NOISE TRANSMISSION ALONG SHOCK-WAVES by Prasanna Amur Varadarajan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Philip L. Roe, Chair Professor Bram van Leer Professor Smadar Karni Assistant Professor Krzysztof J. Fidkowski ⃝c Prasanna Amur Varadarajan 2011 All Rights Reserved To my parents, guru and all my Teachers ii ACKNOWLEDGEMENTS My deepest gratitude to my parents V.Varadarajan and Kumari Varadarajan, for their love and support throughout my life. Their motivation towards education has got me this far to complete my doctoral work. I am extremely thankful to my guru Usha Srinivasan in her conviction towards her work and help me shape as a sensible individual. I owe a lot to my brother, cousins and all my family members for their good wishes and support. At University of Michigan, I am extremely grateful to my advisor Professor Phil Roe for his guidance throughout my work. I have enjoyed all the conversations I had with him for the past five years. His patience in letting me understand and explore things has helped me a lot. It is the amount of freedom he has given me in learning and making me really think has helped me shape up this work. It is a privilege to be his student. I would like to thank his wife Jacqueline Roe for her motherly affection and care she has shown towards me. I have learned a lot from the courses offered by Professor van Leer and Professor Karni and I am thankful to them for being in my committee and helping me out with their valuable suggestions for my thesis work. Special thanks to Professor Fidkowski forservinginmycommitteeandforhisvaluableinputstomythesis. Anoteofthanks to all the teachers that I have had in my life who have motivated me to move forward. Special thanks to Dr Del Vecchio1 of the Electrical department to have supported me with my research in the field of Bio-medical engineering during my Master’s degree 1currently Associate professor at Department of Mechanical Engineering, MIT iii as well in-between during my doctoral work. I would like to thank my undergraduate advisor Dr. Abdusamad Salih 2 at NIT, Trichy, India whose teaching has been a big motivation for me to continue my study in the subject of fluid dynamics. I am thankful to Dr Sergio Pirozzoli of C.F.P.R group, Italy for sharing their DNS data with us and Dr Farhad Jaberi’s group from Michigan state University for confirming and validating the results of the numerical Euler computations performed in this work. In Michigan over the stay of five years I have acquired a number of wonderful friends whose company I would cherish for a long time. Many thanks to them and to my colleagues Daniel Zaide and Tim Eymann for their support. All my friends have celebrated the success of my doctoral degree as their own. I am greatly indebted to them all. Finally, great appreciation to the Department of Aerospace Engineering, Univer- sity of Michigan, CRASH and MACCAS for providing the financial support, without which this work would have been not possible. 2currently Assistant professor at Department of Aerospace Engineering, IIST, India iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . xiv ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv CHAPTER I. Background and Motivation . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Geometrical shock dynamics(GSD) . . . . . . . . . . . . . . . 2 1.3 Shock Boundary Layer Interaction(SBLI) . . . . . . . . . . . 4 1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8 II. GSD - Shock propagation in 2D . . . . . . . . . . . . . . . . . . 10 2.1 Brief History of Geometrical shock dynamics(GSD) . . . . . . 10 2.2 Geometrical shock dynamics(GSD) - Governing equations . . 11 2.3 Numerical aspects of Geometrical shock dynamics(GSD) . . . 14 2.4 The A-M Relationship . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 The original proposal . . . . . . . . . . . . . . . . . 16 2.4.2 A modification . . . . . . . . . . . . . . . . . . . . . 17 2.5 Test problems for illustration . . . . . . . . . . . . . . . . . . 21 2.5.1 Shock-diffraction problem - Simple wave solution . . 21 2.5.2 Shock-shock problem - propagation of a shock over a compression ramp . . . . . . . . . . . . . . . . . . . 24 2.6 Extension of Geometrical shock dynamics(GSD) for a shock propagating into a moving medium . . . . . . . . . . . . . . . 25 v 2.6.1 Governing equations . . . . . . . . . . . . . . . . . . 25 2.7 Propagation of a sinusoidal shock . . . . . . . . . . . . . . . . 30 2.8 Modeling of shock-vortex interaction . . . . . . . . . . . . . . 33 2.8.1 Note on Oblique shock-vortex interaction . . . . . . 33 2.8.2 Normal shock-vortex interaction . . . . . . . . . . . 35 2.9 Interaction with multiple vortices . . . . . . . . . . . . . . . . 42 III. Shock-vortex Interaction . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Numerical studies . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Discussion on Numerical errors . . . . . . . . . . . . . . . . . 48 3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 50 3.3.1 Short times . . . . . . . . . . . . . . . . . . . . . . 50 3.3.2 Case 1 : Weak shock with M = 1.05 . . . . . . . . 52 s 3.3.3 Case 2 : M = 1.4 . . . . . . . . . . . . . . . . . . . 58 s 3.3.4 Case 4 : M = 1.7 . . . . . . . . . . . . . . . . . . . 63 s 3.3.5 Case 5 : M = 2.0 . . . . . . . . . . . . . . . . . . . 68 s 3.4 Decay rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.5 Classification of the interactions . . . . . . . . . . . . . . . . 71 3.6 Details from DNS on vortex strengths and validation of the computation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.7 Inference from both Geometrical shock dynamcs(GSD) and Euler computations . . . . . . . . . . . . . . . . . . . . . . . 76 IV. Shock surface propagation in 3D flows . . . . . . . . . . . . . . 78 4.1 GoverningEquationsofGeometricalshockdynamics(GSD)for Shock surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.3 3D Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . 86 4.3.1 A Riemann problem . . . . . . . . . . . . . . . . . . 86 4.3.2 Modeling of shock - vortex ring interaction . . . . . 87 V. Conclusions and Future work . . . . . . . . . . . . . . . . . . . . 94 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 vi LIST OF FIGURES Figure 1.1 Representative Scramjet Engine . . . . . . . . . . . . . . . . . . . . 2 1.2 GSD Shock propagation . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Shock oscillations shown from DNS studies . . . . . . . . . . . . . . 5 1.4 DNS results of Pirozolli and Grasso [22] showing vortices interacting with the pulsating shock at different time intervals . . . . . . . . . . 6 2.1 Part of the net of shock locations and rays. . . . . . . . . . . . . . . 11 2.2 The point T on the shockwave has a domain of dependence defined by the pair of characteristics TC ,TC . . . . . . . . . . . . . . . . . 13 1 2 2.3 TheRiemannproblemforGSDconsistsoffindingtheraythatemerges from two adjacent shock segments. . . . . . . . . . . . . . . . . . . 15 2.4 The propagation of disturbance along the normal stationary shock . 18 2.5 Area Mach relations and wave-speeds in both the ξ−t plane and x-y space as a function of m . . . . . . . . . . . . . . . . . . . . . . . . 19 2.6 Shock diffraction problem setup . . . . . . . . . . . . . . . . . . . . 22 2.7 Variation of wall Mach number m with the change in diffraction w angle θ for two different initial shock strengths. . . . . . . . . . . . 23 w 2.8 Shock-diffractionproblemsolutionusingRoe’smodelforshockstrength of M = 1.5 and θ = -0.2 rad. The dotted line represents the rays O W in fig2.8(a). The solution is plotted at intermediate time intervals . 23 vii 2.9 Relation between the change in θ with the change in strength of the shock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.10 Shock-shock problem setup. The dotted line representing the direc- tion of propagation of the kink in the x-y space. . . . . . . . . . . . 25 2.11 VariationofwallMachnumberm withthechangeintherampangle w θ for two different initial shock strengths. . . . . . . . . . . . . . . 26 w 2.12 Shock-shock problem solution using Roe’s model for shock strength of M = 1.5 and θ = 0.2 rad . The dotted line represents the rays O W in fig2.12(a). The solution is plotted at intermediate time intervals . 26 2.13 Transformation of the computational net for a moving medium. The elements of the shock front are unchanged. The points A,B are displaced to A′,B′. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.14 A shockwave moving from B to A along a solid surface. . . . . . . . 29 2.15 Schematic setup of a planar shock after reflection from corrugated surface with strength . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.16 PropagationofasinusoidalwavefrontusingRoe’sA-Mrelation. Dot- ted lines in 2.16(a) indicate rays. The lines with * in 2.16(b) and 2.16(c) shows the solution at final computational time . . . . . . . . 32 2.17 Changes in maximum and minimum shock strength over time . . . 32 2.18 Schematic setup of a normal shock-vortex interaction and an oblique shock-vortex interaction . . . . . . . . . . . . . . . . . . . . . . . . 34 2.19 GSD results : At early times using Roe’s Area model for a sinusoidal perturbation in Mach number for a planar shock of strength 1.7 . . 36 2.20 GSD results : Power law decay of the wave amplitudes with non dimensional distance using Roe’s Area model for shock with m = 1.7 38 2.21 GSD results : Power law decay of the wave amplitudes with non dimensional distance using Roe’s Area model for shock with m = 1.7 for larger distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.22 GSD results : At later times using Roe’s Area model . . . . . . . . 40 2.23 GSD results : At later times using Whitham’s Area model . . . . . 41 viii 2.24 GSD results : At later times using Prasad’s Area model . . . . . . . 41 2.25 GSD results : Interaction of C-E-C and E-C-E waves using Roe’s Area model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.26 GSD results : Long range behavior of two vortex interaction . . . . 44 3.1 Tangentialvelocityprofilesforboththecompositeandisentropicvortex 46 3.2 Computational domain for the shock vortex interaction. . . . . . . . 48 3.3 Plot of enstrophy to measure numerical dissipation of the vortex . . 49 3.4 PressureconvergencewithmovingABclosertotheundisturbedshock position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.5 Shock vortex interaction map[13]. Hollow symbols, Grasso and Piro- zolli [13]; filled symbols ,Ellzey etal. [10]; half-filled symbols, Inoue and Hattori [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6 Weak Interaction : Time evolution of the pressure field showing the change in the shock structure for M = 1.05 and M = 0.1 with s v Contour levels - 24 levels from 1.05 to 1.117 in the left side and the monitored pressure signal on the right . . . . . . . . . . . . . . . . . 54 3.7 Time evolution of the pressure field showing Regular reflection pat- tern in the shock structure for M = 1.05 and M = 0.5, Contour s v levels-36levelsfrom1.01to1.117.Theplotsontherightsideindicate the pressure signal monitored . . . . . . . . . . . . . . . . . . . . . 55 3.8 Pressure disturbance and flow angle change monitored along AB for shock strength M = 1.05 . . . . . . . . . . . . . . . . . . . . . . . . 56 s 3.9 Pressure disturbance and flow angle change monitored along AB for shock strength M = 1.05 and vortex strengths M = 0.1, 0.5 and s v 1.0 after t = 12 units. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.10 Power law decay of amplitudes of the pressure signal for M = 1.05. 57 s 3.11 Time evolution of the pressure field showing Mach Reflection in the shock structure for M = 1.4 and M = 0.4, Contour levels - 64 levels s v from 1.01 to 2.76. The plots on the right side indicate the pressure signal monitored . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 ix
Description: