ebook img

NOMBRE DEL BECARIO Liu Cheng, Alexander Technische Universität München PDF

258 Pages·2015·12.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NOMBRE DEL BECARIO Liu Cheng, Alexander Technische Universität München

PROGRAMA DE BECAS " UNIVERSIDADES DE EXCELENCIA POSTGRADO" NOMBRE DEL BECARIO Liu Cheng, Alexander Technische Universität München UNIVERSIDAD (Universidad Técnica de Munich) Máster de Ciencias / Master of Science (M.Sc.), TITULO OBTENIDO Advanced Construction and Building Technology—Automation, Robotics, Services Diseño e implementación de un sistema nuevo y económico de detección de caídas y de intervención basado en tecnologías de redes de sensores inalámbricos para una vida independiente [enfocado en personas de tercera edad]. Design and Implementation of a Novel Cost-effective Fall-Detection and - TEMA DE TESIS Intervention System for Independent Living based on Wireless Sensor Network Technologies. Entwurf und Implementierung eines neuartigen kostengünstigen Sturzerkennungs- und Interventionssystems für selbstbestimmtes Leben, basierend auf drahtloser Sensornetzwerktechnologien FAKULTÄT FÜR ARCHITEKTUR Lehrstuhl für Baurealisierung und Baurobotik DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Master of Science Thesis in Advanced Construction and Building Technology Design and Implementation of a Novel Cost- effective Fall-Detection and -Intervention System for Independent Living based on Wireless Sensor Network Technologies Alexander LIU CHENG FAKULTÄT FÜR ARCHITEKTUR Lehrstuhl für Baurealisierung und Baurobotik DER TECHNISCHEN UNIVERSITÄT MÜNCHEN Master of Science Thesis in Advanced Construction and Building Technology Entwurf und Implementierung eines neuartigen kostengünstigen Sturzerkennungs- und Interventionssystems für selbstbestimmtes Leben, basierend auf drahtloser Sensornetzwerktechnologien Author: Alexander LIU CHENG Supervisor: Prof. Dr.-Ing. Thomas BOCK Advisor: Dr.-Ing. Christos GEORGOULAS Date: August 12, 2015 Ich versichere, dass ich diese Masterarbeit selbständig verfasst und nur die angegebenen Quellen und Hilfsmittel verwendet habe. München, den 12 August 2015 Alexander LIU CHENG i Acknowledgments The present work would not have been possible without the guidance, patience, and perseverance of my Supervisor, Prof. Dr.-Ing. Thomas BOCK and my Advisor, Dr.-Ing. Christos GEORGOULAS. One would be hard-pressed to find a more stimulating, engaging, and inspiring dynamic duo who steer by leading and not by pushing. I also acknowledge Mr. Andreas BITTNER, the Mechatronics and Systems Administrator at the laboratory of our Lehrstuhl für Baurealisierung und Baurobotik for his generous technical assistance and formidable expertise. Finally, I acknowledge The Secretariat for Higher Education, Science, Technology and Innovation of Ecuador for having supported me and my work for the past two years. ii Dedication To my forbearing family. iii Abstract The present thesis details the design and implementation of a novel cost-effective Fall- Detection and -Intervention System (FaDIS) based on Wireless Sensor Network (WSN) technologies. The system is designed to integrate seamlessly into existing Ambient Assisted Living environments to create a versatile yet robust de facto Cyber-Physical Network (CPN), where software and hardware devices and agents attempt to facilitate a safe and proactive independent living. FaDIS is designed to operate both as an add-on component to existing centralized solutions—complete or otherwise—or as an integral yet independent component of decentralized, scalable, and expandable solutions. FaDIS is developed and implemented in two parts—each with different Technology Readiness Levels (TRLs)—where the first lays the foundations of the system in the centralized context, and where the second expands on the first to satisfy the expectations and to exploit the advantages of a decentralized context. One the one hand, Part 1 is developed as a scaled proof-of-concept that uses a multi-point network protocol, where the existing environment’s central computer serves as the system-node (i.e., the sink node), and where a low-cost laser is used together with Light Dependent Resistors (LDRs) in a predefined environment to gauge the probabilities of an emergency-event based on the correlation between object-detection instances and user-generated gyroscopic and accelerometer data. On the other hand, Part 2 (TRL 5-7) is developed as a fully operational, real-scale implementation that uses a self-healing mesh network protocol, where its own BeagleBone Black (BBB) development platform—which is completely independent from any preexisting central computer—serves as the sink node, and where two Class 2M 10º line lasers are used together with LDRs in a non-predefined environment—whose extents are ascertained via self-calibration routines—to gauge the probabilities of an emergency-event based on the estimated dimensions of the collapsed object (as anticipated by the number of instantiated direct laser vs. reflected laser intersections). In both Parts 1 and 2, if FaDIS construes the probabilities of an emergency event as high, the same series of corresponding robotic response-actions intervene locally while Internet of Things (IoT) notifications are sent to emergency-personnel, care-takers, and/or family-members via both wireless and cellular technology globally. A series of sample runs are detailed and described in the present work in order to demonstrate and to argue for the feasibility and functionality of FaDIS. iv Outline of the Thesis CHAPTER 1: Introduction This chapter begins with overview and a discussion of the motivations behind Ambient Intelligence (AmI) and Ambient Assisted Living (AAL) with respect to Activities of Daily Living (ADLs)—with particular thematic emphasis on sensing as well as present high-costs. The Purpose and Objectives of the present work—including its scale, scope, and contribution—as well as the corresponding Impacts are then stated and described. CHAPTER 2: State of the Art This chapter discusses the state of and justifies the emphasis on the following comprehensive sensing-and-actuating systems, which emerging trends suggest to be the particularly promising for the fields of AmI and AAL: Wireless Sensor Networks (WSNs), Cyber-Physical Networks (CPNs), and Body Area Networks (BANs). The chapter will end with a brief discussion of the potential integration of BANs. CHAPTER 3: Concept, Methodological Approach, and Implementation This chapter describes the concept, outlines as well as justifies the methodological approach, and details the step-by-step implementation of FaDIS in Parts 1 and 2 in exhaustive detail. The chapter ends by considering optional components that may be added to the modules built in Parts 1 and 2 in order to enhance FaDIS’s functionality. CHAPTER 4: Discussion of Results This chapter provides an overview of the results obtained from a series of six sample runs or demonstrations, with the objective of experimentally proving the feasibility and functionality of FaDIS. CHAPTER 5: Conclusions, Limitations, and Future Development This chapter reflects upon the performance of FaDIS, its present limitations, and corresponding future development in light of the former two. v Table of Contents Acknowledgments ....................................................................................................................... i  Dedication................................................................................................................................... ii  Abstract ..................................................................................................................................... iii  Outline of the Thesis ................................................................................................................. iv  1  Introduction ........................................................................................................................ 1  1.1  Objectives .................................................................................................................... 3  1.2  Impact .......................................................................................................................... 4  2  State of the Art ................................................................................................................... 6  2.1  Wireless Sensor Networks (WSNs) ............................................................................. 6  2.2  Cyber-Physical Networks (CPNs) ............................................................................. 10  2.3  Body Area Networks (BANs) .................................................................................... 16  3  Concept, Methodological Approach, and Implementation .............................................. 20  3.1  Part 1 (TRL 3-4): Proof-of-Concept Implementation of Fall-Detection and - Intervention System (FaDIS) based on Laser-Reflectivity Localization and Robotic Assistance .................................................................................................................. 20  3.1.1  Step 1: Design and Development of Laser-localization Modules A and B ....... 24  3.1.2  Step 2: Monitoring and Recording of User Activity data via Module C and Apple’s iPhone 4. ............................................................................................... 29  3.1.3  Step 3: Correlating laser-localization results with monitored activity data to trigger Robotic and Automated Intervention Solutions via Modules D and E .. 33  3.2  Part 2 (TRL 5-7): Fully Operational and Real-Scale Implementation of the Fall- Detection and -Intervention System (FaDIS) ............................................................. 50  3.2.1  Step 1: BeagleBone Black Revision C Initial Configuration and Setup ............. 60  3.2.2  Step 2: Creating a network mesh of BeagleBone Black Nodes .......................... 64  3.2.3  Step 3: Setting up the deployment context: BR2’s Bathroom ........................... 70  3.2.4  Step 4: Design and Development of Laser-localization Module A .................... 73  3.2.5  Step 5: Design and Development of Laser-localization Module B .................... 83  3.2.6  Step 6: Description of Initialization, Calibration, and Detection Routines ........ 90  3.3  Additional and Optional Components ..................................................................... 117  4  Discussion of Results ..................................................................................................... 121 vi 4.1  Initialization and First run: Calibration and Detection of “No Objects” ................. 121  4.2  Detection of “Small Object” .................................................................................... 127  4.3  Detection of “Large Object” .................................................................................... 131  4.4  Detection of “Very Large Object” (variation 1) ...................................................... 135  4.5  Detection of “Very Large Object” (variation 2) ...................................................... 140  4.6  Detection of “Very Large Object” (variation 3) ...................................................... 145  5  Conclusions, Limitations, and Future Development ...................................................... 152  Bibliography ........................................................................................................................... 161  List of Figures ........................................................................................................................ 170  List of Tables .......................................................................................................................... 176  List of Abbreviations .............................................................................................................. 177  Appendices ............................................................................................................................. 180  Appendix A: Part 1—Arduino code for sending SMS messages via Siemens TC35 GSM shield ........................................................................................................................ 180  Appendix B: Part 1—Arduino code for sending SMS messages via Arduino Wi-Fi shield, Twilio, and Temboo ................................................................................................. 181  Appendix C: Part 1—Arduino code for sending Email messages via Arduino Wi-Fi shield, Gmail, and Temboo .................................................................................................. 183  Appendix D: Part 1—Arduino code for requesting data statistics from Fitbit ................... 185  Appendix E: Part 2—BBB Coordinator system-node, with a local Infrared sensor, broadcasting its sensor data and receiving that of others in a network mesh streaming to Plotly .................................................................................................................... 187  Appendix F: Part 2—BBB Router system-node, with a local Temperature and Humidity sensor, broadcasting its sensor data and receiving that of others in a network mesh streaming to Plotly ................................................................................................... 191  Appendix G: Part 2—BBB End Device system-node, with a local Light Dependent Resistor sensor, broadcasting its sensor data and receiving that of others in a network mesh streaming to Plotly ................................................................................................... 196  Appendix H: Part 2—Arduino program for Module A—Laser module ............................. 201  Appendix I: Part 2—Arduino program for Module B—LDRs module ............................... 214  Appendix J: Part 2—Python program for Coordinator BBB system-node ....................... 217  Appendix L: Part 2—FaDIS: Sample Operation Log ........................................................ 221  I.  Initialization and First run: Calibration and Detection of “No Objects” .......... 221  II.  Detection of “Small Object” ............................................................................ 227  III.  Detection of “Large object” ............................................................................. 231

Description:
led the way in the field of AAL research, since a shrinking economy and/or workforce puts in jeapardy any . state of the art fall-detection systems that use WSNs or related smart-device dependent methods sequence of gestures right before the light is turned on, it may be programmed to learn to.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.