianAnosovactions 265 can be made arbitrarily small by multiplying it by some non-zero number, we will not makethisdistinctioninthesequel. ForHo¨ldercocycles,ourresultisasfollows. THEOREM2.1. LetMbeatorusand(cid:11) VZk(cid:2)M !MaTNSaction.Let(cid:12) VZk(cid:2)M ! Gbeasmall(cid:14)-Ho¨ldercocycleover(cid:11). Then(cid:12) iscohomologoustoaconstantcocycle,i.e. thereisa(cid:14)-Ho¨lderfunctionP VM !Gandarepresentation(cid:25) VZk !Gsuchthat (cid:12).a;x/DP.ax/−1(cid:25).a/P.x/: Moreover, if (cid:11) and (cid:12) are CK, K D 1;2;:::;1;!, then P is CK−", for any small " >0. .K−" DK forK 2f1;1;!g/. ThemainpartoftheproofistodealwithHo¨ldercocyclesoveralinearaction. THEOREM2.2. Let M be a torus and (cid:11) V Zk (cid:2) M ! M a linear TNS action. Let (cid:12) V Zk (cid:2)M ! G be a small (cid:14)-Ho¨lder cocycle over (cid:11). Then (cid:12) is cohomologousto a constantcocyclethrougha(cid:14)-Ho¨ldertransfermap. The reductionto this case essentially involvesthe Franks–Manningclassification and previousregularityresults. 1 ForC cocycleswedonothavetorequirethatthemanifoldbeatorus. THEOREM2.3. Let M be an infranilmanifold and (cid:11) V Zk (cid:2)M ! M a smoothly-TNS action. Let(cid:12) V Zk (cid:2)M ! GbeasmallC1 cocycleover(cid:11). Then(cid:12) iscohomologousto 1 aconstantcocyclethroughaC transfermap. Moreover,if(cid:11)and(cid:12) areC!,thenthetransfermapisC!. Remark. As can be seen fromthe proof, a similar result holdsfor cocyclesthat are only finitelysmooth.Inthatcasethereisalossofregularityforthetransfermap. Wenowintroducesomenotationwhichwillbeusedinthesequel. Let a be a partially hyperbolicdiffeomorphism. We denote by (cid:21)(cid:6).a/ the contraction andexpansioncoefficientsofa,definedby (cid:21)−.a/VDnl!im1kD.na/jEs.a/k1=n; (2.1) (cid:21)C.a/VDnl!im1kD.na/−1jEu.a/k−1=n: Let(cid:12) VZk(cid:2)M !GL.d;R/beacocycleanda 2Zk.Wedenoteby(cid:22)(cid:6).a/D(cid:22)(cid:6).(cid:12);a/ thecontractionandexpansioncoefficientsfor(cid:12)jhai,definedby (cid:22)−.a/VD lim inf k(cid:12).na;x/−1k−1=n; n!1x2M (2.2) (cid:22)C.a/VD lim supk(cid:12).na;x/k1=n: n!1x2M Notethatinfx2Mk(cid:12).a;x/−1k−1 (cid:20)(cid:22)−.a/(cid:20)(cid:22)C.a/(cid:20)supx2Mk(cid:12).a;x/k. If the cocycle takes values in R (which we see as the additive group) then (cid:22)(cid:6) D 1 because(cid:12) actsbytranslations. IfW isafoliationofM andx 2 M,denotebyW .x/thepath-connectedcomponent loc offy 2W.x/jdist .x;y/<(cid:14) gwhichcontainsx,where(cid:14) >0issmallandfixed. The M 0 0 constant(cid:14) iscalledthesizeofthelocalfoliation. 0 266 A.Katoketal 3. Proofforreal-valuedcocycles WeprovehereaspecialcaseofTheorem2.3inordertoillustratethemaingeometricidea ofthemethod(asmentionedintheintroduction). THEOREM3.1. Let M be an infranilmanifoldand (cid:11) V Zk (cid:2)M ! M a linear TNS Zk action. Let (cid:12) V Zk (cid:2)M ! R be a C1 cocycle over (cid:11). Then (cid:12) is cohomologousto a 1 constantcocyclethroughaC transfermap. ByRemark(4)in§2,wecanassumethatthedistributionsE aresmooth. i Theproofwillfollowfromasequenceoflemmas. TheTNSpropertyisrequiredonly forLemma3.3. Assumethat(cid:12) V Zk (cid:2)M ! Risareal-valuedcocycleovertheTNSlinearaction(cid:11), i.e. (cid:12).a Ca ;x/D(cid:12).a ;a x/C(cid:12).a ;x/; foralla ;a 2Zk; x 2M: 1 2 1 2 2 1 2 We want to show that, under certain regularity conditions, (cid:12) is cohomologous to a constantcocycle,i.e.thereisafunctionP V M ! Randahomomorphism(cid:25) V Zk ! R suchthat (cid:12).a;x/DP.ax/C(cid:25).a/−P.x/: 1 TheideaoftheproofistoconstructaC 1-formonM whichisclosedanddetermines aZk-invariantclassincohomology.Sincetheactioninducedincohomologyishyperbolic, the aboveformhasto be exact. This allowsus to recoverthe homomorphism(cid:25) and the transfermapP. We alsomentionasecondargument,whichwillbedevelopedindetailforthecaseof Lie-group valued cocycles. Namely, since the form is closed, it describes a foliation of M(cid:2)RwithleavesofdimensionmDdimM. Consideringtheholonomyofthisfoliation, onecanshowthattheleavesareclosedandcoverMsimply(i.e.theformisactuallyexact). Leta 2 Zk beahyperbolicelement. Assumethatx 2 M andy isinthestableleafof a throughx, Ws.xIa/. Then the followingsum is convergentin C1 (see, for example, [LMM, proof of Lemma 2.2]; note that if (cid:12) is only Ho¨lder then the sum still converges inC0) X1 P−.yIx/VD− T(cid:12).a;.na/y/−(cid:12).a;.na/x/U; a nD0 andwecandefinea1-form!−onEs.a/bytakingthedifferentialofP−inthey-variable a x a alongthestableleaf. Actually,thedifferentialofPa−.(cid:1)Ix/jWs.xIa/definestheformonthe wholeTWs.xIa/anditdoesnotdependonthepointx chosenonthestableleaf. Similarly,forx 2 M andz 2 Wu.xIa/D Ws.xI−a/,letthe1-form!C onEu.a/be a x definedasthez-differentialofP−−a.zIx/alongtheunstableleafofa. Considertheform ! D!C(cid:8)!−onT M DEu.a/(cid:8)Es.a/. a a a x x x We will showthatfor a largesetof hyperbolicelementsin Zk the aboveconstruction leadstothesameform. Moreover,thisformissmoothandclosed. Weintroducefirstthe notionsoftheLyapunovexponentandtheWeylchamber,whichweuseonlyinthissection (see[KSp4]formoredetails). The action of the derivative(cid:11)(cid:3) of the action (cid:11) on the tangentbundle of the universal coverofM isdeterminedbycommutinginvertiblematrices. Therearelinearfunctionals Non-abeliancohomologyofabelianAnosovactions 267 L V Zk ! R, called Lyapunov exponents, whose values for each a 2 Zk are given j by the logarithms of the absolute values of the eigenvalues of the matrix corresponding to the derivative of (cid:11).a/. Each Lyapunov exponent can be extended to a linear map L V Rk ! R, also called the Lyapunov exponent. There is a splitting of the tangent j bundle into Zk-invariantsub-bundlesTM D (cid:8) F such that the Lyapunovexponentof j j v 2F withrespectto(cid:11).a/isgivenbyL .a/. WecallF aLyapunovspaceorLyapunov j j j distributionfortheaction. ThekernelofeachLyapunovexponentisahyperplaneH in j Rk. WedenotebyH−thehalf-spacewhereL isnegative.Theconnectedcomponentsof j j Rk−[H arecalledWeylchambers. j NotethatusingLyapunovexponents,theTNSpropertycanbecharacterizedby L DcL forsomeconstantc H) c >0: j i LEMMA3.2. Consider a linear Zk action (cid:11) which contains an Anosov element. Then there is a subset S (cid:26) Zk of hyperbolic generators of Zk which contains elements from eachWeylchamber,andwiththepropertythatifa;b2S then ! D! : a b Proof. Let(cid:21) VD exp(cid:14)L V Zk ! T0;1/,anddenotebyF thefoliationcorresponding j j j toF . j Assume firstthat a;b 2 Zk arepartiallyhyperbolic,F (cid:26) Es.a/\Es.b/and(cid:21) .b/, j j the contractioncoefficientalong F , is smaller than the inverseof the Lipschitz normof j (cid:11).a−b/. Letz2F .x/(cid:26)Ws.xIa/\Ws.xIb/.Usingthecocyclerelationwefindthat j Xn−1 (cid:12).a;.ka/z/D(cid:12).na;z/; kD0 (cid:12).na;z/−(cid:12).nb;z/D(cid:12).n.a−b/;.nb/z/; andsimilarly for x instead of z. Therefore, in orderto show that P−.zIx/ D P−.zIx/, a b andconsequentlythat! j D! j ,itisenoughtoshowthat a Fj b Fj lim .(cid:12).n.a−b/;.nb/z/−(cid:12).n.a−b/;.nb/x//D0: n!1 But j(cid:12).n.a−b/;.nb/z/−(cid:12).n.a−b/;.nb/x/j (cid:12) (cid:12) (cid:12)Xn−1 (cid:12) D(cid:12)(cid:12) .(cid:12).a−b;TnbCk.a−b/Uz/−(cid:12).a−b;TnbCk.a−b/Ux//(cid:12)(cid:12) kD0 (cid:20) (cid:21) Xn−1 (cid:20)k(cid:12).a−b;(cid:1)/k dist .(cid:11).nbCk.a−b//.z/;(cid:11).nbCk.a−b//.x//(cid:14) Ho¨lder M kD0 Xn−1 (cid:20)k(cid:12).a−b;(cid:1)/k (cid:1)(cid:21) .b/n(cid:14)(cid:1)C(cid:1).dist .z;x//(cid:14) k(cid:11).a−b/kk(cid:14) ; Ho¨lder j M Lip kD0 whereCisaconstantthatisindependentofn. Since(cid:21) .b/<1and(cid:21) .b/(cid:1)k(cid:11).a−b/k j j Lip <1,theconclusionfollows. 2 268 A.Katoketal We now construct the set S (cid:26) Zk. Consider first a finite set F of elements in Zk closetotheorigin,whichcontainsaZbasisofZk. Thereisa constantM > 1suchthat k(cid:11).c/k (cid:20) M,forallc 2 F. LetL V Rk ! Rbethej’sLyapunovexponentandH Lip j j thehyperplaneinRk determinedbythekernelof(cid:21) . ThenthereexistaballB aroundthe j originandconesC.H / (cid:26) H− intersectingallWeylchambersinH−,suchthatforeach j j j j andanyelementb2C.H /\.Zk −B/wehave j L <−logM; j andtherefore (cid:21) .b/<M−1: (3.1) j Considertwoelementsa;b 2 C.H /\.Zk −B/. Wecanjoina andbbyasequence j ofelementsinC.H /\.Zk −B/addingateachstepanelementfromF. Formula(3.1) j allowsustoapplythefirstpartoftheproofrepeatedlyanddeducethat ! j D! j : (3.2) a Fj b Fj Bytheconstructionofthe1-form,(3.2)stillholdsifaandbareintheunionofC.H / j withtheoppositecone,−C.H /. j DefinethesetS tobe (cid:20) (cid:21) \m S D .C.H /[.−C.H /// \.Zk −B/: j j jD1 LEMMA3.3. If the linear Zk action is TNS then the form ! (cid:17) !a, a 2 S constructed aboveissmoothandclosed. Proof. DenotemDdimM. LetU (cid:26)M beasmall-enoughopenset. Since the distributions E are smooth, one can find a frame of smooth vector fields i fXjgjD1;m overU suchthateachfieldXj iscontainedinsomeEi. Letf(cid:17)jgjD1;m bethe dualframeof1-formsoverU,andwrite Xm !j D f (cid:17) ; wheref D!.X /: U j j j j jD1 We will show that each function f is smooth along all the distributions E and the j i derivativesare continuouson U. However, this impliesthat each f is smooth on U (in j somecasesonecanusethecharacterizationofsmoothnessviaaFouriertransform,orthe theoremofJourne´;ingeneral,oneneeds[HK,Theorem2.6]). Indeed,inordertoshowthatf issmoothalongE ,pickanAnosovelementa 2Ssuch j i thatX ;E (cid:26) Es.a/. Since P−.(cid:1);x/ is smoothalongWs.xIa/andvariescontinuously i j a intheC1 topologywith x 2 M, oneconcludesthat!a−jEs.a/ iscontinuouslyC1 along Ws.a/. ByLemma3.2,thisprovesourassertion. To show that ! is closed, use again the TNS condition and Lemma 3.2. Clearly !a−jWs.xIa/ is exact, hence, using the fact that pull-back and exterior differentiation commute, .d!/jWs.xIa/Dd.!jWs.xIa//D0 fora 2S: Since over U any two directionsX and X are includedin the stable subspace of some i j hyperbolicelementa 2S,weobtainthat.d!/j D0. 2 U

Description:
Ergod. Th. & Dynam. Sys. (2000), 20, 259–288 Printed in the United Kingdom c 2000 Cambridge University Press Non-abelian cohomology of abelian
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.