ebook img

No Evidence for Significant Age Spreads in Young Massive LMC Clusters PDF

5.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview No Evidence for Significant Age Spreads in Young Massive LMC Clusters

Astronomy&Astrophysicsmanuscriptno.niederhofer (cid:13)c ESO2015 January13,2015 No Evidence for Significant Age Spreads in Young Massive LMC Clusters(cid:63) F.Niederhofer1,2,M.Hilker1,N.Bastian3,andE.Silva-Villa4,5 1 EuropeanSouthernObservatory,Karl-Schwarzschild-Straße2,D-85748GarchingbeiMu¨nchen,Germany e-mail:[email protected] 2 Universita¨ts-SternwarteMu¨nchen,Scheinerstraße1,D-81679Mu¨nchen,Germany 3 AstrophysicsResearchInstitute,LiverpoolJohnMooresUniversity,146BrownlowHill,LiverpoolL35RF,UK 4 Centre de Recherche en Astrophysique du Que´bec (CRAQ) Universite´ Laval, 1045 Avenue de la Me´decine, G1V 0A6 Que´bec, Canada 5 FACom-InstitutodeFsica-FCEN,UniversidaddeAntioquia,Calle70No.52-21,Medell´ın,Colombia 5 1 Preprintonlineversion:January13,2015 0 2 ABSTRACT n Recent discoveries have put the picture of stellar clusters being simple stellar populations into question. In particular, the color- a magnitudediagramsofintermediateage(1-2Gyr)massiveclustersintheLargeMagellanicCloud(LMC)showfeaturesthatcould J beinterpretedasagespreadsof100-500Myr.Ifmultiplegenerationsofstarsarepresentintheseclustersthen,asaconsequence, 9 young (<1 Gyr) clusters with similar properties should have age spreads of the same order. In this paper we use archival Hubble Space Telescope (HST) data of eight young massive LMC clusters (NGC 1831, NGC 1847, NGC 1850, NGC 2004, NGC 2100, ] A NGC2136,NGC2157andNGC2249)totestthishypothesis.Weanalyzedthecolor-magnitudediagramsoftheseclustersandfitted theirstarformationhistorytoderiveupperlimitsofpotentialagespreads.Wefindthatnoneoftheclustersanalyzedinthiswork G showsevidenceforanextendedstarformationhistorythatwouldbeconsistentwiththeagespreadsproposedforintermediateage . LMCclusters.Testswithartificialsingleageclustersshowthatthefittedagedispersionoftheyoungestclustersisconsistentwith h spreadsthatarepurelyinducedbyphotometricerrors.AsanadditionalresultwedeterminedanewageofNGC1850of∼100Myr, p significantlyhigherthanthecommonlyusedvalueofabout30Myr,althoughconsistentwithearlyHSTestimates. - o Keywords.galaxies:starclusters:general-galaxies:individual:LMC-Hertzsprung-RusselandC-Mdiagrams-stars:evolution r t s a [ 1. Introduction the cluster must have been 10 -100 times more massive in the pastthanobservedtoday(Conroy2012).Analternativescenario 1 Globular clusters (GCs) have long been thought to be simple has been proposed by Bastian et al. (2013a) where chemically v stellar populations (SSP), as their stars formed out of the same enrichedmaterialfromrotatingstarsandmassiveinteractingbi- 5 molecular cloud at approximately the same time. Therefore all naries falls on to the accretion disks of low-mass pre-MS stars 7 stars in a GC should have (within a small range) the same age ofthesamegenerationandisfinallyaccretedonthestillform- 2 and the same chemical composition. However, recent discov- 2 ingstars.Inthisscenarioallstarsarefromthesamegeneration eries have put this simple picture into question. Features like 0 withoutsignificantagespreadsamongthem. extended main sequence turn-offs (MSTOs), double main se- . BesidestheanomalousfeaturesobservedinoldGCswhich 1 quences (MS) and multiple subgiant and giant branches in the 0 pointtowardsamorecomplexscenariothanasinglestellarpop- color-magnitude diagrams (CMDs) of GCs as well as abun- 5 ulation,intermediateage(1-2Gyr)clustersintheLMCshowex- dance variations of light elements (e.g. C, N, O, Na, Al) have 1 tendedordoubleMSTOs(e.g.Mackey&BrobyNielsen2007; beenfound(e.gGratton,Carretta&Bragaglia2012;Piottoetal. : Mackeyetal.2008;Miloneetal.2009;Goudfrooijetal.2009, v 2012).Thereareseveralattemptstoexplaintheobservedanoma- 2011a,b). This might be a consequence of an extended period i lies in GCs. The most common model implies the presence of X ofstarformation(100-500Myr).Othertheoriesrelatetheex- multiplegenerationsofstarsinsideGCs.Inthismodel,thesec- r tendedMSTOstointeractingbinaries(e.g.Yangetal.2011)or ondgenerationofstarsisthoughttobeformedoutofenriched a stellarrotation(e.g.Bastian&deMink2009;Yangetal.2013; materialfromthefirststellargeneration.Proposedsourcesofthe Lietal.2014).Thecentrifugalforceinrotatingstarsdecreases ejecta are AGB stars (D’Ercole et al. 2008), fast rotating stars theeffectivegravitywhichcausesalowereffectivetemperature (Decressin et al. 2009) and interacting binaries (de Mink et al. andluminosity(e.g.Meynet&Maeder1997).However,Platais 2009). A large drawback of this model, however, is that in or- et al. (2012) analyzed the CMD of the galactic open cluster der to produce the observed amount of second generation stars Trumpler 20 and did not find evidence that rotation affects the CMD. Possibly, extended or multiple MSTOs in intermediate (cid:63) Based on observations made with the NASA/ESA Hubble ageclustersareassociatedwiththepresenceofmultiplestellar Space Telescope, and obtained from the Hubble Legacy Archive, populationsobservedinoldGCs(Conroy&Spergel2011). which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating However,recentstudiessuggestthatintermediateageLMC Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre clusters, in contrast to galactic GCs, do not have spreads in (CADC/NRC/CSA). chemicalabundances.Mucciarellietal.(2008)analyzedtheex- 1 F.Niederhoferetal.:LMCClusters tended MSTO clusters NGC 1651, NGC 1783 and NGC 2173, 0.5 andalsotheolderclusterNGC1978anddidnotfindchemical anomalies. Furthermore, NGC 1866 (Mucciarelli et al. 2011), NGC 1806 (Mucciarelli et al. 2014) and NGC 1846 (Mackey 0.4 et al. in prep.) also do not have abundance spreads. This calls 2B d into question the idea that the extended MSTO feature is due + toagespreads,assuchscenarioswouldnaturallypredictabun- 2V0.3 d (cid:0) dancespreadsthroughself-pollution.Thus,anunderstandingof = tshigehptrionptehretieesvoolfutiinotneromfeGdiCaste. ageclusterscangivevaluablein- or(B-V) 0.2 Ifitistruethatintermediateageclustershostmultiplestellar Err generationsthenyoung(<1Gyr)clusterswithsimilarproperties 0.1 should display signs of age spreads inside the cluster as well. There are several studies that search for age spreads or ongo- ingstarformationinyoungmassiveclusters(YMCs).Cabrera- 0.0 15 16 17 18 19 20 Zirietal.(2014)analyzedthespectrumofaYMCinthemerger V galaxy NGC 34 and concluded that the star formation history √ (SFH) is consistent with a single stellar population. Bastian et Fig.1: Color errors ( dB2+dV2) of NGC 2136 as a function al.(2013b)presentedacatalogcontainingmorethan100galac- of the V-band magnitude . The filled (red) squares indicate the ticandextragalacticyoung(<100Myr)massiveclustersanddid dispersionwidthofthemainsequence. notfindanyevidenceofongoingstarformationintheirsample. Bastian & Silva-Villa (2013) started a project to constrain possibleagespreadsinyoungmassiveLMCclusters.Theyana- Parsec1.1isochronesetofthePadovaisochrones(Bressanetal. lyzedtheCMDsofthetwoyoungclustersNGC1856(281Myr) 2012)andweassumedaSalpeter(1955)IMF. andNGC1866(177Myr)andfittedSFHstotheclusters’CMDs. The structure of the paper is the following: Section 2 de- Theyfoundnoagespreadsinthesetwoclustersandconcluded scribes the used data set and the further processing of the data. thatbothareconsistentwithasingleburstofstarformationthat WeperformtestswithartificialclustersinSection3.Theresults lasted less than 35 Myr. In this work, we continue the study ofthefittingoftheSFHaregiveninSection4.Wediscussthe by Bastian & Silva-Villa (2013) by searching for potential age resultsanddrawfinalconclusionsinSection5. spreadsineightmoreYMCsintheLMC. We studied the CMDs of the clusters and fitted theoretical isochronestothemtodeterminetheirage,metallicity,extinction 2. ObservationsandDataProcessing and distance modulus (DM). With these parameters we created modelHessdiagramsofdifferentagesandcomparedthemwith ForouranalysiswemadeuseofdatatakenwiththeWideField theobservationstoputinitialconstraintsonanyagespreadthat andPlanetaryCamera2(WFPC2)onboardoftheHubbleSpace might be present within the clusters. In order to provide more Telescope (HST). The data set is presented in detail in Brocato quantitative results, we also fitted the star formation history of et al. (2001) and Fischer et al. (1998). NGC 1850, however, is eachclusterusingthecodeFITSFH(Silva-Villa&Larsen2010 notpartofthesestudies,weretrievedthedatatablesofthisclus- andLarsenetal.2011).ThiscodecreatesatheoreticalHessdi- ter from the HST Legacy Archive (HST Proposal 5475, PI: M. agram taking into account the photometric errors and some as- Shara).NGC2157ispresentedinFischeretal.(1998)whereas sumptions (e.g. metallicity). It searches for the best match be- the Brocato et al. (2001) data set covers the other six clusters. tweenthedataandatheoreticalmodelwhichisalinearcombi- TheimagesoftheclustersweretakenintheF450WandF555W nation of Hess diagrams constructed from different isochrones. filters (Brocato et al. 2001 data set and NGC 1850) and in the Wedonottakeintoaccountbinariesanddifferentialreddening F555W and F814W filters (Fischer et al. 1998). All the mag- (exceptforNGC2100whichhasaconsiderablevariationofex- nitudes in the HST filter system were transformed to standard tinctionacrossthecluster)inthefittingoftheSFH.Theireffects Johnson BVI magnitudes. We use the fully reduced data tables on the CMDs will only increase any potential age spread that whichconsistofthestars’xandypixelcoordinatesonthedetec- mightbepresentintheclusters.Additionally,thearchivalpho- torsystem,themagnitudesandtheirstandarddeviationsintwo tometric data tables that we use for this work contain only the filterseach. standard deviation of the data reduction as photometric errors. TheHLAcatalogofNGC1850doesnotincludephotomet- Figure1shows,asanexample,theerrorsinB−V colorofNGC ricerrors.Sowecreatedartificialerrorsthatweremodeledfrom 2136asafunctionoftheV-bandmagnitude.Thefilledsquares theBrocatoetal.(2001)dataset.Wetooktheseclustersfromthe (red) indicate the width of the MS, given by the standard devi- datasetthathavethesameexposuretime(40s)asNGC1850as ation. The width of the MS is consistent with the overall trend areferenceandwesimulatedtheerrorssuchthattheyfollowthe of the errors, especially in the region 17 ≤ V[mag] ≤ 19 that sameexponentialincreasewithfaintermagnitudesastheerrors is not sensitive to age. The real scatter of the errors around the from the reference clusters. Figure 2 shows the artificial errors global relation might be larger as the photometric standard de- inB−V colorasafunctionoftheV-bandmagnitude.Thefilled viations underestimate the real errors. However, underestimat- (red) squares indicate the width of the MS (standard deviation) ingthephotometricerrorswillalsoleadtolargerestimatedage of NGC 1850. It is comparable with the mean error in the in- spreads.Therefore,allagespreadspresentedinthisworkareup- terval 17 ≤ V[mag] ≤ 19 where the MS is not affected by age perlimitsofrealonesintheclusters.Theaimofthisworkisnot effects.Weareawarethatthescatterofthemodelederrorscould toquantifytheexactextentoftheSFH,butrathertotestifsig- alsobeunderestimatedastheerrorsweremodeledfromthestan- nificant(tenstohundredsofMyr)agespreadsarepresentwithin darddeviationofthephotometricreductionofotherclusters(see theclusters.Forallmodelsandfittingsinthispaperweusedthe previousSection). 2 F.Niederhoferetal.:LMCClusters 0.5 x (pc) −20 −10 0 10 20 20 0.4 1500 2B d + 2V0.3 1000 d 10 (cid:0) = B-V) 0.2 500 Error(0.1 y (pixel) 0 0 y (pc) −500 0.0 15 16 17 18 19 20 −10 V −1000 √ Fig.2: Modeled color errors ( dB2+dV2) of NGC 1850 as a −1500 functionoftheV-bandmagnitude.Thefilled(red)squaresindi- −20 catetheobserveddispersionwidthofthemainsequence. −1500 −1000 −500 0 500 1000 1500 x (pixel) Additionally to the photometry of NGC 2157, Fischer et Fig.3: NGC 1847; Positions of the stars on the WFPC2 chip. al. (1998) provide data of a background field which is located 26(cid:48)(cid:48)east and 110(cid:48)(cid:48)north of the cluster for subtraction of field The inner circle (red) corresponds to two times the core radius ofthecluster.Theintersectionoftheoutertwocirclesforming stars.Forouranalysiswerestrictourselvestotheinnerregions an annulus with the corners of the WFPC2 field of view is the oftheclusters. area which is used for field star removal. The asterisk symbol AstheclustersintheBrocatoetal.(2001)datasetandNGC marksthecenteroftheclusterasdeterminedbyus. 1850arenotcenteredonanyofthefourWFPC2detectorchips we had to determine their cluster centers in the x,y CCD co- ordinate system. We did this by first creating artificial blurred images of the clusters by convolving the flux weighted spatial tered on the respective cluster that intersect the corners of the positionsofthestarsineachclusterwithaGaussian.Wechose chipssuchthattheintersectionareaoftheannulusandthechip Gaussianswithaσrangingbetween40and60pixels(changing isapproximatelythesameastheareawherewewanttosubtract from cluster to cluster) in order to get a smooth flux distribu- the contaminating stellar population (see Figure 3 as an exam- tioninthecenterofeachcluster.Afterwardswefittedelliptical ple). After defining the areas we created CMDs for the stars in isophotes to the created images using the IRAF1 task ellipse bothregionsandsubtractedforeverystarinthefieldCMDthe andusedthecenteroftheinnermostisophotesastheclustercen- star in the corresponding cluster CMD that has the closest ge- ter.Onlythosestarswhicharelocatedinsidetwotimesthecore ometricaldistanceincolor-magnitudespace.However,wehave radiusRcore (radiusatwhichthedensityishalfthecentralden- tobearinmindthatalsointhisouterregionsacertainfractionof sity)givenbyBrocatoetal.(2001)areusedforfurtheranalysis. clusterstarsisstillpresentthatissubtractedasfieldstars.This Rcore isbetween2.0and∼4pc(seeTable1),atanassumeddis- becomes clear if we compare the field of view of the WFPC2 tance of 50 kpc (de Grijs et al. 2014). NGC 2157, however, is detector with the tidal radii of the clusters. The tidal radii are approximatelycenteredonthePCchipoftheWFPC2.Thestel- always larger than 30 pc (McLaughlin & van der Marel 2005, lardensityishighestonthischipwithasteepfallofftowardsthe assumingaKing(1966)profile)whereasthefieldofviewofthe otherthreechips.Forthisclusterweusejustthestarslocatedon WFPC2 is ∼36 pc in diameter (assuming a distance of 50 kpc the PC chip which has 800 × 800 pixels with a pixel scale of totheLMC).However,anover-subtractionisnotaseriousissue 0(cid:48).(cid:48)046perpixel.Assumingadistanceof50kpctotheLMCthe asitaffectsmostlythewellpopulatedregionsintheCMDsand PCchipcoversanareaof8.9×8.9pc.Thisareaiscomparable keepstheoverallstructureunchanged. with the area given by the projected half-light radius of NGC Asalreadymentionedweareprovidedwithanimageoffield 2157(5.4pc,McLaughlin&vanderMarel2005assumingKing stars near NGC 2157. Therefore, in this case, we made CMDs 1966models). ofthestarsinthefieldandtheclusterregionofeverychipand For our purpose we need to further analyze the data sets. subtractedthefieldstellarpopulationofeverychipseparatelythe The first step is the subtraction of the field star contamination samewayaswedidforthepreviousclusters.Figure4showsthe which is a combination of Galactic foreground stars and LMC CMDsofallclusters.Theblackdotsindicateallstarsthatwere fieldstars.Foralltheclusters,exceptforNGC2157,wedonot used in our analysis and the triangles (cyan) are the subtracted haveextrafieldexposuressowehavetousetheclusterimages ’field’stars. themselvesforthefieldstarsubtraction.Tominimizethecontri- Brocatoetal.(2001)andFischeretal.(1998)performedar- butionofclusterstarsweconstructedareasthatareasfaraway tificial star tests to infer the completeness curves of their clus- fromthecenteroftheclusteraspossible.Wechoseannulicen- ters.WeadoptlimitingV-bandmagnitudesthatareatorbrighter 1 IRAF is distributed by the National Optical Astronomy than the 90 % completeness limit (cf. their Table 3). Fischer et Observatories,whichisoperatedbytheAssociationofUniversitiesfor al.(1998)determinedforNGC2157a90%completenesslimit Research in Astronomy, Inc., under cooperative agreement with the inthe I bandof∼20.5mag(cf.theirFigure3).ForNGC1850, nationalScienceFoundation. however, we do not have any measure of the completeness. To 3 F.Niederhoferetal.:LMCClusters beonthesafeside,wechoosealimitof18.5magintheV band tersisnotonlyduetophotometricerrors.Wewilldiscussthisin forthefurtheranalysisofthiscluster.Thislimitismorethan1 Section5. magnitude brighter than the completeness limits of the cluster in the Brocato et al. (2001) data set with comparable exposure times. 4. Results The aim of this work is to search for potential age spreads in 3. TestswithArtificialStarClusters a sample of eight young (<1.1 Gyr) massive (> 104M(cid:12)) star clustersintheLMC.Oursampleofclusterscoversanagerange BeforewefittheSFHofoursampleofLMCclusterswemade from20Myrtoabout1Gyr.Theclustersanalyzedinthiswork tests with artificial coeval star clusters to assess the magnitude and in Bastian & Silva-Villa (2013) have similar properties as ofapparentagespreadsthatarepurelyinducedbyphotometric theintermediateage(1-2Gyr)LMCclustersthatshowextended errors.Foreachclusterinoursamplewemodeledacorrespond- ordoubleMSTOs.TheleftpanelofFigure6showsthemasses ing artificial cluster with the same metallicity and age that we of the clusters of our sample as a function of the effective ra- found for the real cluster. We assigned every cluster a random number of stars that is drawn from a Gaussian distribution that dius Reff along with the clusters presented in Goudfrooij et al. (2009, 2011a). Both, young and intermediate age clusters fol- peaks at the number of stars present in the data table of the re- spective observed cluster. The masses of the cluster stars were lowthesametrendofincreasingReffwithincreasingmass.NGC 1847 is not included in this plot as it has a large uncertainty in drawn stochastically from a stellar initial mass function (IMF) with an index α of −2.35 (Salpeter 1955). The lower limits of itseffectiveradiusduetoitsshallowprofile.Therightpanelof Figure6showsthecoreradiusR asafunctionoflogarithmic thestellarmasseswerechosensuchthattheCMDsoftheartifi- core clustermassforthesameclusters.Itisexpectedthat,duetody- cialclusterscoverthesamemagnituderangeastherealclusters. namical evolution, the spread in R increases with the age of Wecreatethephotometryforeachstarbylinearlyinterpolating core theclusters(e.g.Kelleretal.2011).WenotethatalltheYMCs theisochronegrid(Parsec1.1fromthePadovaset)attherespec- havesystematicallysmallercoreradiithantheintermediateage tiveagesoftheclustersandaddingphotometricuncertaintiesto clusters. One reason for this could be that the core radii given the synthetic photometry that follow the same behavior as the byGoudfrooijetal.(2009,2011a)areconstructedfromthesur- observederrors.Forallobservedclusterswefittedanexponen- face number density profiles, whereas McLaughlin & van der tial curve to the photometric standard deviations as a function Marel(2005)usedsurfacebrightnessprofiles.Bothmethodsdo of the magnitude in each band. We then assigned every star an notyieldnecessarilythesamevalueforR .Duetodynamical error that is drawn from a Gaussian distribution with a width core masssegregationinsideclustersthesurfacebrightnessprofileis that corresponds to the value of the exponential function at the more concentrated towards the center and therefore results in a respective magnitude plus a small random scatter comparable smallervalueforthecoreradius. to the scatter of the real errors around the fitted curve. The up- per panels of Figure 5 show as an example the CMDs of four We fitted theoretical isochrones from the Parsec 1.1 ofthemodeledclusterstogetherwiththetheoreticalisochrones isochrone set (Bressan et al. 2012) to the observed CMDs to thatwereusedtocreatethephotometry. estimatetheclusters’metallicity,distancemodulusandthered- When comparing the artificial clusters with the observed deningtowardstheclusters.Thissetofisochronesusesavalue ones (cf. Figure 4 and 5) we note that the MS of the synthetic of 0.0152 for the solar metallicity Z(cid:12). Table 1 lists the basic clustersismuchbroaderatfaintermagnitudesthantheMSofthe propertiesoftheLMCclustersthatarethesubjectofthiswork. realclusters.Thisisduetothefactthatwemodeledtheclusters For the further analysis we dereddened the magnitudes of all using the photometric errors of the corresponding real clusters. stars in each cluster by the same value of the derived redden- IfwelookatFigure1weseethattheMSatfaintermagnitudes ing(weassumenodifferentialreddening,exceptforNGC2100). isnarrowerthanwouldbeexpectedfromthephotometricerrors. ThedataofNGC2157isalreadycorrectedforareddeningvalue However,thisdoesnotaffectouranalysisaswedonotusethese ofE(B−V)=0.1byFischeretal.(1998). regionsintheCMDforthefittingoftheSFH(seeSection4). As a second step we fitted the SFH of each cluster using We carried out 100 Monte Carlo realizations of each clus- the code FITSFH (Silva-Villa & Larsen 2010). For the fitting terandfittedtheirSFHthesamewayaswedidfortheobserved weusedthepreviouslydeterminedmetallicityanddistanceand clusters(seeSection4).Theresultsoftheclustersthatareshown assumedaSalpeter(1955)IMF. asanexamplearepresentedinthelowerpanelsofFigure5.The Weperformedthefittingintworegions(a”blue”anda”red” dots represent the mean contributed mass fraction that results fittingbox)oftheCMDforeachcluster.Theblueboxcontains from the 100 Monte Carlo realizations, at individual ages. The theMSoftheclusterwhereastheredboxcoverstheregionsof errorbars are the standard deviations. The (red) dashed line is theevolvedstars.Thelimitsofalltheboxesandthetotalnumber thebestGaussianfittothehighestpeakinthedistribution,tak- ofstarsinthoseboxesaresummarizedinTable2.Thefaintlim- ing into account the errors. The thick vertical line at the x-axis itsoftheboxescontainingtheMSarechosensuchthattheyare marks the input age of the cluster. All fits reproduce the input atleast0.5magbrighterthanthe90%completenesslimits.We ageoftheclustersverywellwithintheerrors.Wenotethatthe didseveralfitswithdifferentchoicesoftheboxlimits.Thereby fitstotheclustersshowsomeadditionallowamplitudesofstar we noticed that the overall result does not depend on the exact formationathigheragesasitisobservedintherealclusters(see choice of the boxes. To assess the statistical errors of the fit- Section4).Thisisafirstsignthatthesefeaturesareduetothefit- tingsthatresultfromthestochasticIMFpopulationofstarswe tingprocessandnotintrinsictotheclusteritself.Thefittedages performed additional bootstrapping tests. We created for each andstandarddeviationsofallmodeledclustersaresummarized cluster50bootstrapsamplesandrantheSFHforeachofthese inTable3wherewecomparethemwiththeresultsfromtheob- samples. The figures of the SFH fits presented in the next sub- servedclusters.Thedispersionofagesislowerthanthespreads sections show the mean values at individual ages (black dots) wefoundforthehighestpeakofmostoftherealclusterswhich and the one sigmaerrorbars that follow from the bootstrapping suggest that the spread in the fitted SFH of the observed clus- procedure. 4 F.Niederhoferetal.:LMCClusters 12 12 12 12 14 14 14 14 16 16 16 16 18 V V V I 18 18 18 20 20 20 20 22 24 22 22 22 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 26 −0.5 0.0 0.5 1.0 1.5 2.0 2.5 B V B V B V V I − − − − (a)NGC2249 (b)NGC1831 (c)NGC2136 (d)NGC2157 12 12 12 12 14 14 14 14 16 16 16 16 V V V V 18 18 18 18 20 20 20 20 22 22 22 22 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 B V B V B V B V − − − − (e)NGC1850 (f)NGC1847 (g)NGC2004 (h)NGC2100 Fig.4:CMDsoftheclustersinoursample.Theblackdotsarethestarsthatwereusedforthefurtheranalysis,whereasthe(cyan) trianglesindicatestarsthatweresubtractedasfieldstars.Obviously,alsosomeclusterstarswereexcludedinourSFHfits,butthis doesnotaffectourresults.AllCMDscontainonlythestarsintheinnerregionsoftheclusters(twotimesthecoreradius).Notethat theCMDofNGC2157isinthe(V−I)vsIspace. Table1:ParametersoftheLMCclusters Cluster Age(Myr) logMass/M(cid:12) Z(Z(cid:12)=0.0152) Rcore(pc) Vesc(km/s) Vesc(km/s) E(B−V) lit. thiswork lit. thiswork at10Myr lit. thiswork NGC1831 700a 926 4.59b 0.016a 0.016 4.24c/4.13b 6.6b 9.3 0.01a 0.0 NGC1847 26d 57 4.44b 0.006e 0.006 3.35c/1.73b 4.2b 4.5 0.1f 0.16 NGC1850 30g 93 4.86b/5.15 0.008h 0.006 −−/2.69b 8.77b/12.3 15.5 0.17h 0.1 NGC2004 20i 20 4.36b 0.004j 0.004 2.18c/1.41b 7.0b 7.5 0.08k 0.23 NGC2100 16i 21 4.36b 0.007j 0.007 3.03c/0.99b 7.9b 8.5 0.24k 0.17 NGC2136 100l 124 4.30b 0.004l 0.005 2.91c/1.59b 7.4b 9.3 0.1l 0.13 NGC2157 100m 99 4.31b 0.008m 0.008 −−/2.00b 6.2b 7.8 0.1m 0.1 NGC2249 1000n 1110 4.48n 0.007a 0.008 2.79c/1.75b 9.4n 12.1 0.01a 0.02 NGC1856 281o 4.88b 0.008o −−/1.75b 11.0b 14.7 0.26o NGC1866 177o 4.91b 0.008o −−/2.79b 9.5b 12.5 0.05o Notes.Inthecolumnsthatgivetheage,themetallicityZandtheextinctionE(B−V),thefirstvalueisfromtheliteratureandthesecondoneis determinedinthiswork.Additionally,wealsofoundnewvaluesforthemassandtheescapevelocityofNGC1850(secondvaluesintherespective columns).Thecoreradiusoftheclusterscanbedeterminedintwoways:Usingthesurfacenumberdensity(firstvalue)orthesurfacebrightness density(secondvalue). Thelasttwoclusters(NGC1856andNGC1866)arenotstudiedinthiswork.TheywerealreadyanalyzedbyBastian&Silva-Villa(2013). References: (a)Kerberetal.(2007);(b)McLaughlin&vanderMarel(2005)assumingKing(1966)profiles;(c)Brocatoetal.(2001);(d)Elson&Fall(1988); (e)Mackey&Gilmore(2003);(f)Nelson&Hodge(1983);(g)Baumgardtetal.(2013);(h)Fischeretal.(1993);(i)Elson(1991);(j)Jasniewicz& Thevenin(1994);(k)Kelleretal.(2000);(l)Dirschetal.(2000);(m)Fischeretal.(1998);(n)Correntietal.(2014);(o)Bastian&Silva-Villa(2013) The results of the SFH fitting will give us upper limits of 4.1. NGC2249 potentialagespreadsaswedonottakeintoaccountbinariesand differentialreddening. NGC2249istheoldestclusterinoursample.Theliteratureage of the cluster is between 660 Myr (Baumgardt et al. 2013) and about 1 Gyr (e.g. Kerber et al. 2007, Correnti et al. 2014). It is thereforenotaYMCanymorebutratherbelongstothecategory of intermediate age LMC clusters. Adopting an age of 1 Gyr, Correntietal.(2014)foundamassof3.0·104M(cid:12)forthiscluster. In the following we present the age and SFH fitting results WematchedtheoreticalisochronestoNGC2249todetermineits ofeachclusterinorderofdecreasingage. basicparametersforthefurtheranalysis.Wefoundareddening 5 F.Niederhoferetal.:LMCClusters 12 12 12 12 14 14 14 14 16 16 16 16 V I V V 18 18 18 18 20 20 20 20 22 22 22 22 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 −0.5 0.0 0.5 1.0 1.5 2.0 B-V V-I B-V B-V (a)20Myr(B,Vphotometry) (b)100Myr(V,Iphotometry) (c)125Myr(B,Vphotometry) (d)1.1Gyr(B,Vphotometry) 1.0 0.7 0.7 Mass Fraction000...465 Mass Fraction000...465 Mass Fraction00..68 Mass Fraction00..68 Contributed 00..32 Contributed 00..32 Contributed 00..42 Contributed 00..42 0.1 0.1 0.00 50 100 150 0.00 100 200 300 400 500 0.00 100 200 300 400 500 0.00 1000 2000 3000 4000 5000 Age [Myr] Age [Myr] Age [Myr] Age [Myr] (e)20Myr(B,Vphotometry) (f)100Myr(V,Iphotometry) (g)125Myr(B,Vphotometry) (h)1.1Gyr(B,Vphotometry) Fig.5:Upperpanels:CMDsoffouroftheartificialclustersthatwecreated.Wesimulatedtheseclusterstoestimatetheresulting agespreadofasingle-agepopulationgivenbyourSFHfittingcodecausedonlybyphotometricerrors.Allstarsinoneclusterhave thesameageandthephotometricerrorsareestimatedfromtheonesoftherealclustersattherespectiveage.Theclustersshown herehaveagesof20,100Myr,125Myrand1.1Gyr,spanningtherangeofagesoftherealclustersinoursample.The(red)lineis thetheoreticalParsec1.1Padovaisochroneattherespectiveageofthecluster. Lower panels: Results of the SFH fits of the four artificial star clusters shown in the upper panel. The dots represent the mean contributed mass fraction at individual ages of the 100 realizations whereas the errorbars are the standard deviation. The dashed (red)lineisthebest-fitGaussiantothehighestpeakofthepointstakingintoaccounttheerrorbars.Indicatedasaverticalthinkline atthex-axisistheactualageoftherespectivecluster.Thefittothe20Myroldclustergivesapeakat20.1Myrwithadispersionof 1.5Myr.Wegotanageof102Myrforthe100Myroldclusterwithanstandarddeviationof8.4Myrandanageof130Myrwitha dispersionof9.6Myrforthe125Myroldcluster.The1.1Gyroldclusterhasafittedageof1.2Gyr.Thestandarddeviationis111 Myr. E(B−V)of0.02,ametallicityofZ=0.008andaDM(m−M) theCMD.ThelimitsofthechosenboxescanbefoundinTable 0 of18.3mag.Thesevaluesareingoodagreementwithprevious 2.ThebluefittingboxcontainstheMSdowntoamagnitudeof studies. Kerber et al. (2007), who also used the Brocato et al. 2.0 which is about half a magnitude above the 90% complete- (2001) data set, modeled the CMDs of various clusters using ness limit given by Brocato et al. (2001). The red fitting box Padova isochrones from Girardi et al. (2002). For NGC 2249 coverstheredclumpstars.Figure8showstheresultsoftheSFH they find a value of 0.01 for the reddening, a metallicity Z of fit. The points are the mean contributed mass fraction of the fit 0.007andaDMof18.27mag.TherecentstudybyCorrentiet atindividualageswithonesigmaerrorbarsthatresultfromthe al. (2014) that used deep HST photometry finds similar values bootstrapping.ThesolidlineisthebestfitGaussiantakinginto fittingMarigoetal.(2008)isochronestotheCMDs(E(B−V)= accounttheerrorbars.Thecurvepeaksatanageof∼1.11Gyr. 0.02,(m−M) =18.2mag,Z=0.006). The dispersion of 139 Myr is a measure of the maximum age 0 Figure 7 shows the CMD of NGC 2249. The black dots spreadthatispresentinthecluster. indicate individual observed stars. The CMD shows two evi- dent features: The MS of the cluster which extends up to a B 4.2. NGC1831 band magnitude of ∼0.8 and the red clump at B ∼1.3 mag and B−V ∼0.8.OverplottedaremodelHessdiagramsatthreediffer- NGC1831isthesecondoldestclusterinoursample.Kerberet entagesfrom830Myrto1.4Gyr(filledcontours).Theposition al.(2007)foundanageof700Myrforthiscluster,ametallicity oftheredclumpintheCMDandtheMSTOisbestreproduced Zof0.016,anextinctionE(B−V)of0.01andaDMof18.23.Li by an age of about 1 Gyr, in agreement with the findings by etal.(2014)analyzedtheCMDofNGC1831andfoundthatthe Kerberetal.(2007)andCorrentietal.(2014).Atanageof830 MSTOisbroaderthanexpected.Theyconcludethatthisfeature Myr the MS extends to brighter magnitudes than it is observed isbestexplainedwithstarsofdifferentrotationvelocitiesanda and at 1.4 Gyr the models predict a MSTO that is fainter than dispersionofagesbetween550and650Myr.Fortheiranalysis observed. they used the following parameters: Z=0.012, E(B− V)=0.03 Foramorequantitativeanalysisoftheclusteragewefitthe and(m−M) =18.4mag.WedeterminedanextinctionE(B−V) 0 SFHoftheclusterusingtheFITSFHcode(Silva-Villa&Larsen of 0.0, a metallicity Z of 0.016 and a distance modulus of 18.1 2010)providingtheobservedmagnitudesandphotometricerrors magthatweusedfortheanalysisoftheSFHofNGC1831.The ofthestarsasinput.WedidthefitoftheSFHintworegionsin CMDoftheclusterwithsuperimposedmodelHessdiagramsis 6 NGC 1847 F.Niederhoferetal.:LMCClusters 20 10 NGC 1783 8 15 NGC 1783 R (pc)eff10 LW 431 NGNCG C2 11098N8G7C 1831 NNGGCC 1 18N85G66C6 18N0NG6GCC 1 1885406 R (pc)core 46 LW 431 NGNCG 1C9 827108NGC 1831NGC 175N1GC 1806NGC 1846 NGC 2157 NGC 2004 NGC 1751 NGC 1856 NGC 1850 5 NGC 2100 2 NGC 2157 NGC N1G8C47 2249 NGC 1866 NGC 2249 NGC 2136 NGC 2136 NGC 2004 NGC 2100 0 0 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 log (Mass/M ) log (Mass/M ) ⊙ ⊙ Fig.6:Leftpanel:PlotofthemassversustheeffectiveradiusforoursampleofYMCs(blackcircles)andsomeadditionalclusters withsimilarproperties(blackdots),takenfromthecatalogofMcLaughlin&vanderMarel(2005).Thetwoclustersthataremarked withablackdotsurroundedbyablackcirclearethetwoclustersanalyzedbyBastian&Silva-Villa(2013).The(red)trianglesare clusters of intermediate ages that display extended MSTOs, from Goudfrooij et al. (2009, 2011a). In this plot NGC 1847 is not shownasitseffectiveradiushasalargeuncertaintyduetoitsshallowprofile.WeincreasedthemassofNGC1850byafactorof2 withrespecttotheliteraturevaluetoaccountforthenewagethatwefound(seeSection4.5). Right panel: Same as the left panel but for the core radius. It is shown, e.g. in Keller et al. (2011), that the core radii of clusters havelargerspreadstheoldertheclustersare.WenoteherethatthecoreradiiofallclustersfromtheGoudfrooijetal.(2009,2011a) samplearesystematicallyhigherthantheonesfromoursample.OnereasonforthiscouldbethatthecoreradiigiveninGoudfrooij etal.(2009,2011a)areobtainedfromthesurfacenumberdensity,whereasMcLaughlin&vanderMarel(2005)usedthesurface brightnessprofiles.Bothmethodsdonotyieldthesamevalue(seetext). Fig.7:CMDofNGC2249withoverlaidmodelHessdiagramsatthreedifferentages.Theblackdotsaretheindividualobserved starsandthefilled(colored)contoursaretheoreticalHessdiagrams.Theirrespectiveagesareindicatedintheupperleftcornerof eachpanel. showninFigure9.ItisverysimilartotheCMDofNGC2249 4.3. NGC2136 suggestingthatbothclustershavecomparableages.TheMSof NGC1831extendsupto M ∼0.5mag.Thepositionofthered NGC 2136 is younger than the previous two clusters. Its age B clumpisataBmagnitudeofabout1.2andaB−Vcolorof∼0.9. fromtheliteratureisabout100Myr(e.gDirschetal.2000).By LookingattheHessdiagramsweseethatthemodelat870Myr overplotting isochrones onto the cluster’s CMD we find a red- fitsbestthedata. dening E(B−V)of0.13,whichisinagreementwiththevalue of0.1±0.03foundbyDirschetal.(2000).Furthermore,wede- terminedthemetallicityZtobe0.005whichissomewhathigher WefittedtheSFHoftheclusterintworegionsintheCMD. than the value of 0.004 by Dirsch et al. (2000) and a distance The limits of the fitting boxes are given in Table 2. The boxes modulus of 18.5 mag that is consistent with the mean distance containtheMSaswellastheHe-burningstars.Theresultsofthe to the LMC (de Grijs et al. 2014). Figure 11 shows the CMD fitting are shown in Figure 10. A Gaussian fit to the individual of NGC 2136 overlaid with Hess diagrams at ages of 100, 125 pointsthatrepresentthecontributedmassfractionatsingleages and 177 Myr. The top of the MS in this cluster is at B ∼ −2 gives a peak at an age of 924 Myr. The standard deviation of followed by an almost continuous sequence of already evolved the Gaussian (126 Myr) is the upper limit of the age spread as stars which reaches a top brightness of M ∼ −4 and extends B we do not consider other effects like binaries, rotating stars or to a B−V color of ∼1.5. We note that there are stars in the so differentialextinctionthatmighteffecttheCMD. called ”Blue-Hertzsprung-Gap” between the MS and the sub- 7 F.Niederhoferetal.:LMCClusters Table2:RegionsintheCMDsoftheclusterswheretheSFHwasfitted Cluster Colorlimitsofthe Magnitudelimitsofthe Colorlimitsofthe Magnitudelimitsofthe Numberofstars bluefittingbox bluefittingbox redfittingbox redfittingbox insidetheboxes NGC1831 −0.1≤(B−V)≤0.5 −6.0≤V ≤2.0 0.5≤(B−V)≤1.4 −6.0≤V ≤1.5 1015 NGC1847 −0.4≤(B−V)≤0.4 −6.0≤V ≤0.5 0.4≤(B−V)≤1.5 −6.0≤V ≤−2.5 280 NGC1850 −0.3≤(B−V)≤0.1 −6.0≤V ≤0.0 0.1≤(B−V)≤1.8 −6.0≤V ≤−2.5 995 NGC2004 −0.4≤(B−V)≤0.3 −6.0≤V ≤0.5 0.3≤(B−V)≤1.7 −6.0≤V ≤−1.5 410 NGC2100 −0.4≤(B−V)≤0.2 −6.0≤V ≤0.0 0.2≤(B−V)≤1.9 −6.0≤V ≤−1.0 375 NGC2136 −0.3≤(B−V)≤0.2 −6.0≤V ≤0.5 0.2≤(B−V)≤1.7 −6.0≤V ≤−0.5 360 NGC2157 −0.3≤(V−I)≤0.2 −6.0≤I≤1.5 0.2≤(V−I)≤1.9 −6.0≤I≤−1.0 1000 NGC2249 0.0≤(B−V)≤0.5 −6.0≤V ≤2.0 0.5≤(B−V)≤1.7 −6.0≤V ≤1.5 390 Fig.9:CMDofNGC1831withoverlaidmodelHessdiagramsatthreedifferentagesfrom750Myrto1.04Gyr. 0.5 0.7 n n o0.6 o0.4 cti cti a a Fr0.5 Fr ss ss 0.3 a a M0.4 M d d e e ut0.3 ut0.2 b b ri ri nt0.2 nt o o C C0.1 0.1 0.0 0.0 0 500 1000 1500 2000 0 500 1000 1500 2000 Age [Myr] Age [Myr] Fig.8:ResultsoftheSFHfitofNGC2249.Thedotsrepresent Fig.10:ResultsforthefittingoftheSFHofNGC1831.Thedots thecontributedmassfractionatindividualagesandthesolidline representtheresultsatindividualagesandthesolidlineshows showsthebestGaussianfittothepointswithapeakat1.11Gyr thebestGaussianfittothepointswithapeakat924Myranda andastandarddeviationof139Myr. standarddeviationof126Myr. giantbranchwherenostarsarepredictedbythemodels.These beabittoobright(Figure11left).Ontheotherhand,anageof starscouldbestarsinthedenseclustercenterthatareaffectedby ∼180MyristoooldforNGC2136(Figure11).Thetheoretical crowding,fastrotatingstars,interactivebinariesorhighermass Hessdiagramfailstofittheblueloopstarsaswellastheposition starsthatformedoutofthemergingorcollisionoftwolowmass oftheMSturnoff.Fromthiswecanalreadyruleoutapossible stars(”bluestragglers”).TheblueloopregionintheCMDthat agespreadofmorethan±50Myr. ispopulatedbyHe-burningstarsiswellsampledinthiscluster To put our initial estimate on a more quantitative basis we whichmakesiteasiertoconstrainapossibleagespreadjustby fittedtheSFHusingFITSFH,aswedidinthepreviousclusters. lookingatthetheoreticalHessdiagrams.Weseethatanageof We adopted two fitting boxes that were chosen such that they 125Myrfitsbestthepositionoftheevolvedstars,especiallythe include the main features of the cluster CMD but exclude the redsideoftheblueloop(Figure11middle).Alsoanageof100 leftovercontaminationoffaintredfieldstars(compareFigure4). Myr is compatible with the data, although the model seems to Thefaintlimitofthebluefittingboxisonemagnitudeabovethe 8 F.Niederhoferetal.:LMCClusters 0.5 0.4 n n o o acti acti0.4 Fr0.3 Fr s s s s Ma Ma0.3 d d e0.2 e ut ut b b0.2 ri ri nt nt Co0.1 Co 0.1 0.0 0.0 0 50 100 150 200 250 300 350 400 0 50 100 150 200 Age [Myr] Age [Myr] Fig.12:ResultsoftheSFHfitofNGC2136.Thedotsrepresent Fig.15:ResultsoftheSFHfitofNGC2157.Thedotsrepresent the results at individual ages and the solid line shows the best the results at individual ages and the solid line shows the best Gaussianfittothepointswithapeakat123.3Myrandastandard Gaussianfittothepointswithapeakat98.3Myrandastandard deviationof22.6Myr. deviationof13.2Myr. and a distance modulus of 18.5 mag for the cluster, consistent withthevaluesassumedfortheclusterbyFischeretal.(1998). Figure14showstheCMDoftheclustertogetherwiththeoretical Hess diagrams overplotted. As NGC 2136, which has a similar age,theCMDofNGC2157showsaclearMSturnoffatabout M = −3 and a well populated blue loop with a slight over- V density of stars at V − I ∼ 1.2 that marks the red envelope of theloop.InagreementwithFischeretal.(1998)wenotethatan age of 100 Myr fits best the observed stellar distribution in the CMD (Figure 14 middle). From the CMD we can constrain an agespreadtobelessthanabout±30Myr. We chose the regions in the CMD that we used to fit the Fig.13:CMDofNGC2136withanoverplottedtheoreticalHess SFHoftheclustersuchthattheycontainthemainfeaturesofthe diagramat200Myr. clusterplussomeadditionalspacebelowandabovethesequence ofevolvedstarstobetterconstrainyoungerandolderages(see Table2fortheexactlimits).Theresultsofthefittingprocedure 90%completionlimitgivenbyBrocatoetal.(2001).Thefitting are displayed in Figure 15. As expected, the star formation has oftheSFHofNGC2136givesaperiodofstarformationwhich aclearmaximumatabout100Myrwithaupperlimitofanage peaksatanageof∼123Myrwithanupperlimitof±23Myrfor spread of ±13.2 Myr. Additionally, the fit yields a high value itsduration(seeFigure12),comparablewithourfirstestimate. of star formation at 50 Myr with a 1.5σ significance. This age Wealsonote,thatthereisanadditionalsignificantpeakat200 correspondstothestarsthatareatthetopoftheMSatM =−3. V Myr.Figure13showsaHessdiagramat200Myrsuperimposed However,thepositionoftheevolvedstarsat50Myrdonotagree over the CMD of NGC 2136. The fitted star formation at 200 withtheobservations.Thereforethisagecanbeexcluded. Myr is due to the faintest stars at the red end of the blue loop at B−V ∼1.0. But at this age we would also expect a higher 4.5. NGC1850 densityofblueloopstarsata B−V colorofabout0.4anda B magnitudeofabout−2.5wherenostarsareobserved.Therefore, NGC1850isabinaryclustersystemconsistingofamainclus- wecanruleoutthepeakat200Myr. ter(NGC1850A)andasmallanddensesecondarycluster(NGC 1850B) composed mainly of young O and B stars. This cluster is the only one for which we obtained the data from the HST 4.4. NGC2157 Legacy Archive. The data catalog consists of the spatial posi- NGC2157isnotpartoftheBrocatoetal.(2001)datasetandits tions of the stars on the detector chip, the RA and Dec coordi- dataistakenfromFischeretal.(1998)whoprovidesphotometry nates and the AB magnitudes in the F450W and F555W filter, intheVandIfilters.Thephotometryisalreadycorrectedforex- however without photometric errors. We converted the magni- tinctionbyFischeretal.(1998)whoadoptedareddeningvalue tudestoVegamagnitudesandafterwardstotheJohnsonBVsys- E(B−V) of 0.1. We derived the same value and therefore did temandcreatedartificialphotometricerrorsthatfollowthesame notchangeitforouranalysis.Byplottingtheoreticalisochrones behavior as the observed ones in the Brocato et al. (2001) data overtheobservedCMDoftheclustertheydeterminedanageof setoftheotherclusters.Inourstudyweconsideronlythecen- 100 Myr for the cluster. We estimated a metallicity Z of 0.008 tral parts of the main cluster NGC 1850A (all stars within two 9 F.Niederhoferetal.:LMCClusters Fig.11:CMDofNGC2136withoverplottedtheoreticalHessdiagramsat100,126and178Myr. Fig.14:CMDofNGC2157withoverlaidHessdiagramsattheages80Myr,100Myrand140Myr.NotethatthisCMD,incontrast totheotherclusterCMDs,isinthe(V−I)vs.M space. V Fig.16:CMDofNGC1850withsuperimposedmodelHessdiagramsatagesfrom60to400Myr. timesthecoreradius).Theyoungstarsofthesecondarycluster was determined by Sebo & Wood (1995) by measurements of areoutsidethisareaandthereforetheywillnotaffectouranaly- Cepheids.TheresultingCMDofNGC1850AisshowninFigure sis.WedeterminedareddeningE(B−V)of0.1whichissmaller 16.ItshowsaMSthatextendsuptoaBmagnitudeofabout-3.5 than the value of 0.17 that is assumed by Fischer et al. (1993). andatrackofevolvedblueloopstarsthatgoestoaB−V color Additionally, a metallicity of Z=0.006 and a distance modulus ofabout1.3.ComparingtheobservedCMDwiththemodelwe of18.5magreproducesbestthepositionandextentoftheblue seethatforanageofabout90Myrthebestaccordanceisfound. loop. The distance modulus is a bit smaller than 18.6 mag that Themagnitudeandthemorphologyoftheevolvedstarsmatches 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.