ebook img

NMR of Biomolecules: Towards Mechanistic Systems Biology PDF

630 Pages·2012·19.155 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview NMR of Biomolecules: Towards Mechanistic Systems Biology

Editedby IvanoBertini, KathleenS.McGreevy, andGiacomoParigi NMRofBiomolecules Related Titles Keeler,J. Understanding NMR Spectroscopy 2010 ISBN:978-0-470-74608-0 de Graaf, R. In Vivo NMR Spectroscopy PrinciplesandTechniques 2007 ISBN:978-0-470-02670-0 Edited by Ivano Bertini, Kathleen S. McGreevy, and Giacomo Parigi NMR of Biomolecules Towards Mechanistic Systems Biology TheEditors LimitofLiability/DisclaimerofWarranty:Whilethe publisherandauthorhaveusedtheirbesteffortsin Prof.Dr.IvanoBertini preparingthisbook,theymakenorepresentationsor UniversityofFlorence warrantieswithrespecttotheaccuracyorcomplete- DepartmentofChemistryand nessofthecontentsofthisbookandspecifically MagneticResonanceCenter(CERM) disclaimanyimpliedwarrantiesofmerchantabilityor ViaL.Sacconi6 fitnessforaparticularpurpose.Nowarrantycanbe 50019SestoFiorentino createdorextendedbysalesrepresentativesorwritten Italy salesmaterials.TheAdviceandstrategiescontained hereinmaynotbesuitableforyoursituation.You KathleenS.McGreevy shouldconsultwithaprofessionalwhereappropriate. UniversityofFlorence Neitherthepublishernorauthorsshallbeliablefor DepartmentofChemistryand anylossofprofitoranyothercommercialdamages, MagneticResonanceCenter(CERM) includingbutnotlimitedtospecial,incidental,con- ViaL.Sacconi6 sequential,orotherdamages. 50019SestoFiorentino Italy LibraryofCongressCardNo.:appliedfor Prof.GiacomoParigi BritishLibraryCataloguing-in-PublicationData UniversityofFlorence Acataloguerecordforthisbookisavailablefromthe DepartmentofChemistryand BritishLibrary. MagneticResonanceCenter(CERM) ViaL.Sacconi6 Bibliographicinformationpublishedby 50019SestoFiorentino theDeutscheNationalbibliothek Italy TheDeutscheNationalbibliothekliststhispublica- tionintheDeutscheNationalbibliografie;detailed bibliographicdataareavailableontheInternetat http://dnb.d-nb.de. Cover (cid:2)2012Wiley-VCHVerlag&Co.KGaA,Boschstr.12, Theartworkonthecoverattemptstoconveytheidea 69469Weinheim,Germany ofthesystemsofinteractingbiomoleculesthatareat thebasisofLife. TheBirthofVenus,whichhasbeen Wiley-BlackwellisanimprintofJohnWiley&Sons, reimaginedforthecoverinthisspirit,waspaintedby formedbythemergerofWiley’sglobalScientific, SandroBotticelliinthelate15thcenturyandisheld Technical,andMedicalbusinesswithBlackwell bytheUffiziGalleryinFlorence.Hispaintingdepicts Publishing. thebirthofthegoddessofloveassheemergesasa fullygrownadultfromthesea. Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe AcordingtoPlato,aswellasmembersofthe reproducedinanyform–byphotoprinting, FlorentinePlatonicAcademy,Venushadtwoaspects: microfilm,oranyothermeans–nortransmittedor anearthlygoddesswhoarousedhumanstophysical translatedintoamachinelanguagewithoutwritten love,andaheavenlygoddessthatinspiredintellectual permissionfromthepublishers.Registerednames, love. Whobetterthanshetorepresentourpassion trademarks,etc.usedinthisbook,evenwhennot forthestudyofbiomolecularstructuresand specificallymarkedassuch,arenottobeconsidered mechanisms,andthephysical-intellectualdualitythat unprotectedbylaw. leadsustolearnmoreaboutthelivingworldaround andwithineachofus? ActuallyVenushasalready CoverDesign Adam-Design,Weinheim beenusedasthelogobytheSocietyofBiological Typesetting ThomsonDigital,Noida,India InorganicChemistryfortheJournalofBiological PrintingandBinding InorganicChemistry(JBIC). Printedin Printedonacid-freepaper PrintISBN: 978-3-527-32850-5 ePDFISBN: 978-3-527-64452-0 oBookISBN: 978-3-527-64450-6 ePubISBN: 978-3-527-64451-3 MobiISBN: 978-3-527-64453-7 j V Contents Preface XXI ListofContributors XXIII ListofAbbreviations XXIX PartOne Introduction 1 1 NMRanditsPlaceinMechanisticSystemsBiology 3 IvanoBertini,KathleenS.McGreevy,andGiacomoParigi 2 StructureofBiomolecules:Fundamentals 7 2.1 StructuralFeaturesofProteins 7 LuciaBanciandFrancescaCantini 2.1.1 Introduction:FromPrimarytoQuaternaryStructure 7 2.1.2 GeometricalandConformationalProperties 8 2.1.2.1 BackboneDihedralAngles 8 2.1.2.2 Side-ChainDihedralAngles 9 2.1.3 SecondaryStructureElementsinProteins 9 2.1.4 PredictionofSecondaryStructure 13 2.1.5 StructuralMotifsandStructuralDomains–CombinationofSecondaryStructuralElementsandStructuralMotifs 13 2.1.6 TypesofFoldsandtheirClassification 15 2.1.6.1 FoldsoftheaClass 15 2.1.6.2 FoldsinthebClass 16 2.1.6.3 Foldsinthea/bClass 17 2.1.6.4 Foldsinthea þ bClass 17 2.1.7 TertiaryStructure 18 2.1.8 QuaternaryStructure 19 2.2 NucleicAcids 21 MirkoCevec,HendrikR.A.Jonker,SenadaNozinovic,ChristianRichter,andHaraldSchwalbe 2.2.1 Introduction 21 2.2.1.1 Conformations 22 2.2.2 DNAStructure 24 2.2.2.1 B-DNAandDerivatives 24 2.2.2.2 A-DNA 25 2.2.2.3 Z-DNA 25 2.2.2.4 NonstandardDNAStructures 25 2.2.2.4.1 CircularDNA 25 2.2.2.4.2 HelicalJunction 26 2.2.2.4.3 TripleHelix 26 2.2.2.4.4 i-Motif 26 j VI Contents 2.2.2.4.5 QuadruplexDNA 26 2.2.3 RNAStructure 27 2.2.3.1 RegularRNAStructure–A-FormHelices 28 2.2.3.2 Mismatches,Bulges,andUnusualBasePairing 29 2.2.3.3 ReversalandAlterationofStrandDirection:Commonly ObservedLoopandTurnMotifs 29 2.2.3.3.1 U-Turn 29 2.2.3.3.2 K-Turn 29 2.2.3.3.3 C-Loop 29 2.2.3.3.4 E-Loop 30 2.2.3.4 TetraloopsandTetraloop–ReceptorContact 30 2.2.3.5 Higher-OrderRNATertiaryStructureElements: CoaxialStackingMotifs 31 2.2.3.6 DNA–RNAHybrids 31 3 WhatCanbeLearnedAbouttheStructureandDynamics ofBiomoleculesfromNMR 33 3.1 ProteinsStudiedbyNMR 33 LucioFerella,AntonioRosato,andPaolaTurano 3.1.1 WhyNMRStructures? 33 3.1.2 NMRBundle 37 3.1.3 ProteinDynamics 41 3.1.4 IntermolecularInteractionsInvolvingProteins 44 3.2 NucleicAcidsStudiedbyNMR 47 JanezPlavec 3.2.1 Structure,Mobility,andFunction 47 PartTwo RoleofNMRintheStudyoftheStructureandDynamics ofBiomolecules 51 4 DeterminationofProteinStructureandDynamics 53 LucioFerella,AntonioRosato,andPaolaTurano 4.1 DeterminationofProteinStructures 53 4.1.1 ResonanceAssignment 53 4.2 NMRRestraints 58 4.2.1 DistanceRestraints 58 4.2.2 DihedralAngles 59 4.2.3 ResidualDipolarCouplings 61 4.3 StructureCalculations 65 4.3.1 Traditional 65 4.3.2 AutomatedNOESYAssignment 69 4.3.3 EnergyRefinementofProteinStructures 70 4.3.4 ChemicalShift-BasedApproachesforProteinStructureDetermination 71 4.4 ValidationofProteinStructures 72 4.4.1 ExperimentalData 72 4.4.2 GeometricQuality 74 4.5 ProteinDynamicsandNMRObservables 76 4.5.1 NMRObservablesAffectedbyDynamics 76 4.5.2 NMRExperimentstoMeasureDynamicsandtheirInterpretation 78 4.6 Protocols 83 4.6.1 SampleLabeling 83 4.6.2 NMRAssignment 83 4.6.3 ManualCollectionofRestraints 86 4.6.4 StructureCalculations 87 4.6.5 StructureRefinement 89 j Contents VII 4.6.6 ChemicalShift-BasedStructureCalculations 90 4.6.7 StructureValidation 90 4.6.8 ProteinDynamics 91 4.7 Troubleshooting 92 4.7.1 DataCollection 92 4.7.2 StructureCalculations 93 FurtherReading 94 5 DNA 97 JanezPlavec 5.1 NMRSpectroscopyofDNA 97 5.2 AssessmentoftheFoldingTopology 99 5.3 ResonanceAssignmentthroughSequentialandInterstrand Interactions 100 5.4 PseudorotationofDeoxyribofuranoseRings 104 5.5 BackboneConformation 105 5.6 NaturalAbundanceNucleobaseSubstitutions 106 5.7 NaturalAbundanceHeteronuclearExperiments 106 5.8 Site-SpecificLowIsotopicEnrichment 107 5.9 TranslationalDiffusionCoefficients 107 5.10 DeterminationofThree-DimensionalStructure 107 5.11 SearchforTransientStructures 109 5.12 Protocols 110 5.12.1 SamplePreparationandInitialNMRExperiments 110 5.12.2 StoichiometricAnalysisthroughTranslationalDiffusion 111 5.12.3 SequentialAssignment 111 5.12.4 AssessmentofthePreferredSugarPucker 112 5.12.5 ConformationsalongtheBackbone 112 5.12.6 NucleobaseSubstitutionsandSite-SpecificLow13C/15N IsotopicEnrichment 112 5.12.7 TopologyandAtomic-DetailThree-DimensionalStructure Determination 113 5.13 ExampleExperimentsandTroubleshooting 114 FurtherReading 115 6 RNA 119 RichardS(cid:2)teflandVladim(cid:3)ırSklen(cid:3)a(cid:2)r 6.1 NMRSpectroscopyofRNA 119 6.2 PreparationofRNASamplesforNMR 120 6.2.1 InVitroTranscriptionUsingT7RNAPolymerase 120 6.2.2 InVivoRecombinantRNASynthesis 120 6.2.3 ChemicalSynthesis 120 6.2.4 SegmentalLabeling 121 6.3 ProbingoftheRNAFold 121 6.4 AssessmentoftheSpectralResolution 122 6.5 StrategyfortheResonanceAssignment 123 6.5.1 HydrogenBondFormationandBasePairIdentification 123 6.5.2 Through-Bond-TypeExperiments–BaseSpinSystemIdentification 124 6.5.3 Through-Bond-TypeExperiments–SugarSpinSystemIdentification 124 6.5.4 SequentialConnectivities 125 6.6 CollectionofStructuralInformation 126 6.6.1 CollectionofDistance-DependentStructuralRestraints 126 6.6.2 CollectionofTorsion-Angle-DependentStructuralRestraints 127 6.6.3 CollectionofLong-RangeStructuralRestraints 127 6.7 StructuralCalculationofRNA 128 6.8 AssessmentofQualityofNMRStructures 129 6.9 Protocols 129 j VIII Contents 6.9.1 Flowcharts 130 6.9.1.1 SamplePreparation 130 6.9.1.2 CollectionoftheExperimentalData 130 6.9.1.3 StructureCalculation 131 6.9.2 ProtocolforInVitroTranscriptionUsingBacteriophageT7RNA Polymerase 132 6.9.2.1 TemplateDesign 132 6.9.2.2 TranscriptionProtocol 133 6.9.2.3 PurificationofRNA 134 6.9.2.4 SimpleProtocolforBacteriophageT7RNAPolymerasePreparation 134 6.10 Troubleshooting 135 FurtherReading 135 7 IntrinsicallyDisorderedProteins 137 IsabellaC.Felli,RobertaPierattelli,andPeterTompa 7.1 IntrinsicallyDisorderedProteins 137 7.1.1 WhentheConceptwasFirstIntroduced 137 7.1.2 FunctionsandFunctionalAdvantagesAssociatedwithDisorder 138 7.2 ImportanceofNMRtoStudyIDPs 140 7.3 StructuralandDynamicInformationonIDPs–NMRObservables 141 7.3.1 ReducedChemicalShiftDispersionandSequence- SpecificAssignment 141 7.3.2 ChemicalShiftsandSecondaryStructuralPropensities 142 7.3.3 AdditionalObservablesandConformationalAveraging 143 7.3.4 ScalarCouplings 143 7.3.5 ResidualDipolarCouplings 143 7.3.6 SolventExposure 144 7.3.7 15NRelaxationandHeteronuclearNOEs 144 7.3.8 ParamagneticRelaxationRateEnhancements 145 7.3.9 Proton–ProtonNOEs 145 7.3.10 RelevanceofStructuralDisorderinInVivoandIn-CellStudiesofIDPs 146 7.4 Protocols 146 7.4.1 UseofBioinformaticToolsandDatabases 146 7.4.2 UseofNMRintheCharacterizationofIDPs 148 7.5 Troubleshooting 150 7.5.1 BioinformaticsCanHelp! 150 7.5.2 UnderstandingtheFunctionofUnfoldedProteinRegions 151 7.5.3 DoesInVitroReflectInVivoBehavior? 152 FurtherReading 152 8 ParamagneticMolecules 155 IvanoBertini,ClaudioLuchinat,andGiacomoParigi 8.1 Paramagnetism-AssistedNMR 155 8.2 ScalarandDipolarElectronSpin–NuclearSpinInteractions: HyperfineShift 157 8.2.1 ContactContributionstotheHyperfineShift 157 8.2.2 PseudocontactContributionstotheHyperfineShift 158 8.3 ScalarandDipolarElectronSpin–NuclearSpinInteractions:PRE 159 8.4 IndirectElectronSpin–NuclearSpinEffects: Paramagnetism-InducedRDCs 161 8.5 Cross-CorrelationBetweenCurieandDipolarRelaxation 162 8.6 “Good”MetalIonsand“Bad”MetalIons 163 8.7 Paramagnetism-BasedDrugDiscovery 164 8.8 Protocols 165 8.8.1 CollectingtheParamagnetism-BasedRestraints 165 8.8.2 ProtocolstoExtractStructuralInformationfromthePCS, PRDC,PREandPCCR 166 j Contents IX 8.8.3 ProtocolsforProtein–ProteinInteractions 167 8.8.4 ProtocolsfortheAnalysisofConformationalFreedom inTwo-DomainProteins 168 8.8.5 ExampleExperiment 169 8.9 Troubleshooting 169 8.9.1 TipsandTrickstoOptimizeSignalDetectioninParamagneticSystems 169 8.9.2 SelectionoftheParamagneticIon 170 8.9.3 SwitchingBetweenDiamagneticandParamagneticSystems 170 FurtherReading 170 PartThree RoleofNMRintheStudyoftheStructureandDynamics ofBiomolecularInteractions 173 9 NMRMethodologiesfortheAnalysisofProtein–ProteinInteractions 175 TobiasMadlandMichaelSattler 9.1 Introduction 175 9.2 DynamicsandLigandBinding 176 9.3 GeneralStrategy 177 9.4 OverviewofMethods 178 9.4.1 SamplePreparation 178 9.4.2 StructuresofDomains/Subunits 179 9.4.3 Interfaces 180 9.4.3.1 ChemicalShiftPerturbations(CSPs) 180 9.4.3.2 NOEs 180 9.4.3.3 Cross-Saturation 181 9.4.3.4 DifferentialLine-Broadening 181 9.4.3.5 HydrogenExchange 182 9.4.3.6 SolventPREs 182 9.4.4 Domain/SubunitOrientation 183 9.4.4.1 NMRRelaxationData 183 9.4.4.2 ResidualDipolarCouplings(RDCs) 184 9.4.4.3 ParamagneticRestraints 184 9.4.5 StructureCalculations 185 9.5 Outlook 186 9.6 ProtocolsfortheAnalysisofProteinComplexes 186 9.6.1 SpinLabelingandParamagneticTagging 186 9.6.2 StructuresoftheIndividualDomains/Subunits 188 9.6.3 OptimizingConditionsforStructuralStudiesoftheProteinComplex 189 9.6.4 DetectionofDynamics 189 9.6.5 DeterminingInteractionInterfacesUsingSolventPREs 189 9.6.6 StructureCalculationApproach 191 9.6.7 ExampleExperiment 193 9.7 Troubleshooting 194 FurtherReading 194 10 Metal-MediatedInteractions 197 SimoneCiofi-Baffoni 10.1 TheoreticalBackground 197 10.2 ProtocolfortheStructuralDeterminationofa Metal-MediatedComplex 200 10.2.1 OptimizationofExperimentalConditionstoObtainthe Protein–ProteinComplex 200 10.2.2 TitrationstoMapProtein–ProteinInterfacesandObtain BindingCharacteristics 201 10.2.3 Modeling 201 10.2.4 DefinitionofMetalCoordination 201 10.2.5 DeterminationofThree-DimensionalStructure 202 j X Contents 10.3 ExampleExperiment 202 10.4 Troubleshooting 202 FurtherReading 203 11 Protein–ParamagneticProteinInteractions 205 PeterH.J.Keizers,YoshitakaHiruma,andMarcellusUbbink 11.1 ParamagneticSourcesinProteinComplexes 205 11.2 TypesofNMRRestraintsObtainedfromParamagneticCenters 206 11.3 ProteinComplexes 207 11.3.1 StructuresofProteinComplexes 207 11.3.2 DynamicsinProteinComplexes 208 11.3.2.1 PlastocyaninandCytochromef 209 11.3.2.2 CytochromecandCytochromecPeroxidase 209 11.3.2.3 HistidinePhosphocarrierProteinandEnzymeI 209 11.3.2.4 AdrenodoxinandCytochromec 210 11.3.2.5 CalmodulinDomainDynamics 211 11.4 Protocols 211 11.4.1 ProteinTitrationstoObtaintheK andaBindingMap 211 d 11.4.2 ParamagneticTaggingandUseofParamagnetsinNMR 212 11.4.3 EnsembleModeling 214 11.5 ExampleExperiment 215 11.6 Troubleshooting 215 FurtherReading 217 12 Protein–RNAInteractions 219 VijayalaxmiManoharan,JoseManuelP(cid:3)erez-Can~adillas,andAndresRamos 12.1 Introduction 219 12.1.1 Post-TranscriptionalRegulationandRNARecognition Domains 219 12.1.2 Protein–RNAInterfaces 219 12.2 NMRMethodology 221 12.2.1 UsingNMRtoInvestigateProtein–RNAInteractions 221 12.2.2 MappingInteractionSites 222 12.2.2.1 ChemicalShiftPerturbation 222 12.2.2.2 Cross-Saturation 223 12.2.2.3 ParamagneticRelaxationEnhancement 224 12.2.3 AffinityandSpecificity 226 12.2.3.1 DeterminingDissociationConstants 226 12.2.3.2 DeterminingStoichiometry 226 12.2.3.3 Scaffold-IndependentAnalysis 227 12.2.4 High-ResolutionStructureDeterminationandDynamics 227 12.3 ProtocolsandTroubleshooting 228 12.3.1 PreparationofProtein–RNAComplexes 228 12.3.1.1 MaterialsandSamplePreparation 229 12.3.1.2 Troubleshooting 229 12.3.2 ProtocolandExampleExperiment1:CalculatingtheAffinityofa Protein–RNAInteraction 230 12.3.2.1 MaterialsandSamplePreparation 230 12.3.2.2 Troubleshooting 231 12.3.3 ProtocolandExampleExperiment2:ParamagneticLabeling 232 12.3.3.1 MaterialsandSamplePreparation 233 12.3.3.2 Troubleshooting 233 12.3.4 ProtocolandExampleExperiment3:SIA 234 12.3.4.1 MaterialsandSamplePreparation 234 12.3.4.2 Troubleshooting 235 FurtherReading 235

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.