ebook img

Noether's problem for abelian extensionsof cyclic p-groups PDF

26 Pages·2014·0.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Noether's problem for abelian extensionsof cyclic p-groups

Pacific Journal of Mathematics NOETHER’S PROBLEM FOR ABELIAN EXTENSIONS OF CYCLIC p-GROUPS IVO M. MICHAILOV Volume270 No.1 July2014 PACIFICJOURNALOFMATHEMATICS Vol.270,No.1,2014 dx.doi.org/10.2140/pjm.2014.270.167 NOETHER’S PROBLEM FOR ABELIAN EXTENSIONS OF CYCLIC p-GROUPS IVO M. MICHAILOV Inlovingmemoryofmydearmother Let K beafieldandGafinitegroup. LetGactontherationalfunctionfield K(x(g):g∈G)by K-automorphismsdefinedby g·x(h)=x(gh)forany g, h∈G. Denoteby K(G)thefixedfield K(x(g):g∈G)G. Noether’sproblem thenaskswhether K(G)isrational(i.e.,purelytranscendental)over K. The firstmainresultofthisarticleisthat K(G)isrationalover K foracertain classof p-groupshavinganabeliansubgroupofindex p. Thesecondmain resultisthat K(G)isrationalover K foranygroupoforder p5or p6(where pisanoddprime)havinganabeliannormalsubgroupsuchthatitsquotient group is cyclic. (In both theorems we assume that if charK (cid:54)= p then K containsaprimitive pe-throotofunity,where pe istheexponentofG.) 1. Introduction Let K beafield. Afieldextension L of K iscalledrationalover K (or K-rational, for short) if L (cid:39) K(x ,...,x ) for some integer n, with x ,...,x algebraically 1 n 1 n independent over K. Now let G be a finite group. Let G act on the rational functionfield K(x(g):g∈G)by K-automorphismsdefinedby g·x(h)=x(gh) for any g,h ∈ G. Denote by K(G) the fixed field K(x(g): g ∈ G)G. Noether’s problemthenaskswhether K(G)isrationalover K. Thisisrelatedtotheinverse Galoisproblem,totheexistenceofgeneric G-Galoisextensionsover K,andtothe existenceofversal G-torsorsover K-rationalfieldextensions[Swan1983;Saltman 1982;Garibaldietal.2003,§33.1,p.86]. Noether’sproblemforabeliangroupswas studiedextensivelybySwan,Voskresenskii,Endo,MiyataandLenstra,etc. The readerisreferredto[Swan1983]forasurveyofthisproblem. Fischer’stheoremisa startingpointofinvestigatingNoether’sproblemforfiniteabeliangroupsingeneral. Theorem1.1(Fischer[Swan1983,Theorem6.1]). LetG beafiniteabeliangroup ofexponente. Assumethat(i)eithercharK =0orcharK >0withcharK (cid:45)e,and (ii) K containsaprimitivee-throotofunity. Then K(G)isrationalover K. MSC2010: primary14E08,14M20;secondary13A50,12F12. Keywords: Noether’sproblem,rationalityproblem,metabeliangroupactions. 167 168 IVOM.MICHAILOV Onthe otherhand, justahandful ofresultsabout Noether’sproblemhavebeen obtainedwhenthegroups arenonabelian. Thisisthecaseevenwhenthe group G isa p-group. Thereaderisreferredto[ChuandKang2001;HuandKang2010; Kang2006;2011;2009]forpreviousresultsonNoether’sproblemfor p-groups. ThefollowingtheoremofKanggeneralizesFischer’stheoremforthemetacyclic p-groups. Theorem 1.2 [Kang 2006, Theorem 1.5]. Let G be a metacyclic p-group with exponent pe,andlet K beanyfieldsuchthat(i)charK = p,or(ii)charK (cid:54)= pand K containsaprimitive pe-throotofunity. Then K(G)isrationalover K. ThenextjobistostudyNoether’sproblemformetabeliangroups. Threeresults duetoHaeuslein,HajjaandKang,respectively,areknown. Theorem1.3[Haeuslein1971]. Let K beafieldandG beafinitegroup. Assume that(i)G containsanabeliannormalsubgroup H suchthatG/H iscyclicofprime order p,(ii)(cid:90)[ζ ]isauniquefactorizationdomain,and(iii)ζ ∈ K,wheree is p pe theexponentofG. IfG →GL(V)isanyfinite-dimensionallinearrepresentation ofG over K,then K(V)G isrationalover K. Theorem1.4[Hajja1983]. Let K beafieldandG beafinitegroup. Assumethat (i)G containsanabeliannormalsubgroup H suchthatG/H iscyclicofordern, (ii)(cid:90)[ζ ]isauniquefactorizationdomain,and(iii) K isalgebraicallyclosedwith n charK =0. If G →GL(V) is any finite-dimensional linear representation of G over K,then K(V)G isrationalover K. Theorem1.5[Kang2009,Theorem1.4]. Let K beafieldandG beafinitegroup. Assumethat(i)G containsanabeliannormalsubgroup H suchthatG/H iscyclic ofordern,(ii)(cid:90)[ζ ]isauniquefactorizationdomain,and(iii)ζ ∈ K,whereeis n e theexponentofG. IfG →GL(V)isanyfinite-dimensionallinearrepresentation ofG over K,then K(V)G isrationalover K. Notethatthoseintegersn forwhich(cid:90)[ζ ]isauniquefactorizationdomainare n determinedbyMasleyandMontgomery. Theorem 1.6 [Masley and Montgomery 1976]. (cid:90)[ζ ] is a unique factorization n domainifandonlyif 1≤n≤22,orn=24,25,26,27,28,30,32,33,34,35,36, 38,40,42,45,48,50,54,60,66,70,84,90. Therefore,Theorem1.3holdsonlyforprimes p suchthat1≤ p≤19. Oneof thegoalsofourpaperistoshowthatthethisconditioncanbewaived,undersome additionalassumptionsregardingthestructureoftheabeliansubgroup H. Considerthefollowingsituation. LetG beagroupoforder pn forn≥2withan abeliansubgroup H oforder pn−1. Bender[1927/28]determinedsomeinteresting propertiesofthesegroups. Westudyfurtherthecasewhenthe p-thlowercentral NOETHER’SPROBLEMFORABELIANEXTENSIONSOFCYCLIC p-GROUPS 169 subgroup G(p) is trivial. (Recall that G(0) = G and G(i) =[G,G(i−1)] for i ≥1 form the so-called lower centralseries.) Forour purposes we needto classify with generatorsandrelationsthesegroups. Weachievethisinthefollowinglemma. Lemma1.7. LetG beagroupoforder pn forn≥2withanabeliansubgroup H of order pn−1. Chooseanyα∈G suchthatα generatesG/H,thatis,α∈/ H,αp∈ H. Define H(p)={h∈H :hp=1,h∈/ Hp}∪{1},andassumethat[H(p),α]⊂H(p). Assumealsothatthe p-thlowercentralsubgroupG(p) istrivial. Then H isadirect productofnormalsubgroupsofG belongingtofourtypes: (1) (C )s for some s ≥1. There exist generators α ,...,α of (C )s such that p 1 s p [αj,α]=αj+1 for1≤ j ≤s−1andαs ∈ Z(G). (2) C forsomea≥1. Thereexistsageneratorβ of C suchthat[β,α]=βbpa−1 pa pa forsomeb:0≤b≤ p−1. (3) Cpa1 ×Cpa2 ×···×Cpak ×(Cp)s for some k ≥ 1, ai ≥ 2, s ≥ 1. There exist generators α11, α21, ...,αk1 of Cpa1 × Cpa2 × ··· × Cpak such that [αi,1,α]=αip+ai1+,11−1 ∈ Z(G)fori =1,...,k−1. Therealsoexistgenerators αk,2,...,αk,s+1 of (Cp)s such that [αk,j,α] = αk,j+1 for 1 ≤ j ≤ s and αk,s+1∈ Z(G). (4) Cpa1 ×Cpa2 ×···×Cpak forsomek ≥2,ai ≥2. Foranyi :1≤i ≤k there existsageneratorαi,1 ofthefactorCpai suchthat[αi,1,α]=αip+ai1−,11 ∈ Z(G) and [αk,1,α]∈(cid:10)α1p,a11−1,...,αkp,a1k−1(cid:11). ThefirstmainresultofthispaperisageneralizationofTheorem1.3: Theorem1.8. LetG beagroupoforder pn forn≥2withanabeliansubgroup H oforder pn−1,andletG beofexponent pe. Chooseanyα∈G suchthatαgenerates G/H,thatis,α∈/ H,αp ∈ H. Define H(p)={h∈ H :hp =1,h∈/ Hp}∪{1},and assumethat[H(p),α]⊂H(p). Letthe p-thlowercentralsubgroupG(p) betrivial. Assume that (i) charK = p > 0, or (ii) charK (cid:54)= p and K contains a primitive pe-throotofunity. Then K(G)isrationalover K. The key idea to prove Theorem 1.8 is to find a faithful G-subspace W of the regularrepresentationspace(cid:76) K·x(g)andtoshowthatWG isrationalover K. g∈G The subspace W is obtained as an induced representation from H by applying Lemma1.7. The next goal of our article is to study Noether’s problem for some groups of orders p5 and p6 foranyoddprime p. Weusethelistofgeneratorsandrelations forthesegroups,givenbyJames[1980]. Itisknownthat K(G)isalwaysrational if G is a p-group of order at most p4 and ζ ∈ K, where e is the exponent of G e 170 IVOM.MICHAILOV (see[ChuandKang2001]). However,in[HoshiandKang2011]itisshownthat thereexistsagroup G oforder p5 suchthat(cid:67)(G)isnotrationalover(cid:67). The second main result of this article is the following rationality criterion for the groups of orders p5 and p6 having an abelian normal subgroup such that its quotientgroupiscyclic. Theorem 1.9. Let G be a group of order pn for n ≤ 6 with an abelian normal subgroup H such that G/H is cyclic. Let G be of exponent pe. Assume that (i) charK = p >0, or (ii) charK (cid:54)= p and K contains a primitive pe-th root of unity. Then K(G)isrationalover K. WedonotknowwhetherTheorem1.9holdsforanyn≥7. However,weshould not“overgeneralize”Theorem1.9tothecaseofanymetabeliangroupbecauseof thefollowingtheoremofSaltman. Theorem1.10[Saltman1984]. Foranyprimenumber p andforanyfield K with charK (cid:54)= p (in particular, K may be an algebraically closed field), there is a metabelian p-groupG oforder p9 suchthat K(G)isnotrationalover K. We organize this paper as follows. We recall some preliminaries in Section 2 that will be used in the proofs of Theorems 1.8 and 1.9. There we also prove Lemma 2.5, which is a generalization of Kang’s argument [2011, Case 5, Step II]. In Section 3 we prove Lemma 1.7, which is of independent interest, since it provides a list of generators and relations for any p-group G having an abelian subgroup H ofindex p,provided that[H(p),α]⊂ H(p)and G(p)=1. Our main results—Theorems1.8and1.9—areprovedinSections4and5,respectively. 2. Preliminaries Welistseveralresultswhichwillbeusedinthesequel. Theorem2.1[HajjaandKang1995,Theorem1]. LetG beafinitegroupactingon L(x ,...,x ),therationalfunctionfieldofm variablesoverafield L,suchthat 1 m (1) foranyσ ∈G,σ(L)⊂ L, (2) therestrictionoftheactionofG to L isfaithful, (3) foranyσ ∈G, σ(x ) x  1 1 . .  .. = A(σ) .. +B(σ),     σ(x ) x m m where A(σ)∈GL (L)and B(σ)isanm×1matrixover L. Thenthereexist m z ,...,z ∈ L(x ,...,x )suchthat L(x ,...,x )G = LG(z ,...,z )and 1 m 1 m 1 m 1 m σ(z )=z foranyσ ∈G and1≤i ≤m. i i NOETHER’SPROBLEMFORABELIANEXTENSIONSOFCYCLIC p-GROUPS 171 Theorem2.2[Ahmadetal.2000,Theorem3.1]. LetG beafinitegroupactingon L(x), the rational function field of one variable over a field L. Assume that, for anyσ ∈G,σ(L)⊂ L andσ(x)=aσx+bσ foranyaσ,bσ ∈ L withaσ (cid:54)=0. Then L(x)G = LG(z)forsomez∈ L[x]. Theorem2.3[Chu and Kang 2001, Theorem 1.7]. IfcharK = p>0and G isa finite p-group,then K(G)isrationalover K. Thefollowinglemmacanbeextractedfromsomeproofsin[Kang2011;Huand Kang2010]. Lemma2.4. Let(cid:104)τ(cid:105)beacyclicgroupofordern>1,actingon K(v1,...,vn−1), therationalfunctionfieldof n−1variablesoverafield K,suchthat τ :v (cid:55)→v (cid:55)→···(cid:55)→v (cid:55)→(v ···v )−1(cid:55)→v . 1 2 n−1 1 n−1 1 Supposethat K containsaprimitiven-throotofunityξ. Then K(v ,...,v )= 1 n−1 K(s1,...,sn−1),whereτ :si (cid:55)→ξisi for1≤i ≤n−1. Proof. Definew0=1+v1+v1v2+···+v1v2···vn−1,w1=(1/w0)−1/n,wi+1= (v1v2···vi/w0)−1/n for1≤i ≤n−1. Thus K(v1,...,vn−1)=K(w1,...,wn) withw +w +···+w =0and 1 2 n τ :w (cid:55)→w (cid:55)→···(cid:55)→w (cid:55)→w (cid:55)→w . 1 2 n−1 n 1 Defines =(cid:80) ξ−ijw for1≤i ≤n−1. Thenτ :s (cid:55)→ξis for1≤i ≤n−1 i 1≤j≤n j i i and K(w1,...,wn)= K(s1,...,sn−1). (cid:3) Next,generalizinganargumentusedin[Kang2011,Case5,StepII],weobtain aresultthatwillplayanimportantroleinourwork. Lemma2.5. Letk >1,let p beanyprimeandlet(cid:104)α(cid:105)beacyclicgroupoforder p, actingon K(y ,y ,...,y :1≤i ≤ p−1),therationalfunctionfieldofk(p−1) 1i 2i ki variablesoverafield K,suchthat α: yj1(cid:55)→ yj2(cid:55)→···(cid:55)→ yjp−1(cid:55)→(yj1yj2···yjp−1)−1 for1≤ j ≤k. AssumethatK(v ,v ,...,v :1≤i≤p−1)=K(y ,y ,...,y :1≤i≤p−1) 1i 2i ki 1i 2i ki where for any j : 1 ≤ j ≤ k and for any i : 1 ≤ i ≤ p−1 the variable v is a ji monomial in the variables y ,y ,...,y . Assume also that the action of α on 1i 2i ki K(v ,v ,...,v :1≤i ≤ p−1)isgivenby 1i 2i ki α:v (cid:55)→v vp , v (cid:55)→v (cid:55)→···(cid:55)→v (cid:55)→ A (v vp−1vp−2···v2 )−1 j1 j1 j2 j2 j3 jp−1 j j1 j2 j3 jp−1 for 1 ≤ j ≤ k, where Aj is some monomial in v1i,...,vj−1i for 2 ≤ j ≤ k and A =1. If K containsaprimitive p-throotofunityζ,then 1 K(v ,v ,...,v :1≤i ≤ p−1)= K(s ,s ,...,s :1≤i ≤ p−1), 1i 2i ki 1i 2i ki 172 IVOM.MICHAILOV whereα:s (cid:55)→ζis for1≤ j ≤k,1≤i ≤ p−1. ji ji Proof. We write the additive version of the multiplication action of α; that is, considerthe(cid:90)[π]-moduleM=(cid:76) (cid:0)(cid:76) (cid:90)·v (cid:1),whereπ=(cid:104)α(cid:105). Define 1≤m≤k 1≤i≤p−1 mi submodules M = (cid:76) (cid:0)(cid:76) (cid:90)·v (cid:1) for 1 ≤ j ≤ k. Thus α has the j 1≤m≤j 1≤i≤p−1 mi followingadditiveaction α:v (cid:55)→v +pv , j1 j1 j2 vj2(cid:55)→vj3(cid:55)→···(cid:55)→vjp−1(cid:55)→Aj−vj1−(p−1)vj2−(p−2)vj3−···−2vjp−1, where Aj ∈ Mj−1. By Lemma 2.4, M is isomorphic to the (cid:90)[π]-module N = (cid:76) (cid:90)·u , 1 1≤i≤p−1 i whereu =v ,u =αi−1·v for2≤i ≤ p−1,and 1 12 i 12 α:u (cid:55)→u (cid:55)→···(cid:55)→u (cid:55)→−u −u −···−u (cid:55)→u . 1 2 p−1 1 2 p−1 1 Let(cid:56) (T)∈(cid:90)[T]bethe p-thcyclotomicpolynomial. Since(cid:90)[π]isisomorphic p to (cid:90)[T]/(Tp−1), we find that (cid:90)[π]/(cid:56) (α)(cid:39)(cid:90)[T]/(cid:56) (T)(cid:39)(cid:90)[ω], the ring of p p p-th cyclotomic integers. As (cid:56) (α)·x =0 for any x ∈ N, the (cid:90)[π]-module N p can be regarded as a (cid:90)[ω]-module through the morphism (cid:90)[π]→(cid:90)[π]/(cid:56) (α). p When N is regarded as a (cid:90)[ω]-module, we have N (cid:39) (cid:90)[ω], the rank-one free (cid:90)[ω]-module. Weclaimthat M itselfcanberegardedasa(cid:90)[ω]-module,thatis,(cid:56) (α)·M =0. p Wereturntomultiplicativenotation. Notethatallv aremonomialsinthe y . ji ji Theactionofα on y giveninthestatementsatisfies(cid:81) αm(y )=1for ji 0≤m≤p−1 ji any1≤ j ≤k,1≤i ≤ p−1. Usingtheadditivenotations,weget(cid:56) (α)·y =0. p ji Hence(cid:56) (α)·M =0. p Define M(cid:48)= M/Mk−1. Wehaveashortexactsequenceof(cid:90)[π]-modules (2-1) 0→ Mk−1→ M → M(cid:48)→0. Since M isa(cid:90)[ω]-module,(2-1)isashortexactsequenceof(cid:90)[ω]-modules. Pro- ceeding by induction, we obtain that M is a direct sum of free (cid:90)[ω]-modules isomorphicto N. Hence, M (cid:39)(cid:76) N ,where N (cid:39) N isafree(cid:90)[ω]-module 1≤j≤k j j andsoa(cid:90)[π]-modulealso(for1≤ j ≤k). Finally,we interpret theadditiveversionof M (cid:39)(cid:76) N (cid:39) Nk intermsof 1≤j≤k j themultiplicativeversionasfollows: Thereexistw thataremonomialsinv for ji ji 1≤ j ≤k,1≤i ≤ p−1suchthat K(w )= K(v )andα actsas ji ji α:wj1(cid:55)→wj2(cid:55)→···(cid:55)→wjp−1(cid:55)→(wj1wj2···wjp−1)−1 for1≤ j ≤k. AccordingtoLemma2.4,theaboveactioncanbelinearizedaspointedoutinthe statement. (cid:3) NOETHER’SPROBLEMFORABELIANEXTENSIONSOFCYCLIC p-GROUPS 173 Now,let G beanymetacyclic p-groupgeneratedbytwoelementsσ andτ with relationsσpa =1,τpb=σpc andτ−1στ =σε+δpr whereε=1if pisodd,ε=±1if p=2,δ=0,1anda,b,c,r≥0aresubjecttosomerestrictions. Forthedescription oftheserestrictionssee,forexample,[Kang2006,p.564]. Theorem 2.6 [Kang 2006, Theorem 4.1]. Let p be a prime number, m, n andr positiveintegers,k =1+ pr if(p,r)(cid:54)=(2,1)ork =−1+2r if p=2andr ≥2. Let G be a split metacyclic p-group of order pm+n and exponent pe defined by G =(cid:104)σ,τ :σpm =τpn =1,τ−1στ =σk(cid:105). Let K beanyfieldsuchthatcharK (cid:54)= p and K contains a primitive pe-th root of unity, and let ζ be a primitive pm-th root of unity. Then K(x0,x1,...,xpn−1)G is rational over K, where G acts on x ,...,x by 0 pn−1 σ :x (cid:55)→ζkix , τ :x (cid:55)→x (cid:55)→···(cid:55)→x (cid:55)→x . i i 0 1 pn−1 0 3. ProofofLemma1.7 Itiswellknownthat H isanormalsubgroupof G. Wedividetheproofintosteps. StepI. Letβ1 beanyelementof H thatisnotcentral. SinceG(p)={1},thereexist β2,...,βk∈H forsomek:2≤k≤ psuchthat[βj,α]=βj+1,where1≤ j≤k−1 andβ (cid:54)=1iscentral. Wearegoingtoshownowthattheorderofβ isnotgreater k 2 than p. In particular, from the multiplication rule [a,α][b,α]=[ab,α] (for any a,b∈ H)itfollowsthatall p-thpowersarecontainedinthecenterof G. From[βj,α]=βj+1 therefollowsthewellknownformula (p) (p) ( p ) (3-1) α−pβ1αp =β1β21 β32 ···βpp−1 βp+1, whereweputβk+1=···=βp+1=1. Sinceαp isin H,weobtaintheformula (p) (p) ( p ) β 1 β 2 ···β k−1 =1. 2 3 k Hence(cid:0)β ·(cid:81) βaj(cid:1)p=1forsomeintegersa . Itisnothardtoseethatthisidentity 2 j(cid:54)=2 j j isimpossibleiftheorderofβ exceeds p. Indeed,if(cid:96)=max{j:βp(cid:54)=1},thenβp is 2 j (cid:96) inthesubgroupgeneratedbyβp,...,βp . Thus[βp,α]=[βb2p···βb(cid:96)−1p,α]= 2 (cid:96)−1 (cid:96) 2 (cid:96)−1 β3b2p···β(cid:96)b(cid:96)−1p (cid:54)= 1 for some b2, ..., b(cid:96)−1 ∈ (cid:90)p. On the other hand, [β(cid:96)p,α] = βp =1,whichisacontradiction. (cid:96)+1 StepII. Letuswritethedecompositionof H asadirectproductofcyclicsubgroups (not necessarily normal in G): H (cid:39)(Cp)t ×Cpa1 ×Cpa2 ×···×Cpas for 0≤t, 2≤a1 ≤a2 ≤···≤as. Choose a generator α11 ∈Cpa1. Since G(p) ={1}, there exist α12,...,α1k ∈ H for some k :2≤k ≤ p such that [α1j,α]=α1j+1, where 1 ≤ j ≤ k −1 and α (cid:54)= 1 is central. From Step I it follows that the order of 1k α is not greater than p. We are going to define a normal subgroup of G which 12 174 IVOM.MICHAILOV dependsonthenatureoftheelementα . Wewilldenoteitby(cid:104)(cid:104)α (cid:105)(cid:105),andcallit 12 11 thecommutatorchainof α . Simultaneously,wewilldefineacomplementin H 11 denotedby(cid:104)(cid:104)α (cid:105)(cid:105). 11 CaseII.1. Letα =αpa1−1c forsomec :0≤c ≤ p−1. Define(cid:104)(cid:104)α (cid:105)(cid:105)=(cid:104)α (cid:105) 12 11 1 1 1 11 11 and(cid:104)(cid:104)α (cid:105)(cid:105)=(C )t·(cid:104)α ,...,α (cid:105). Clearly,(cid:104)(cid:104)α (cid:105)(cid:105)isanormalsubgroupoftype2. 11 p 21 s1 11 CaseII.2. Let α ∈/ Hp. According to the assumptions of our lemma, we have 12 [H(p),α]∩ Hp = {1}, so α ∈/ Hp for all j. Define (cid:104)(cid:104)α (cid:105)(cid:105) = (cid:104)α ,...,α (cid:105). 1j 11 11 1k Then (cid:104)(cid:104)α11(cid:105)(cid:105)(cid:39)Cpa1 ×(Cp)k−1 is a normal subgroup of type 3. Define (cid:104)(cid:104)α11(cid:105)(cid:105)= (C )t−k+1·(cid:104)α ,...,α (cid:105),where(C )t−k+1isthecomplementof(C )k−1in(C )t. p 21 s1 p p p CaseII.3. Let α ∈ Hp. Then α = (cid:81) αpai−1di, where A ⊂ {1,2,...,s}, 12 12 i∈A i1 1≤d ≤ p−1. Puti =min{i ∈ A}. i 0 Ifi0=1,thenα12=(cid:0)α1d11(cid:81)i∈A,i(cid:54)=1αip1ai−a1di(cid:1)pa1−1. Wereplacethegeneratorα11 with α1(cid:48)1 =α1d11(cid:81)i∈A,i(cid:54)=1αip1ai−a1di. Clearly, ordα1(cid:48)1 =ordα11 and [α1(cid:48)1,α]∈(cid:104)α1(cid:48)1(cid:105), sothiscaseisreducedtoCaseI. witIhfiα0i(cid:48)0>11=,tαhide0in10 (cid:81)α1i2∈=A,i(cid:0)(cid:54)=αiid00i10α(cid:81)ip1aii−∈aAi0,dii(cid:54)=.i0Cαleip1aari−lyai,0doir(cid:1)dpαai0i(cid:48)0−11.=Woerrdepαlia01ceanthdeαgi(cid:48)e0pn1aie0r−a1to=rααi1021. Abusing notation we will assume henceforth that i = 2 and αpa2−1 = α . 0 21 12 Considerα =[α ,α]. Wehavethreepossibilitiesnow. 22 21 SubcaseII.3.1. Ifα ∈(cid:104)αpa1−1,αpa1−1(cid:105),define(cid:104)(cid:104)α (cid:105)(cid:105)=(cid:104)α ,α (cid:105). Then(cid:104)(cid:104)α (cid:105)(cid:105)(cid:39) 22 11 21 11 11 21 11 Cpa1 ×Cpa2 isanormalsubgroupoftype4. SubcaseII.3.2. If α22 ∈/ Hp, there exist α22,...,α2(cid:96) ∈ H for some (cid:96):2≤(cid:96)≤ p such that [α2j,α] = α2j+1, where 1 ≤ j ≤ (cid:96)−1 and α2(cid:96) (cid:54)= 1 is central. Define (cid:104)(cid:104)α11(cid:105)(cid:105)=(cid:104)α11,α21,α22,...,α2(cid:96)(cid:105). Then(cid:104)(cid:104)α11(cid:105)(cid:105)(cid:39)Cpa1×Cpa2×(Cp)(cid:96)−1isanormal subgroupoftype3. SubcaseII.3.3. α ∈ Hp. Accordingtotheobservationswehavejustmade,this 22 subcaseleadstothefollowingtwofinalpossibilities. • α22 = α3p1a3−1,...,αr−12 = αrp1ar−1,αr2 ∈ (cid:104)α1p1a1−1,...,αrp1ar−1(cid:105). Define (cid:104)(cid:104)α11(cid:105)(cid:105) = (cid:104)α11,α21,...,αr1(cid:105). Then(cid:104)(cid:104)α11(cid:105)(cid:105)(cid:39)Cpa1 ×Cpa2 ×···×Cpar isanormalsubgroup oftype4. Define(cid:104)(cid:104)α11(cid:105)(cid:105)=(Cp)t ·(cid:104)αr+11,...,αs1(cid:105). • α22 =α3p1a3−1,...,αr−12 =αrp1ar−1,αr2 ∈/ Hp. Then there exist αr2,...,αr(cid:96) ∈ H for some (cid:96) : 2 ≤ (cid:96) ≤ p such that [αrj,α] = αrj+1, where 1 ≤ j ≤ (cid:96)−1 and αr(cid:96) (cid:54)=1 is central. Define (cid:104)(cid:104)α11(cid:105)(cid:105)=(cid:104)α11,α21,...,αr1,αr2,...,αr(cid:96)(cid:105). In this case (cid:104)(cid:104)α11(cid:105)(cid:105) (cid:39) Cpa1 ×Cpa1 ×···×Cpar ×(Cp)(cid:96)−1 is a normal subgroup of type 3. Define(cid:104)(cid:104)α11(cid:105)(cid:105)=(Cp)t−(cid:96)+1·(cid:104)αr+11,...,αs1(cid:105),where(Cp)t−(cid:96)+1 isthecomplement of(C )(cid:96)−1 in(C )t. p p StepIII. Put H =(cid:104)(cid:104)α (cid:105)(cid:105)and H =(cid:104)(cid:104)α (cid:105)(cid:105). Notethat H ∩H ={1}. However, H 1 11 2 11 1 2 2 may notbe anormal subgroupof G. That iswhy we need to show that there exist NOETHER’SPROBLEMFORABELIANEXTENSIONSOFCYCLIC p-GROUPS 175 acommutatorchainH andanormalsubgroupH of G suchthat H =H ×H . 1 2 1 2 Inthisstep,wewilldescribeasomewhatalgorithmicapproachwhichreplacesthe generatorsof H untilthedesiredresultisobtained. Assume henceforth that H is not normal in G. Then there exists a generator 2 β∈H suchthatα−1βα=hh forsomeh∈H ,h ∈H ,h ∈/ H . Sinceh=βh 2 1 2 1 1 1 2 2 forsome h ∈ H ,weget[β,α]=h h . 2 2 1 2 Letusassumefirstthatordβ = p. If h ∈ Hp,then h ∈/[H(p),α];otherwise 1 2 [H(p),α]∩Hp (cid:54)={1}. Inotherwords, h doesnotappearinsimilarchains,sowe 2 cansimplyput h h ,insteadof h ,asageneratorof H . Inthiswayweobtaina 1 2 2 2 group that is G-isomorphic to H . Thus we get that [β,α] is in this new copy of 2 H . Similarly,if h ∈ H(p)and h ∈/[H(p),α],wecanobtainanewcopyof H 2 1 2 2 such that [β,α] is in H . If h ∈[H(p),α], we may assume that [β,α]∈ H . In 2 2 1 thiscase(cid:104)(cid:104)α11(cid:105)(cid:105)mustbeoftype3. Let(cid:104)(cid:104)α11(cid:105)(cid:105)(cid:39)Cpa1 ×Cpa2 ×···×Cpak ×(Cp)s begeneratedbyelementsα11,...,αk1,αk2,...,αks+1 withrelationsgiveninthe statement of the lemma. Assume that αk(cid:96) = [β,α] for some (cid:96) : 2 ≤ (cid:96) ≤ s +1. If (cid:96) > 2, replace β with β(cid:48) = βα−1 . Hence [β(cid:48),α] = 1. If (cid:96) = 2, we can put k(cid:96)−1 α(cid:48) =α β−1,insteadofα ,asageneratorof H . Inthiswayweobtainagroupof k1 k1 k1 1 type4,since[α(cid:48) ,α]=1. Clearly,[β,α]isnotinthisnewcommutatorchainH . k1 1 It is not hard to see that with similar replacements we can treat the general case [β,α]=(cid:81)i αip1ai−1ci ·(cid:81)j αkj. Thus we obtain the decomposition H =H1×H2, whereH andH arenormalsubgroupsof G. 1 2 Next,wearegoingtoassumethatordβ > p. Accordingtothedefinitionofthe commutatorchainofα weneedtoconsiderthethreecasesofStepIIseparately. 11 CaseIII.1. α12 = α1p1a1−1c1 for some c1 : 1 ≤ c1 ≤ p −1. Here we must have h1=α1p1a1−1d1 forsomed1:1≤d1≤ p−1. Wecanreplaceβ withβ(cid:48)=βα1−1d1/c1, so[β(cid:48),α]=h . 2 CaseIII.2. α12 ∈/ Hp. If h1 = (cid:81)j≥2α1djj for some dj : 0 ≤ dj ≤ p−1, we can replaceβ withβ(cid:48)=β(cid:81) α−dj . Hence[β(cid:48),α]=h . Thisreducestheanalysisto j≥2 1j−1 2 thecaseh1=α1p1a1−1d1 forsomed1:0≤d1≤ p−1. Wenowhavethreepossibilities for h . 2 SubcaseIII.2.1. Let h ∈/ Hp and h ∈/[H,α]. Wecanput h h ,insteadof h ,as 2 2 1 2 2 ageneratorof H . Inthiswayweobtainagroupthatis G-isomorphicto H . Thus 2 2 wegetthat[β,α]isinthisnewcopyof H . 2 SubcaseIII.2.2. Leth ∈/ Hp andh ∈[H,α],thatis,thereexistsγ ∈/ Hp suchthat 2 2 [γ,α]=h2. Putβ(cid:48)=βγ−1. Then[β(cid:48),α]=h1=α1p1a1−1d1. Hencethecommutator chainofα iscontainedinthecommutatorchain(cid:104)(cid:104)β(cid:48)(cid:105)(cid:105)whichisanormalsubgroup 11 of G oftype3. SubcaseIII.2.3. Leth2∈Hp; thatis,h2=(cid:81)i∈Bαip1ai−1di,where B={i:αi1∈H2},

Description:
Pacific. Journal of. Mathematics. NOETHER'S PROBLEM FOR ABELIAN EXTENSIONS. OF CYCLIC p-GROUPS. IVO M. MICHAILOV. Volume 270.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.