ebook img

NNLO QCD correction to vector boson production at hadron colliders PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NNLO QCD correction to vector boson production at hadron colliders

0 NNLO QCD correction to vector boson production at 1 0 hadron colliders 2 n a J 2 2 ] GiancarloFerrera∗ h p DipartimentodiFisica,UniversitàdiFirenzeandI.N.F.N.SezionediFirenze - I-50019SestoFiorentino,Florence,Italy p e E-mail: [email protected] h [ We presenta fully-exclusivenext-to-next-to-leadingorder(NNLO) QCD calculation for vector 1 v bosonproductioninhadron-hadroncollisions. Thecalculationisimplementedina partonlevel 8 MonteCarloprogram,whichincludesg −Z interference,finite-widtheffects,theleptonicdecay 6 9 ofthevectorbosonsandthecorrespondingspincorrelations. Thecodeallowstheusertoapply 3 arbitrary(thoughinfraredsafe)kinematicalcutsonthefinal-statesandtocomputedistributions . 1 in the formof bin histograms. We show some illustrativenumericalresultsatthe Tevatronand 0 0 theLHC. 1 : v i X r a RADCOR2009-9thInternationalSymposiumonRadiativeCorrections(ApplicationsofQuantumField TheorytoPhenomenology), October25-302009 Ascona,Switzerland ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Vectorboson production inhadron collisions, thewellknownDrell-Yan(DY)process[1],has aspecial roleforphysics studies athadron colliders. Havinglarge production rateswithrelatively simple experimental signatures, this process is important for detectors calibration, it gives strin- gent informations on Parton Distribution Functions (PDFs), is a strong test for perturbative QCD predictions andmaysignals effectsfromphysicsbeyondtheStandardModel. Itisthereforeessentialtohaveaccuratetheoreticalpredictionsforthevector-bosonproduction crosssectionsandrelateddistributions,whicharepredictedbyperturbativeQCDasanexpansionin the strong coupling a . The next-to-next-to-leading order (NNLO)QCDcorrections (i.e. O(a 2)) S S have been calculated analytically for the total cross section [2] and the rapidity distribution of the vector boson [3]. The fully exclusive NNLOcalculation has also been performed [4, 5]. Further- more,electroweakcorrectionsuptoO(a )havebeencomputedforbothW [6]andZproduction[7]. Thecomputation ofhigher-order QCDcorrections tohard-scattering processes isahardtask. Difficultiesarisefromthepresenceofinfraredsingularitiesatintermediatestagesofthecalculation thatpreventastraightforward implementationofnumericaltechniques. Fortheabovereason,fully exclusive cross-sections in hadron collisions have been computed so far only for Higgs boson production [8,9,10,11]andtheDrell–Yanprocess[4,5]. In this contribution we present a recent fully exclusive NNLO QCD calculation for vector bosonproductioninhadroncollisions[5]. ThecalculationusestheNNLOextensionofsubtraction formalism introduced inRef.[10]. Themethodisvalid ingeneral fortheproduction ofcolourless high-mass systemsinhadroncollisions. Weconsider thehard-scattering process: h +h →V(q)+X, (1) 1 2 where the colliding hadrons h and h produce the vector bosonV (V =Z/g ∗,W+ orW−), with 1 2 four-momentum qandhighinvariant mass q2,plusaninclusive finalstateX. p FollowingRef.[10],weobservethat,atLO,thetransversemomentumq ofV isexactlyzero. T Thismeansthat,aslongasq 6=0,the(N)NLOcontributionsaregivenbythe(N)LOcontributions T tothefinalstateV + jet(s)[12]: dsˆV | = dsˆV+jets . (2) (N)NLO qT6=0 (N)LO We compute dsˆV+jets by using the subtraction method at NLO [13, 14] and we treat the remain- NLO ing NNLO singularities at q = 0 by the additional subtraction of an universal 1 counter-term T dsˆCT constructed by exploiting the universality of the logarithmically-enhanced contributions (N)LO tothetransverse momentumdistribution 2. Schematically wehave dsˆV =HV ⊗dsˆV + dsˆV+jets−dsˆCT , (3) (N)NLO (N)NLO LO h (N)LO (N)LOi whereHV isaprocess-dependent coefficientfunctionnecessarytoreproducethecorrectnor- (N)NLO malization [16,5]. 1Itdependsonlyontheflavouroftheinitial-statepartonsinvolvedintheLOpartonicsubprocess. 2Fortheexplicitformofthecounter-termseeRefs.[10,15]. 2 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Wehaveencoded ourNNLOcomputation inapartonlevelMonteCarloeventgenerator. The calculation includes finite-width effects, the g −Z interference, the leptonic decay of the vector bosonsandthecorresponding spincorrelations. Ournumericalcodeisparticularly suitable forthe computation ofdistributions intheformofbinhistograms. Inthe following wepresent someillustrative numerical results for Z andW production atthe Tevatron and the LHC. We consider u,d,s,c,b quarks in the initial state. In the case ofW± pro- duction, we use the (unitarity constrained) CKM matrix elements V = 0.97419, V = 0.2257, ud us V = 0.00359, V = 0.2256, V = 0.97334, V = 0.0415 from the PDG 2008 [17]. We use ub cd cs cb the so called Gm scheme for the electroweak couplings, with the following input parameters: G = 1.16637×10−5 GeV−2, m = 91.1876 GeV, G = 2.4952 GeV, m = 80.398 GeV and F Z Z W G =2.141 GeV. As for the PDFs, we use MSTW2008 [18] as default set, evaluating a at each W S corresponding order(i.e., weuse(n+1)-loop a atNnLO,withn=0,1,2). Wefixtherenormal- S ization (m )andfactorization (m )scalestothemassofthevectorbosonm . R F V Figure1: Rapiditydistributionofanon-shellZ bosonattheLHC. ResultsobtainedwiththeMSTW2008 set(leftpanel)arecomparedwiththoseobtainedwiththeMRST2004set(rightpanel). Westart the presentation of our results by considering the inclusive production ofe+e− pairs from the decay of an on-shell Z boson at the LHC. In the left panel of Fig. 1 we show the ra- pidity distribution of the e+e− pair at LO, NLO and NNLO, computed by using the MSTW2008 PDFs[18]. Thecorrespondingcrosssectionsares =1.761±0.001nb,s =2.030±0.001nb LO NLO ands =2.089±0.003nb. Thetotalcrosssectionisincreasedbyabout3%ingoingfromNLO NNLO to NNLO. In the right panel of Fig. 1 we show the results obtained by using the MRST2002 LO 3 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera [19] and MRST2004 [20] sets of parton distribution functions. The corresponding cross sections ares =1.629±0.001nb,s =1.992±0.001nbands =1.954±0.003nb. Inthiscase LO NLO NNLO thetotalcrosssectionisdecreased byabout2%ingoingfromNLOtoNNLO. Figure2: Rapiditydistributionofanon-shellW+ bosonattheTevatron. TheNNLOresultobtainedwith theMSTW2008setarecomparedwiththoseobtainedwiththeJR09VFandABKM09sets. Wenext consider the production ofan on-shellW+ boson atthe Tevatron. InFig. 2weshow the rapidity distribution of theW+ atNNLO,computed by using the MSTW2008PDFs[18]. We also show, for comparison, the NNLO prediction by using the JR09VF [21] and ABKM09 [22] PDFs. Thecorresponding totalcrosssectionsares (MSTW)=1.349±0.002nb,s (JRVF)=1.338± NNLO NNLO 0.002nbands (ABKM)=1.391±0.002 nb. Thedifferences betweenthethreeresultscanbereach, NNLO inthecentralrapidityregion, thelevelofabout5%. We finally consider the production of a charged lepton plus missing p through the decay of T aW boson (W =W+,W−) at the Tevatron. The charged lepton is selected to have p >20 GeV T and |h |<2 and the missing p of the event is required to be larger than 25 GeV. The transverse T mass of the event is defined as m = 2pl pmiss(1−cosf ), where f is the angle between the T q T T the p of the lepton and the missing p . In Fig. 3 we show the transverse mass distribution at T T LO, NLO and NNLO: the accepted cross sections are s =1.161±0.001 nb, s =1.550± LO NLO 0.001nbands =1.586±0.002nb. SinceatLOtheW bosonisproducedwithzerotransverse NNLO momentum, the requirement pmiss > 25 GeV sets m ≥ 50 GeV. As a consequence at LO the T T transverse mass distribution has a kinematical boundary at m =50 GeV. Around this boundary T there are perturbative instabilities due to (integrable) logarithmic singularities [23]. We also note 4 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Figure3: TransversemassdistributionforW productionattheTevatron. that,belowtheboundary,theNNLOcorrectionstotheNLOresultarelarge. Thisisnotunexpected, sinceinthisregionoftransversemasses,theO(a )resultcorrespondstothecalculationatthefirst S perturbative order and, therefore, our O(a 2) result is actually only a calculation at the NLOlevel S ofperturbative accuracy. We have presented a fully exclusive NNLO QCD calculation for vector boson production in hadron-hadron collisions. Our calculation is directly implemented in a parton level event gener- ator. This feature makes it particularly suitable for practical applications to the computation of distributions intheformofbinhistograms. Forillustrative purpose, wehaveshownsomeselected numerical distributions attheTevatronandtheLHC. References [1] S.D.DrellandT.M.Yan,Phys.Rev.Lett.25(1970)316[Erratum-ibid.25(1970)902]. [2] R.Hamberg,W.L.vanNeervenandT.Matsuura,Nucl.Phys.B359(1991)343[Erratum-ibid.B644 (2002)403];R.V.HarlanderandW.B.Kilgore,Phys.Rev.Lett.88(2002)201801. [3] C.Anastasiou,L.J.Dixon,K.MelnikovandF.Petriello,Phys.Rev.D69(2004)094008. [4] K.MelnikovandF.Petriello,Phys.Rev.Lett.96(2006)231803,Phys.Rev.D74(2006)114017. [5] S.Catani,L.Cieri,G.Ferrera,D.deFlorianandM.Grazzini,Phys.Rev.Lett.103(2009)082001 [arXiv:0903.2120[hep-ph]]. [6] S.DittmaierandM.Kramer,Phys.Rev.D65(2002)073007;U.BaurandD.Wackeroth,Phys.Rev. D70(2004)073015;V.A.Zykunov,Phys.Atom.Nucl.69(2006)1522[Yad.Fiz.69(2006)1557]; 5 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera A.Arbuzovetal.,Eur.Phys.J.C46(2006)407[Erratum-ibid.C50(2007)505];C.M.Carloni Calame,G.Montagna,O.NicrosiniandA.Vicini,JHEP0612(2006)016. [7] U.Baur,O.Brein,W.Hollik,C.SchappacherandD.Wackeroth,Phys.Rev.D65(2002)033007;V. A.Zykunov,Phys.Rev.D75(2007)073019;C.M.CarloniCalame,G.Montagna,O.Nicrosiniand A.Vicini,JHEP0710(2007)109;A.Arbuzovetal.,Eur.Phys.J.C54(2008)451. [8] C.Anastasiou,K.MelnikovandF.Petriello,Phys.Rev.D69(2004)076010. [9] C.Anastasiou,K.MelnikovandF.Petriello,Phys.Rev.Lett.93(2004)262002,Nucl.Phys.B724 (2005)197;C.Anastasiou,G.DissertoriandF.Stockli,JHEP0709(2007)018. [10] S.CataniandM.Grazzini,Phys.Rev.Lett.98(2007)222002. [11] M.Grazzini,JHEP0802(2008)043. [12] W.T.Giele,E.W.N.GloverandD.A.Kosower,Nucl.Phys.B403(1993)633;J.Campbell,R.K. Ellis,MCFM-MonteCarloforFeMtobarnprocesses,http://mcfm.fnal.gov. [13] S.Frixione,Z.KunsztandA.Signer,Nucl.Phys.B467(1996)399;S.Frixione,Nucl.Phys.B507 (1997)295. [14] S.CataniandM.H.Seymour,Nucl.Phys.B485(1997)291[Erratum-ibid.B510(1997)503]. [15] G.Bozzi,S.Catani,D.deFlorianandM.Grazzini,Nucl.Phys.B737(2006)73, [16] D.deFlorianandM.Grazzini,Phys.Rev.Lett.85(2000)4678,Nucl.Phys.B616(2001)247. [17] C.Amsleretal.[ParticleDataGroup],Phys.Lett.B667(2008)1. [18] A.D.Martin,W.J.Stirling,R.S.ThorneandG.Watt,reportIPPP/08/190[arXiv:0901.0002]. [19] A.D.Martin,R.G.Roberts,W.J.StirlingandR.S.Thorne,Eur.Phys.J.C28(2003)455. [20] A.D.Martin,R.G.Roberts,W.J.StirlingandR.S.Thorne,Phys.Lett.B604(2004)61. [21] P.Jimenez-DelgadoandE.Reya,Phys.Rev.D79(2009)074023. [22] S.Alekhin,J.Blumlein,S.KleinandS.Moch,reportDESY09-102(arXiv:0908.2766[hep-ph]). [23] S.CataniandB.R.Webber,JHEP9710(1997)005. 6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.