0 NNLO QCD correction to vector boson production at 1 0 hadron colliders 2 n a J 2 2 ] GiancarloFerrera∗ h p DipartimentodiFisica,UniversitàdiFirenzeandI.N.F.N.SezionediFirenze - I-50019SestoFiorentino,Florence,Italy p e E-mail: [email protected] h [ We presenta fully-exclusivenext-to-next-to-leadingorder(NNLO) QCD calculation for vector 1 v bosonproductioninhadron-hadroncollisions. Thecalculationisimplementedina partonlevel 8 MonteCarloprogram,whichincludesg −Z interference,finite-widtheffects,theleptonicdecay 6 9 ofthevectorbosonsandthecorrespondingspincorrelations. Thecodeallowstheusertoapply 3 arbitrary(thoughinfraredsafe)kinematicalcutsonthefinal-statesandtocomputedistributions . 1 in the formof bin histograms. We show some illustrativenumericalresultsatthe Tevatronand 0 0 theLHC. 1 : v i X r a RADCOR2009-9thInternationalSymposiumonRadiativeCorrections(ApplicationsofQuantumField TheorytoPhenomenology), October25-302009 Ascona,Switzerland ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Vectorboson production inhadron collisions, thewellknownDrell-Yan(DY)process[1],has aspecial roleforphysics studies athadron colliders. Havinglarge production rateswithrelatively simple experimental signatures, this process is important for detectors calibration, it gives strin- gent informations on Parton Distribution Functions (PDFs), is a strong test for perturbative QCD predictions andmaysignals effectsfromphysicsbeyondtheStandardModel. Itisthereforeessentialtohaveaccuratetheoreticalpredictionsforthevector-bosonproduction crosssectionsandrelateddistributions,whicharepredictedbyperturbativeQCDasanexpansionin the strong coupling a . The next-to-next-to-leading order (NNLO)QCDcorrections (i.e. O(a 2)) S S have been calculated analytically for the total cross section [2] and the rapidity distribution of the vector boson [3]. The fully exclusive NNLOcalculation has also been performed [4, 5]. Further- more,electroweakcorrectionsuptoO(a )havebeencomputedforbothW [6]andZproduction[7]. Thecomputation ofhigher-order QCDcorrections tohard-scattering processes isahardtask. Difficultiesarisefromthepresenceofinfraredsingularitiesatintermediatestagesofthecalculation thatpreventastraightforward implementationofnumericaltechniques. Fortheabovereason,fully exclusive cross-sections in hadron collisions have been computed so far only for Higgs boson production [8,9,10,11]andtheDrell–Yanprocess[4,5]. In this contribution we present a recent fully exclusive NNLO QCD calculation for vector bosonproductioninhadroncollisions[5]. ThecalculationusestheNNLOextensionofsubtraction formalism introduced inRef.[10]. Themethodisvalid ingeneral fortheproduction ofcolourless high-mass systemsinhadroncollisions. Weconsider thehard-scattering process: h +h →V(q)+X, (1) 1 2 where the colliding hadrons h and h produce the vector bosonV (V =Z/g ∗,W+ orW−), with 1 2 four-momentum qandhighinvariant mass q2,plusaninclusive finalstateX. p FollowingRef.[10],weobservethat,atLO,thetransversemomentumq ofV isexactlyzero. T Thismeansthat,aslongasq 6=0,the(N)NLOcontributionsaregivenbythe(N)LOcontributions T tothefinalstateV + jet(s)[12]: dsˆV | = dsˆV+jets . (2) (N)NLO qT6=0 (N)LO We compute dsˆV+jets by using the subtraction method at NLO [13, 14] and we treat the remain- NLO ing NNLO singularities at q = 0 by the additional subtraction of an universal 1 counter-term T dsˆCT constructed by exploiting the universality of the logarithmically-enhanced contributions (N)LO tothetransverse momentumdistribution 2. Schematically wehave dsˆV =HV ⊗dsˆV + dsˆV+jets−dsˆCT , (3) (N)NLO (N)NLO LO h (N)LO (N)LOi whereHV isaprocess-dependent coefficientfunctionnecessarytoreproducethecorrectnor- (N)NLO malization [16,5]. 1Itdependsonlyontheflavouroftheinitial-statepartonsinvolvedintheLOpartonicsubprocess. 2Fortheexplicitformofthecounter-termseeRefs.[10,15]. 2 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Wehaveencoded ourNNLOcomputation inapartonlevelMonteCarloeventgenerator. The calculation includes finite-width effects, the g −Z interference, the leptonic decay of the vector bosonsandthecorresponding spincorrelations. Ournumericalcodeisparticularly suitable forthe computation ofdistributions intheformofbinhistograms. Inthe following wepresent someillustrative numerical results for Z andW production atthe Tevatron and the LHC. We consider u,d,s,c,b quarks in the initial state. In the case ofW± pro- duction, we use the (unitarity constrained) CKM matrix elements V = 0.97419, V = 0.2257, ud us V = 0.00359, V = 0.2256, V = 0.97334, V = 0.0415 from the PDG 2008 [17]. We use ub cd cs cb the so called Gm scheme for the electroweak couplings, with the following input parameters: G = 1.16637×10−5 GeV−2, m = 91.1876 GeV, G = 2.4952 GeV, m = 80.398 GeV and F Z Z W G =2.141 GeV. As for the PDFs, we use MSTW2008 [18] as default set, evaluating a at each W S corresponding order(i.e., weuse(n+1)-loop a atNnLO,withn=0,1,2). Wefixtherenormal- S ization (m )andfactorization (m )scalestothemassofthevectorbosonm . R F V Figure1: Rapiditydistributionofanon-shellZ bosonattheLHC. ResultsobtainedwiththeMSTW2008 set(leftpanel)arecomparedwiththoseobtainedwiththeMRST2004set(rightpanel). Westart the presentation of our results by considering the inclusive production ofe+e− pairs from the decay of an on-shell Z boson at the LHC. In the left panel of Fig. 1 we show the ra- pidity distribution of the e+e− pair at LO, NLO and NNLO, computed by using the MSTW2008 PDFs[18]. Thecorrespondingcrosssectionsares =1.761±0.001nb,s =2.030±0.001nb LO NLO ands =2.089±0.003nb. Thetotalcrosssectionisincreasedbyabout3%ingoingfromNLO NNLO to NNLO. In the right panel of Fig. 1 we show the results obtained by using the MRST2002 LO 3 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera [19] and MRST2004 [20] sets of parton distribution functions. The corresponding cross sections ares =1.629±0.001nb,s =1.992±0.001nbands =1.954±0.003nb. Inthiscase LO NLO NNLO thetotalcrosssectionisdecreased byabout2%ingoingfromNLOtoNNLO. Figure2: Rapiditydistributionofanon-shellW+ bosonattheTevatron. TheNNLOresultobtainedwith theMSTW2008setarecomparedwiththoseobtainedwiththeJR09VFandABKM09sets. Wenext consider the production ofan on-shellW+ boson atthe Tevatron. InFig. 2weshow the rapidity distribution of theW+ atNNLO,computed by using the MSTW2008PDFs[18]. We also show, for comparison, the NNLO prediction by using the JR09VF [21] and ABKM09 [22] PDFs. Thecorresponding totalcrosssectionsares (MSTW)=1.349±0.002nb,s (JRVF)=1.338± NNLO NNLO 0.002nbands (ABKM)=1.391±0.002 nb. Thedifferences betweenthethreeresultscanbereach, NNLO inthecentralrapidityregion, thelevelofabout5%. We finally consider the production of a charged lepton plus missing p through the decay of T aW boson (W =W+,W−) at the Tevatron. The charged lepton is selected to have p >20 GeV T and |h |<2 and the missing p of the event is required to be larger than 25 GeV. The transverse T mass of the event is defined as m = 2pl pmiss(1−cosf ), where f is the angle between the T q T T the p of the lepton and the missing p . In Fig. 3 we show the transverse mass distribution at T T LO, NLO and NNLO: the accepted cross sections are s =1.161±0.001 nb, s =1.550± LO NLO 0.001nbands =1.586±0.002nb. SinceatLOtheW bosonisproducedwithzerotransverse NNLO momentum, the requirement pmiss > 25 GeV sets m ≥ 50 GeV. As a consequence at LO the T T transverse mass distribution has a kinematical boundary at m =50 GeV. Around this boundary T there are perturbative instabilities due to (integrable) logarithmic singularities [23]. We also note 4 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera Figure3: TransversemassdistributionforW productionattheTevatron. that,belowtheboundary,theNNLOcorrectionstotheNLOresultarelarge. Thisisnotunexpected, sinceinthisregionoftransversemasses,theO(a )resultcorrespondstothecalculationatthefirst S perturbative order and, therefore, our O(a 2) result is actually only a calculation at the NLOlevel S ofperturbative accuracy. We have presented a fully exclusive NNLO QCD calculation for vector boson production in hadron-hadron collisions. Our calculation is directly implemented in a parton level event gener- ator. This feature makes it particularly suitable for practical applications to the computation of distributions intheformofbinhistograms. Forillustrative purpose, wehaveshownsomeselected numerical distributions attheTevatronandtheLHC. References [1] S.D.DrellandT.M.Yan,Phys.Rev.Lett.25(1970)316[Erratum-ibid.25(1970)902]. [2] R.Hamberg,W.L.vanNeervenandT.Matsuura,Nucl.Phys.B359(1991)343[Erratum-ibid.B644 (2002)403];R.V.HarlanderandW.B.Kilgore,Phys.Rev.Lett.88(2002)201801. [3] C.Anastasiou,L.J.Dixon,K.MelnikovandF.Petriello,Phys.Rev.D69(2004)094008. [4] K.MelnikovandF.Petriello,Phys.Rev.Lett.96(2006)231803,Phys.Rev.D74(2006)114017. [5] S.Catani,L.Cieri,G.Ferrera,D.deFlorianandM.Grazzini,Phys.Rev.Lett.103(2009)082001 [arXiv:0903.2120[hep-ph]]. [6] S.DittmaierandM.Kramer,Phys.Rev.D65(2002)073007;U.BaurandD.Wackeroth,Phys.Rev. D70(2004)073015;V.A.Zykunov,Phys.Atom.Nucl.69(2006)1522[Yad.Fiz.69(2006)1557]; 5 NNLOQCDcorrectiontovectorbosonproductionathadroncolliders GiancarloFerrera A.Arbuzovetal.,Eur.Phys.J.C46(2006)407[Erratum-ibid.C50(2007)505];C.M.Carloni Calame,G.Montagna,O.NicrosiniandA.Vicini,JHEP0612(2006)016. [7] U.Baur,O.Brein,W.Hollik,C.SchappacherandD.Wackeroth,Phys.Rev.D65(2002)033007;V. A.Zykunov,Phys.Rev.D75(2007)073019;C.M.CarloniCalame,G.Montagna,O.Nicrosiniand A.Vicini,JHEP0710(2007)109;A.Arbuzovetal.,Eur.Phys.J.C54(2008)451. [8] C.Anastasiou,K.MelnikovandF.Petriello,Phys.Rev.D69(2004)076010. [9] C.Anastasiou,K.MelnikovandF.Petriello,Phys.Rev.Lett.93(2004)262002,Nucl.Phys.B724 (2005)197;C.Anastasiou,G.DissertoriandF.Stockli,JHEP0709(2007)018. [10] S.CataniandM.Grazzini,Phys.Rev.Lett.98(2007)222002. [11] M.Grazzini,JHEP0802(2008)043. [12] W.T.Giele,E.W.N.GloverandD.A.Kosower,Nucl.Phys.B403(1993)633;J.Campbell,R.K. Ellis,MCFM-MonteCarloforFeMtobarnprocesses,http://mcfm.fnal.gov. [13] S.Frixione,Z.KunsztandA.Signer,Nucl.Phys.B467(1996)399;S.Frixione,Nucl.Phys.B507 (1997)295. [14] S.CataniandM.H.Seymour,Nucl.Phys.B485(1997)291[Erratum-ibid.B510(1997)503]. [15] G.Bozzi,S.Catani,D.deFlorianandM.Grazzini,Nucl.Phys.B737(2006)73, [16] D.deFlorianandM.Grazzini,Phys.Rev.Lett.85(2000)4678,Nucl.Phys.B616(2001)247. [17] C.Amsleretal.[ParticleDataGroup],Phys.Lett.B667(2008)1. [18] A.D.Martin,W.J.Stirling,R.S.ThorneandG.Watt,reportIPPP/08/190[arXiv:0901.0002]. [19] A.D.Martin,R.G.Roberts,W.J.StirlingandR.S.Thorne,Eur.Phys.J.C28(2003)455. [20] A.D.Martin,R.G.Roberts,W.J.StirlingandR.S.Thorne,Phys.Lett.B604(2004)61. [21] P.Jimenez-DelgadoandE.Reya,Phys.Rev.D79(2009)074023. [22] S.Alekhin,J.Blumlein,S.KleinandS.Moch,reportDESY09-102(arXiv:0908.2766[hep-ph]). [23] S.CataniandB.R.Webber,JHEP9710(1997)005. 6