ebook img

Non-abelian Chabauty study group PDF

74 Pages·2017·0.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Non-abelian Chabauty study group

Non-abelian Chabauty study group Giulio Bresciani, Julian L. Demeio, Guido Lido, Davide Lombardo 2017–2018 2 Contents 1 Colemanintegration 5 1.1 IntegratingonJacobians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 (cid:82) 1.2 Constructionof intherigidsetting . . . . . . . . . . . . . . . . . . . . . . 7 1.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Affinerigidgeometry . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Monsky-Washnitzercohomology . . . . . . . . . . . . . . . . . . . . 8 1.2.4 Specialization;thealgebraoflocallyanalyticfunctions . . . . . . . 14 1.2.5 ConstructionoftheColemanintegral . . . . . . . . . . . . . . . . . 15 2 ThemethodofChabauty(viaColemanintegration) 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Chabauty-Coleman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Boundsonthenumberofrationalpoints . . . . . . . . . . . . . . . . . . . 20 3 Gruppofondamentaleétale 25 3.1 Rivestimentiétalefiniti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Ilgruppofondamentaleétale . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Alcuneproprietà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Schemiingruppi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 TheDeRhamunipotentfundamentalgroup 45 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Definitionof π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 1,DR 4.3 Thecaseofthethrice-puncturedprojectiveline . . . . . . . . . . . . . . . . 47 4.4 Furtherconstructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5 ThecanonicalDeRhaminvariantpath . . . . . . . . . . . . . . . . . . . . . 50 Q 5 ProofofSiegel’stheoremover 53 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.2 DeRhamUnipotentFundamentalGroup . . . . . . . . . . . . . . . . . . . 53 5.3 Thefundamentaldiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.4 TheUnipotentÉtaleFundamentalgroup . . . . . . . . . . . . . . . . . . . 55 5.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.5 Themorphism D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 4 CONTENTS 5.6 ProofofSiegel’stheorembyKim’smethod . . . . . . . . . . . . . . . . . . 58 5.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6 Periodrings 63 6.1 Wittvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.1.3 Teichmüllerrepresentatives . . . . . . . . . . . . . . . . . . . . . . . 65 6.1.4 PropertiesoftheWittvectors . . . . . . . . . . . . . . . . . . . . . . 65 6.2 Periodrings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2.1 Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.2.2 Periodsforthecyclotomiccharacter . . . . . . . . . . . . . . . . . . 66 6.2.3 Hodge-Taterepresentations . . . . . . . . . . . . . . . . . . . . . . . 67 6.2.4 ConstructionofBdR . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 B 6.2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 cris Chapter 1 Coleman integration 1.1 Integrating on Jacobians Q Let K be a p-adic field, that is, a finite extension of , and let J be the Jacobian of a p p smoothcurve C/K . Thepurposeofthischapteristoconstructanintegrationmap p H0(J,Ω1)× J(K ) → K J p p (cid:82)P (ω,P) (cid:55)→ ω thatsatisfies: 1. K -linearityin ω; p (cid:82)P+Q (cid:82)P (cid:82)Q 2. additivityin P: ω = ω+ ω 3. non-degeneracymodulotorsion: (cid:82)Pω = 0forallω ∈ H0(J,Ω1)ifandonlyif Pis J torsion. Remark 1.1.1. In fact, the same construction goes through for any abelian variety over a p-adicfield. Lemma1.1.2. LetCot(J) bethecotangentspaceto J attheorigin. Theevaluationmap ev : H0(J,Ω1) → Cot(J) J ω (cid:55)→ ω(0) isanisomorphism. Proof. The map P (cid:55)→ τ∗ω (from J to Cot(J)) is algebraic. Since J is complete and Cot(J) P is affine, it must be constant. This proves that any differential form is translation in- variant, so ev is injective. It is also surjective, for example because the two spaces have the same dimension, or because any differential form defined at 0 can be extended to a translation-invariantdifferentialform. 5 6 CHAPTER1. COLEMANINTEGRATION Lemma 1.1.3. For any ω ∈ H0(J,Ω1) there exists a unique analytic map λ : J(K ) → K J ω p p suchthat dλ = ω, λ (0) = 0,and λ : J(K ) → K isagrouphomomorphism. ω ω p p Proof. Writeω(0) = ∑Fdz forsome F ∈ K [[z ,...,z ]]. Byanobviousanaloguetothe i i i p 1 g Poincaré lemma, there exists G ∈ K [[z ,...,z ]] such that dG = ω, and G converges p 1 g on some open ball B. Without loss of generality1, we can assume that B is an (open) (cid:0) (cid:1) subgroupof J(K ). Bycompactness, J(K ) : B =: N isfinite2,andwecanset p p 1 λ (P) = G(NP). ω N Onechecksthatdλ = ω: thisisclearon B,andbytranslation-invarianceitisthentrue ω on all of J. To show that λ is a homomorphism, notice that (at least when restricted ω (cid:82)b to B) the map ω := λ (b)−λ (a) has all the formal properties of integration (by a ω ω definition), hence for a,b ∈ B such that a+b ∈ B (which is automatic, because B is a subgroup)wehave (cid:90) a+b (cid:90) a (cid:90) a+b λ (a+b) = ω = ω+ ω ω 0 0 a (cid:90) a (cid:90) b = ω+ τ∗ω = λ (a)+λ (b). a ω ω 0 0 This easily implies that λ is a homomorphism. Finally, uniqueness follows from local ω uniquenessatzerocombinedwiththerequirementthat λ beahomomorphism. ω (cid:82)P Definition1.1.4. Weset ω = λ (P). ω Proposition 1.1.5. This definition satisfies conditions (1)-(3) in the definition of the Coleman integral. Proof. 1. Let ω ,ω be two elements of H0(J,Ω1) and λ ,λ be the two associated 1 2 J ω1 ω2 homomorphisms. Set λ := λω +λω : we want to prove that λ = λω +ω . This 1 2 1 2 follows by uniqueness of λω +ω and linearity of d, since λ(0) = 0, dλ = d(λω + 1 2 1 λ ) = ω +ω ,and λ isahomomorphism. ω2 1 2 2. Directconsequenceofthepreviouslemma. (cid:82)P 3. Wehave ω = 0forall ω ifandonlyif λ (P) = 0forall ω. DenotebyTanJ the ω tangentspaceattheoriginto J(K ) andconsiderthemap p ι : J(K ) → Tan(J) p x (cid:55)→ (ω (cid:55)→ λ (x)). ω 1atheoremofMattuck[Mat55]saysthatJ(Kp)containsanopensubgroupisomorphic(asatopological group) to OKgp. In particular, the images in J(Kp) of the sets (pjOKp)g form a basis of neghbourhood around0consistingofopensubgroups. 2this number should be thought of as a large power of p; however, due to the possible presence of torsion,itisnottrueingeneralthatNisexactlyapowerof p. (cid:82) 1.2. CONSTRUCTIONOF INTHERIGIDSETTING 7 We claim that this is a locally injective homomorphism. Linearity is clear, and local injectivity follows from the fact that the differential at 0 of this map is the identity (indeed dλ | = ω). In particular, kerι is finite, and hence a subgroup of ω 0 thegroupoftorsionpoints. OntheotherhandTan(J)istorsion-free,soTorsJ(K ) p issentto0by ι. Thisprovesthat ι inducesaninjectivemap J(K )/TorsJ(K ) (cid:44)→ Tan(J) p p orequivalentlyapairing J(K )/TorsJ(K )×Tan(J)∨ → K p p p which is non-degenerate on the left. Since we have a canonical identification of (cid:16) (cid:17) Tan(J)∨ with H0 J(K ),Ω1 wearedone. p J (cid:82) 1.2 Construction of in the rigid setting Theconstructionoftheintegrationmapgivenintheprevioussectionreliesonthegroup structure of the Jacobian; in this section we shall sketch a much more general construc- tion of the Coleman integral, which however relies on deeper results (specifically, the studyoftheeigenvaluesofFrobeniusontheso-calledMonsky-Washnitzercohomology ofthevarietyforwhichwewanttoconstructtheintegral). 1.2.1 Notation Q Let K be a p-adic field (finitely generated extension of ) with ring of integers R, uni- p formizer π, and quotient field k. For later use, we fix an automorphism σ of K that reducestothe p-powermapon k andextenditto K. 1.2.2 Affine rigid geometry TheTatealgebrais (cid:40) (cid:41) T := K(cid:104)t ,...,t (cid:105) := ∑a tI : lim |a | → 0 . n 1 n I I |I|→∞ Itisaverynicering! Forexample,itsatisfiesWeierstrasspreparationanddivision: Definition1.2.1. AWeierstrasspolynomialis f(t ,...,t ) = tm +tm−1g (t ,...,t )+···+g (t ,...,t ), 1 n 1 1 m−1 2 m 0 2 m whereeach g isanelementof T and g (0,...,0) = 0. i n−1 i 8 CHAPTER1. COLEMANINTEGRATION Theorem1.2.2. Thefollowinghold: • let f ∈ T be such that f(0,...,0) = 0. Suppose that the power series f(t ,...,t ) has n 1 n at least one term involving only one variable3 (say t ): then we have f = uW with u a 1 unitandW aWeierstrasspolynomial. • given f ∈ T and a Weierstrass polynomial g, there exist q ∈ T and a Weierstrass n n polynomial r suchthat f = qg+r. We also have a version of Noether’s normalization, and therefore the weak Null- stellensatz: every maximal ideal is a Galois conjugacy class of geometric points. More formally, Spm(T ) = {K−homomorphism ψ : T → K}/Gal(K/K) n n ThemaximalspectrumoftheTatealgebraistherefore (cid:110) (cid:111) n Spm(T ) = (z ,...,z ) ∈ K : |z | ≤ 1 /Gal(K/K). n 1 n i × To see that points need to have integral coordinates, notice that if z ∈ K is non- i integral,then t −z = −z (1−z −1t ) isaunitin T ,soitcannotmaptozero. i i i i i n n The unit polydisk is B := {(z ,...,z ) ∈ K : |z | ≤ 1}. An affinoid algebra is n 1 n i a K-algebra with a surjective map T → A for some n. The prototypical example is n A = T /(t t −1) (whichisa p-adicanalogueofS1): 2 1 2 (cid:110) (cid:111) Spm(A) = {(z ,z ) ∈ B : z z = 1} = x ∈ K : |x| = 1 /Gal(K/K). 1 2 2 1 2 Remark 1.2.3. T is a Banach algebra with respect to the so-called Gauss norm: for a n series f = ∑a xI, its Gauss norm is (cid:107)f(cid:107) = max |a |. Every affinoid algebra inherits a I I I structureofBanachalgebra(theGaussnormpassestothequotientbecauseanyidealin theTatealgebraistopologicallyclosed). Remark 1.2.4. Proofs for many useful facts concerning Tate algebras can be found in http://www.mat.uc.cl/~rmenares/TateAlgebras.pdf. 1.2.3 Monsky-Washnitzer cohomology Weshallworkwiththeso-calledwcfgalgebras: Definition1.2.5. 1. The standard weakly complete finitely generated (wcfg) algebra is (cid:40) (cid:41) T † = ∑a tI : a ∈ R,∃r > 1suchthat lim |a |r|I| = 0 . n I I I |I|→∞ 2. Awcfgalgebraisan R-algebra A† withasurjectivehomomorphism T † → A†. n 3Noticethatonecanalwaysreducetothissituationbyanappropriatechangeofvariables. (cid:82) 1.2. CONSTRUCTIONOF INTHERIGIDSETTING 9 3. Givenawcfgalgebra A†,its(π-adic)completionis A(cid:98) := lim A†/πnA†. ←−n Notice that the Gauss norm on the Tate algebra T restricts to a norm on T † (with n n respecttothisnormT † isnotcomplete). Weshallneedthefollowingtheorem,whichis n aconsequenceoftheso-calledArtinapproximationproperty: Theorem1.2.6. (see[vdP86]andthereferencestherein)Thefollowinghold: • Let ε > 0. Givenadiagramofwcfgalgebras A f (cid:15)(cid:15) (cid:111)(cid:111) B/J B g and a morphism u(cid:98) : A(cid:98) → B(cid:98) such that f(cid:98) = g(cid:98)◦u(cid:98), there exists a morphism u : A → B suchthat f = g◦u and |u−u| ≤ ε. (cid:98) • Let ε > 0. Givenadiagramofwcfgalgebras A(cid:79)(cid:79) f g (cid:47)(cid:47) C B and a morphism u(cid:98) : A(cid:98) → B(cid:98) such that g(cid:98) = f(cid:98)◦u(cid:98), there exists a morphism u : A → B suchthat f = g◦u and |u−u| ≤ ε. (cid:98) Differentials Themodulesofdifferentialsassociatedwith A† = T †/(cid:104)f ,..., f (cid:105) are n 1 m (cid:76)A†dt Ω1 := i A† (cid:28) (cid:12) (cid:29) ∂fjdt (cid:12) j = 1,...,m ∂t i (cid:12) i A† and Ωk := ΛkΩ1 . A† A† Theyareprojective A†-modules. ThedeRhamcomplex Ω• is A† 0 → Ω0 → Ω1 → ··· → Ωk . A† A† A† 10 CHAPTER1. COLEMANINTEGRATION Cohomology Ifif A† isawcfgalgebrathen A = A†/π isanhonestfinitelygenerated k-algebra. Definition 1.2.7. The Monsky-Washnitzer cohomology of A, denoted by H (A/K), is the MW cohomologyofthedeRhamcomplex Ω• ⊗K. A† It is a theorem of Berthelot [Ber97] that Hi (A/K) is a finite-dimensional K-vector MW spaceforall i. Theorem1.2.8. (Elkik[Elk73],vanderPorten[vdP86]) 1. Let A be a smooth finitely generated k-algebra. There exists a flat wcfg algebra A† such that A = A†/π. 2. Anytwosuchliftsareisomorphic. 3. Anymorphism f : A → B canbeliftedtoamorphism f† : A† → B†. 4. Any two maps f , f with the same reduction modulo π induce homotopic maps Ω• ⊗ 0 1 A† K → Ω• ⊗K. B† Proof. 1. It suffices to show that there is a smooth lift, and then weakly-complete it. Existenceofthesmoothliftisshownin[Elk73]. 2. By flatness and the fact that A is smooth, one obtains that A/πnA and B/πnB are smooth over R/πnR for all n. In particular, there is a projective system of morphisms A(cid:98) → B(cid:98). By Artin approximation, there is a morphism i : A → B which is an isomorphism modulo π. We want to show that it is an isomorphism. By flatness, A/πA ∼= πnA/πn+1A and B/πB ∼= πnB/πn+1B, hence in particular keri ⊆ (cid:84) πnA = (0). Asforsurjectiveness,seeLemma1.2.9below. n (cid:127) In [vdP86] it is claimed that surjectivity modulo π is “a consequence of the Weierstrass theorems", but no details are given. Any errors in the previous proof (orinLemma1.2.9below)areentirelydowntotheauthorofthesenotes. 3. Similarto2. 4. We only give a sketch. The idea is to mimic the proof of Poincaré’s lemma: we look for maps α ,α : B(cid:104)T(cid:105)† → B† and f : B(cid:104)T(cid:105)† → B† such that f = α ◦ f. We 0 1 i i define α bysending T to i. Now i Ωq+1(B(cid:104)T(cid:105)†/K) = B(cid:104)T(cid:105)† ⊗ Ωq+1(B/K)⊕B(cid:104)T(cid:105)†dT⊗Ωq(B(cid:104)T(cid:105)†/K) B andonedefines δ tobe0onthefirstsummandand q (cid:32) (cid:33) (cid:90) 1 g⊗ω (cid:55)→ g(t)dt ω 0

Description:
2this number should be thought of as a large power of p; however, due to the possible .. a nice cohomological theory which later evolved into rigid cohomology. connesso e ψ1, ψ2 : Z → X due morfismi tali che ϕ ◦ ψ1 = ϕ ◦ ψ2.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.