ebook img

Nine Chapters on the Semigroup Art PDF

349 Pages·2015·1.564 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Nine Chapters on the Semigroup Art

Alan J. Cain Nine Chapters on the Semigroup Art Lecture notes for a tour through semigroups 2015 | Porto & Lisbon ©2012–15AlanJ.Cain ([email protected]) version0.62.2(2015/11/21) To download the most recent version, and files suitable for colour or greyscale printing, or for viewing on tablets and ebookreaders,visit www-groups.mcs.st-and.ac.uk/~alanc/pub/c_semigroups/ ThisworkislicensedundertheCreativeCommonsAttribu- tion–Non-Commercial–NoDerivs4.0InternationalLicence. Toviewacopyofthislicence,visit creativecommons.org/licenses/by-nc-nd/4.0/ orwriteto CreativeCommons 444CastroStreet,Suite916 MountainView California94041 UnitedStates Contents Preface vi Prerequisites ◆ Acknowledgements Chapter1|Elementarysemigrouptheory 1 Basicconceptsandexamples ◆ Generatorsandsubsemi- groups ◆ Binaryrelations ◆ Ordersandlattices ◆ Homo- morphisms ◆ Congruencesandquotients ◆ Generating equivalences and congruences ◆ Subdirect products ◆ Actions ◆ Cayleygraphs ◆ Exercises ◆ Notes Chapter2|Freesemigroups&presentations 44 Alphabetsandwords ◆ Universalproperty ◆ Propertiesof freesemigroups ◆ Semigrouppresentations ◆ Exercises ◆ Notes Chapter3|Structureofsemigroups 66 Green’s relations ◆ Simple and 0-simple semigroups ◆ D-classstructure◆InversesandD-classes◆Schützenberger groups ◆ Exercises ◆ Notes Chapter4|Regularsemigroups 89 Completely0-simplesemigroups ◆ Idealsandcompletely 0-simplesemigroups ◆ Completelysimplesemigroups ◆ Completelyregularsemigroups ◆ Leftandrightgroups ◆ Homomorphisms ◆ Exercises ◆ Notes • iii Chapter5|Inversesemigroups 114 Equivalentcharacterizations ◆ Vagner–Prestontheorem ◆ Thenaturalpartialorder ◆ Cliffordsemigroups ◆ Free inversesemigroups ◆ Exercises ◆ Notes Chapter6|Commutativesemigroups 150 Cancellative commutative semigroups ◆ Archimedean decomposition ◆ Freecommutativesemigroups ◆ Rédei’s theorem ◆ Exercises ◆ Notes Chapter7|Finitesemigroups 171 Green’srelationsandideals ◆ Semidirectandwreathprod- ucts ◆ Division ◆ Krohn–Rhodesdecompositiontheorem ◆ Exercises ◆ Notes Chapter8|Varieties&pseudovarieties 195 Varieties◆Pseudovarieties◆Pseudovarietiesofsemigroups andmonoids◆Freeobjectsforpseudovarieties◆Projective limits ◆ Pro-Vsemigroups ◆ Pseudoidentities ◆ Semidirect productsofpseudovarieties ◆ Exercises ◆ Notes Chapter9|Automata&finitesemigroups 230 Finiteautomataandrationallanguages ◆ Syntacticsem- igroups and monoids ◆ Eilenberg correspondence ◆ Schützenberger’stheorem ◆ Exercises ◆ Notes Solutionstoexercises 264 Bibliography 326 Index 332 • iv List of Tables Table8.1 Varietiesofsemigroups 204 Table8.2 Varietiesofmonoids 204 Table8.3 Varietiesofsemigroupswithaunaryoperation−1 205 Table8.4 S-pseudovarietiesofsemigroups 222 Table8.5 M-pseudovarietiesofmonoids 223 Table9.3 Varietiesofrational∗-languages 251 Table9.4 Varietiesofrational+-languages 252 • • v Preface ‘Aprefaceisfrequentlyasuperior compositiontotheworkitself…’ —IsaacD’Israeli, ‘Prefaces’.In:CuriositiesofLiterature. • Thiscourse is a tour through selected areasof semi- grouptheory.Thereareessentiallythreeparts: ◆ Chapters1–3studygeneralsemigroups,includingpresentationsfor semigroupsandbasicstructuretheory. ◆ Chapters4–6examinespecialclasses:namelyregular,inverse,and commutativesemigroups. ◆ Chapters7–9studyfinitesemigroups,theirclassificationusingpseu- dovarieties,andconnectionswiththetheoryofautomataandregular languages. Thecourseisbroadratherthandeep.Itisnot intendedtobecomprehens- ive:itdoesnottrytostudy(forinstance)structuretheoryasdeeplyas Howie,FundamentalsofSemigroupTheory,pseudovarietiesasdeeplyas Almeida,FiniteSemigroupsandUniversalAlgebra,orlanguagesasdeeply asPin,VarietiesofFormalLanguages;rather,itsampleshighlightsfrom eacharea.Itshouldbeemphasizedthatthereisverylittlethatisoriginal in this course. It is heavily based on the treatments in these and other standardtextbooks,asthebibliographicnotesineachchaptermakeclear. The main novelty is in the selection and arrangement of material, the slightlyslowerpace,andthegeneralpolicyofavoidingleavingproofsto thereaderwhenthecorrespondingresultsarerequiredforlaterproofs. Preface • vi FigureP.1showsthedependenciesbetweenthechapters.Attheend of each chapter, there are a number of exercises, intended to reinforce concepts introduced in the chapter, and also to explore some related topicsthatarenotcoveredinthemaintext.Themostimportantexercises are marked with a star ✴ . Solutions are supplied for all exercises. At theendofeachchapterarebibliographicnotes,whichgivesourcesand suggestionsforfurtherreading. Warningsagainstpotentialmisunderstandingsaremarked(likethis) witha‘dangerousbend’symbol,asperBourbakiorKnuth. Importantobservationsthatarenotpotentialmisunderstandingsperse aremarkedwithan‘exclamation’symbol(likethis). Thiscoursewasoriginallydeliveredtomaster’sstudentsattheUni- versitiesofPortoandSantiagodeCompostella.Thecoursewascovered during 56 hours of classes, which included lectures and discussions of theexercises.Revisionshaveincreasedthelengthofthenotes,andabout 70hoursofclasstimewouldnowberequiredtocoverthemfully. Thesenoteswereheavilyrevisedin2013–15.Mostofthemaintextis nowstable,butChapter8willbefurtherrevised,andfurtherexercises willbeadded.Theauthorwelcomesanycorrections,observations,or constructivecriticisms;pleasesendthemtotheemailaddressonthe copyrightpage.Atpresent,theindexislimitedtonamesand‘named results’only. Prerequisites Therearefewformalprerequisites:generalmathematical maturityisthemainone.Anunderstandingofthemostbasicconcepts fromelementarygrouptheoryisassumed,suchasthedefinitionofgroups, cosets,andfactorgroups.Someknowledgeoflinearalgebrawillhelpwith understanding certain examples, but is not vital. For Chapters 1 and 5, knowledgeofthebasicdefinitionsofgraphtheoryisassumed.Somebasic topologyisnecessarytoappreciatepartofChapter8fully(althoughmost Prerequisites • vii ofthechaptercanbeunderstoodwithoutit,andtherelevantsectionscan simplybeskipped),andsomebackgroundinuniversalalgebraisuseful, butnotessential.ForChapter9,someexperiencewithformallanguage theoryandautomataisuseful,butagainnotessential. Acknowledgements AttilaEgri-Nagymadevaluablesuggestionsandindicated variouserrors.SomeexercisesweresuggestedbyVictorMaltcev.Nick Ham pointed out a typo. Many improvements are due to the students whotookthefirstversionofthiscourse:MiguelCouto,XabierGarcía, andJorgeSoares.Theimperfectionsthatremainaremyresponsibility. Thetitlealludesto九章算術,NineChaptersontheMathematicalArt. A. J. C. • Acknowledgements • viii Chapter 1 Elementary semigroup theory Chapter 2 Free semigroups & presentations Chapter 3 Structure of semigroups Chapter 4 Regular semigroups Chapter 5 Inverse semigroups Chapter 6 Commutative semigroups Chapter 7 Finite semigroups Chapter 8 Varieties & pseudovarieties Chapter 9 Automata & finite semigroups FIGUREP.1 Chartofthedependenciesbetweenthechapters.Dottedarrowsindicatethat thedependencyisonlyintheexercises,notinthemaintext. Acknowledgements • ix 1 Elementary semigroup theory ‘Iusetheword“elementary”inthesense inwhichprofessionalmathematiciansuseit…’ —G.H.Hardy, AMathematician’sApology,§21. •Abinaryoperation∘onaset𝑆isamap∘ ∶ 𝑆×𝑆 → 𝑆. This operation is associative if 𝑥 ∘ (𝑦 ∘ 𝑧) = (𝑥 ∘ 𝑦) ∘ 𝑧 for all elements 𝑥,𝑦,𝑧 ∈ 𝑆.Asemigroupisanon-emptysetequippedwithanassociative binaryoperation. Semigroups are therefore one of the most basic types of algebraic structure.Wecouldweakenthedefinitionfurtherbyremovingtheas- sociativityconditionandrequiringonlyabinaryoperationonaset.A structurethatsatisfiesthisweakerconditioniscalledamagmaorgroup- oid.(These‘groupoids’aredifferentfromthecategory-theoreticnotionof groupoid.) Ontheotherhand,wecanstrengthenthedefinitionbyrequiringan identityandinverses.Structuressatisfyingthisstrongerconditionareof coursegroups.However,therearemanymoresemigroupsthangroups. Forinstance,thereare5essentiallydifferentgroupswith8elements(the cyclicgroup𝐶 ,thedirectproducts𝐶 ×𝐶 and𝐶 ×𝐶 ×𝐶 ,thedihed- 8 4 2 2 2 2 ralgroup𝐷 ,andthequaterniongroup𝑄 ),butthereare3684030417 4 8 different(non-isomorphic)semigroupswith8elements. Elementarysemigrouptheory • 1

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.