Non-abelian Chabauty study group Giulio Bresciani, Julian L. Demeio, Guido Lido, Davide Lombardo 2017–2018 2 Contents 1 Colemanintegration 5 1.1 IntegratingonJacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 (cid:82) 1.2 Constructionof intherigidsetting . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Affinerigidgeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Monsky-Washnitzercohomology . . . . . . . . . . . . . . . . . . . . 8 1.2.4 Specialization;thealgebraoflocallyanalyticfunctions . . . . . . . 14 1.2.5 ConstructionoftheColemanintegral . . . . . . . . . . . . . . . . . 15 2 ThemethodofChabauty(viaColemanintegration) 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Chabauty-Coleman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Boundsonthenumberofrationalpoints . . . . . . . . . . . . . . . . . . . 20 3 Gruppofondamentaleétale 25 3.1 Rivestimentiétalefiniti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Ilgruppofondamentaleétale . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Alcuneproprietà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Schemiingruppi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 TheDeRhamunipotentfundamentalgroup 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Definitionof π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1,DR 4.3 Thecaseofthethrice-puncturedprojectiveline . . . . . . . . . . . . . . . . 47 4.4 Furtherconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 ThecanonicalDeRhaminvariantpath . . . . . . . . . . . . . . . . . . . . . 50 Q 5 ProofofSiegel’stheoremover 53 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 DeRhamUnipotentFundamentalGroup . . . . . . . . . . . . . . . . . . . 53 5.3 Thefundamentaldiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 TheUnipotentÉtaleFundamentalgroup . . . . . . . . . . . . . . . . . . . 55 5.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Themorphism D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 4 CONTENTS 5.6 ProofofSiegel’stheorembyKim’smethod . . . . . . . . . . . . . . . . . . 58 5.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Periodrings 63 6.1 Wittvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.1.3 Teichmüllerrepresentatives . . . . . . . . . . . . . . . . . . . . . . . 65 6.1.4 PropertiesoftheWittvectors . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Periodrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2.2 Periodsforthecyclotomiccharacter . . . . . . . . . . . . . . . . . . 66 6.2.3 Hodge-Taterepresentations . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.4 ConstructionofBdR . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B 6.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 cris Chapter 1 Coleman integration 1.1 Integrating on Jacobians Q Let K be a p-adic field, that is, a finite extension of , and let J be the Jacobian of a p p smoothcurve C/K . Thepurposeofthischapteristoconstructanintegrationmap p H0(J,Ω1)× J(K ) → K J p p (cid:82)P (ω,P) (cid:55)→ ω thatsatisfies: 1. K -linearityin ω; p (cid:82)P+Q (cid:82)P (cid:82)Q 2. additivityin P: ω = ω+ ω 3. non-degeneracymodulotorsion: (cid:82)Pω = 0forallω ∈ H0(J,Ω1)ifandonlyif Pis J torsion. Remark 1.1.1. In fact, the same construction goes through for any abelian variety over a p-adicfield. Lemma1.1.2. LetCot(J) bethecotangentspaceto J attheorigin. Theevaluationmap ev : H0(J,Ω1) → Cot(J) J ω (cid:55)→ ω(0) isanisomorphism. Proof. The map P (cid:55)→ τ∗ω (from J to Cot(J)) is algebraic. Since J is complete and Cot(J) P is affine, it must be constant. This proves that any differential form is translation in- variant, so ev is injective. It is also surjective, for example because the two spaces have the same dimension, or because any differential form defined at 0 can be extended to a translation-invariantdifferentialform. 5 6 CHAPTER1. COLEMANINTEGRATION Lemma 1.1.3. For any ω ∈ H0(J,Ω1) there exists a unique analytic map λ : J(K ) → K J ω p p suchthat dλ = ω, λ (0) = 0,and λ : J(K ) → K isagrouphomomorphism. ω ω p p Proof. Writeω(0) = ∑Fdz forsome F ∈ K [[z ,...,z ]]. Byanobviousanaloguetothe i i i p 1 g Poincaré lemma, there exists G ∈ K [[z ,...,z ]] such that dG = ω, and G converges p 1 g on some open ball B. Without loss of generality1, we can assume that B is an (open) (cid:0) (cid:1) subgroupof J(K ). Bycompactness, J(K ) : B =: N isfinite2,andwecanset p p 1 λ (P) = G(NP). ω N Onechecksthatdλ = ω: thisisclearon B,andbytranslation-invarianceitisthentrue ω on all of J. To show that λ is a homomorphism, notice that (at least when restricted ω (cid:82)b to B) the map ω := λ (b)−λ (a) has all the formal properties of integration (by a ω ω definition), hence for a,b ∈ B such that a+b ∈ B (which is automatic, because B is a subgroup)wehave (cid:90) a+b (cid:90) a (cid:90) a+b λ (a+b) = ω = ω+ ω ω 0 0 a (cid:90) a (cid:90) b = ω+ τ∗ω = λ (a)+λ (b). a ω ω 0 0 This easily implies that λ is a homomorphism. Finally, uniqueness follows from local ω uniquenessatzerocombinedwiththerequirementthat λ beahomomorphism. ω (cid:82)P Definition1.1.4. Weset ω = λ (P). ω Proposition 1.1.5. This definition satisfies conditions (1)-(3) in the definition of the Coleman integral. Proof. 1. Let ω ,ω be two elements of H0(J,Ω1) and λ ,λ be the two associated 1 2 J ω1 ω2 homomorphisms. Set λ := λω +λω : we want to prove that λ = λω +ω . This 1 2 1 2 follows by uniqueness of λω +ω and linearity of d, since λ(0) = 0, dλ = d(λω + 1 2 1 λ ) = ω +ω ,and λ isahomomorphism. ω2 1 2 2. Directconsequenceofthepreviouslemma. (cid:82)P 3. Wehave ω = 0forall ω ifandonlyif λ (P) = 0forall ω. DenotebyTanJ the ω tangentspaceattheoriginto J(K ) andconsiderthemap p ι : J(K ) → Tan(J) p x (cid:55)→ (ω (cid:55)→ λ (x)). ω 1atheoremofMattuck[Mat55]saysthatJ(Kp)containsanopensubgroupisomorphic(asatopological group) to OKgp. In particular, the images in J(Kp) of the sets (pjOKp)g form a basis of neghbourhood around0consistingofopensubgroups. 2this number should be thought of as a large power of p; however, due to the possible presence of torsion,itisnottrueingeneralthatNisexactlyapowerof p. (cid:82) 1.2. CONSTRUCTIONOF INTHERIGIDSETTING 7 We claim that this is a locally injective homomorphism. Linearity is clear, and local injectivity follows from the fact that the differential at 0 of this map is the identity (indeed dλ | = ω). In particular, kerι is finite, and hence a subgroup of ω 0 thegroupoftorsionpoints. OntheotherhandTan(J)istorsion-free,soTorsJ(K ) p issentto0by ι. Thisprovesthat ι inducesaninjectivemap J(K )/TorsJ(K ) (cid:44)→ Tan(J) p p orequivalentlyapairing J(K )/TorsJ(K )×Tan(J)∨ → K p p p which is non-degenerate on the left. Since we have a canonical identification of (cid:16) (cid:17) Tan(J)∨ with H0 J(K ),Ω1 wearedone. p J (cid:82) 1.2 Construction of in the rigid setting Theconstructionoftheintegrationmapgivenintheprevioussectionreliesonthegroup structure of the Jacobian; in this section we shall sketch a much more general construc- tion of the Coleman integral, which however relies on deeper results (specifically, the studyoftheeigenvaluesofFrobeniusontheso-calledMonsky-Washnitzercohomology ofthevarietyforwhichwewanttoconstructtheintegral). 1.2.1 Notation Q Let K be a p-adic field (finitely generated extension of ) with ring of integers R, uni- p formizer π, and quotient field k. For later use, we fix an automorphism σ of K that reducestothe p-powermapon k andextenditto K. 1.2.2 Affine rigid geometry TheTatealgebrais (cid:40) (cid:41) T := K(cid:104)t ,...,t (cid:105) := ∑a tI : lim |a | → 0 . n 1 n I I |I|→∞ Itisaverynicering! Forexample,itsatisfiesWeierstrasspreparationanddivision: Definition1.2.1. AWeierstrasspolynomialis f(t ,...,t ) = tm +tm−1g (t ,...,t )+···+g (t ,...,t ), 1 n 1 1 m−1 2 m 0 2 m whereeach g isanelementof T and g (0,...,0) = 0. i n−1 i 8 CHAPTER1. COLEMANINTEGRATION Theorem1.2.2. Thefollowinghold: • let f ∈ T be such that f(0,...,0) = 0. Suppose that the power series f(t ,...,t ) has n 1 n at least one term involving only one variable3 (say t ): then we have f = uW with u a 1 unitandW aWeierstrasspolynomial. • given f ∈ T and a Weierstrass polynomial g, there exist q ∈ T and a Weierstrass n n polynomial r suchthat f = qg+r. We also have a version of Noether’s normalization, and therefore the weak Null- stellensatz: every maximal ideal is a Galois conjugacy class of geometric points. More formally, Spm(T ) = {K−homomorphism ψ : T → K}/Gal(K/K) n n ThemaximalspectrumoftheTatealgebraistherefore (cid:110) (cid:111) n Spm(T ) = (z ,...,z ) ∈ K : |z | ≤ 1 /Gal(K/K). n 1 n i × To see that points need to have integral coordinates, notice that if z ∈ K is non- i integral,then t −z = −z (1−z −1t ) isaunitin T ,soitcannotmaptozero. i i i i i n n The unit polydisk is B := {(z ,...,z ) ∈ K : |z | ≤ 1}. An affinoid algebra is n 1 n i a K-algebra with a surjective map T → A for some n. The prototypical example is n A = T /(t t −1) (whichisa p-adicanalogueofS1): 2 1 2 (cid:110) (cid:111) Spm(A) = {(z ,z ) ∈ B : z z = 1} = x ∈ K : |x| = 1 /Gal(K/K). 1 2 2 1 2 Remark 1.2.3. T is a Banach algebra with respect to the so-called Gauss norm: for a n series f = ∑a xI, its Gauss norm is (cid:107)f(cid:107) = max |a |. Every affinoid algebra inherits a I I I structureofBanachalgebra(theGaussnormpassestothequotientbecauseanyidealin theTatealgebraistopologicallyclosed). Remark 1.2.4. Proofs for many useful facts concerning Tate algebras can be found in http://www.mat.uc.cl/~rmenares/TateAlgebras.pdf. 1.2.3 Monsky-Washnitzer cohomology Weshallworkwiththeso-calledwcfgalgebras: Definition1.2.5. 1. The standard weakly complete finitely generated (wcfg) algebra is (cid:40) (cid:41) T † = ∑a tI : a ∈ R,∃r > 1suchthat lim |a |r|I| = 0 . n I I I |I|→∞ 2. Awcfgalgebraisan R-algebra A† withasurjectivehomomorphism T † → A†. n 3Noticethatonecanalwaysreducetothissituationbyanappropriatechangeofvariables. (cid:82) 1.2. CONSTRUCTIONOF INTHERIGIDSETTING 9 3. Givenawcfgalgebra A†,its(π-adic)completionis A(cid:98) := lim A†/πnA†. ←−n Notice that the Gauss norm on the Tate algebra T restricts to a norm on T † (with n n respecttothisnormT † isnotcomplete). Weshallneedthefollowingtheorem,whichis n aconsequenceoftheso-calledArtinapproximationproperty: Theorem1.2.6. (see[vdP86]andthereferencestherein)Thefollowinghold: • Let ε > 0. Givenadiagramofwcfgalgebras A f (cid:15)(cid:15) (cid:111)(cid:111) B/J B g and a morphism u(cid:98) : A(cid:98) → B(cid:98) such that f(cid:98) = g(cid:98)◦u(cid:98), there exists a morphism u : A → B suchthat f = g◦u and |u−u| ≤ ε. (cid:98) • Let ε > 0. Givenadiagramofwcfgalgebras A(cid:79)(cid:79) f g (cid:47)(cid:47) C B and a morphism u(cid:98) : A(cid:98) → B(cid:98) such that g(cid:98) = f(cid:98)◦u(cid:98), there exists a morphism u : A → B suchthat f = g◦u and |u−u| ≤ ε. (cid:98) Differentials Themodulesofdifferentialsassociatedwith A† = T †/(cid:104)f ,..., f (cid:105) are n 1 m (cid:76)A†dt Ω1 := i A† (cid:28) (cid:12) (cid:29) ∂fjdt (cid:12) j = 1,...,m ∂t i (cid:12) i A† and Ωk := ΛkΩ1 . A† A† Theyareprojective A†-modules. ThedeRhamcomplex Ω• is A† 0 → Ω0 → Ω1 → ··· → Ωk . A† A† A† 10 CHAPTER1. COLEMANINTEGRATION Cohomology Ifif A† isawcfgalgebrathen A = A†/π isanhonestfinitelygenerated k-algebra. Definition 1.2.7. The Monsky-Washnitzer cohomology of A, denoted by H (A/K), is the MW cohomologyofthedeRhamcomplex Ω• ⊗K. A† It is a theorem of Berthelot [Ber97] that Hi (A/K) is a finite-dimensional K-vector MW spaceforall i. Theorem1.2.8. (Elkik[Elk73],vanderPorten[vdP86]) 1. Let A be a smooth finitely generated k-algebra. There exists a flat wcfg algebra A† such that A = A†/π. 2. Anytwosuchliftsareisomorphic. 3. Anymorphism f : A → B canbeliftedtoamorphism f† : A† → B†. 4. Any two maps f , f with the same reduction modulo π induce homotopic maps Ω• ⊗ 0 1 A† K → Ω• ⊗K. B† Proof. 1. It suffices to show that there is a smooth lift, and then weakly-complete it. Existenceofthesmoothliftisshownin[Elk73]. 2. By flatness and the fact that A is smooth, one obtains that A/πnA and B/πnB are smooth over R/πnR for all n. In particular, there is a projective system of morphisms A(cid:98) → B(cid:98). By Artin approximation, there is a morphism i : A → B which is an isomorphism modulo π. We want to show that it is an isomorphism. By flatness, A/πA ∼= πnA/πn+1A and B/πB ∼= πnB/πn+1B, hence in particular keri ⊆ (cid:84) πnA = (0). Asforsurjectiveness,seeLemma1.2.9below. n (cid:127) In [vdP86] it is claimed that surjectivity modulo π is “a consequence of the Weierstrass theorems", but no details are given. Any errors in the previous proof (orinLemma1.2.9below)areentirelydowntotheauthorofthesenotes. 3. Similarto2. 4. We only give a sketch. The idea is to mimic the proof of Poincaré’s lemma: we look for maps α ,α : B(cid:104)T(cid:105)† → B† and f : B(cid:104)T(cid:105)† → B† such that f = α ◦ f. We 0 1 i i define α bysending T to i. Now i Ωq+1(B(cid:104)T(cid:105)†/K) = B(cid:104)T(cid:105)† ⊗ Ωq+1(B/K)⊕B(cid:104)T(cid:105)†dT⊗Ωq(B(cid:104)T(cid:105)†/K) B andonedefines δ tobe0onthefirstsummandand q (cid:32) (cid:33) (cid:90) 1 g⊗ω (cid:55)→ g(t)dt ω 0
Description: