Next-to-leading order multi-leg processes for the Large Hadron Collider 8 0 0 2 ThomasBinoth∗, ThomasReiter† n SchoolofPhysics,TheUniversityofEdinburgh,EdinburghEH93JZ,UK. a J E-mail: [email protected],[email protected] 0 1 JeppeR. Andersen CERN,CH-1211Geneva,Switzerland. ] h E-mail: [email protected] p - GudrunHeinrich,JenniferM. Smillie p e IPPP,UniversityofDurham,DurhamDH13LE,UK. h E-mail: [email protected],[email protected] [ Jean-PhilippeGuillet,GregorySanguinetti 1 v LAPTH,9,ChemindeBellevueBP110,74941AnnecyleVieux,France. 6 E-mail: [email protected],[email protected] 1 6 Stefan Karg 1 . InstituteforTheoreticalPhysicsE,RWTHAachen,D-52056Aachen,Germany. 1 0 E-mail: [email protected] 8 0 NikolasKauer : InstituteforTheoreticalPhysics,UniversityofWürzburg,D-97074Würzburg,Germany. v i E-mail: [email protected] X r a In this talk we discuss recent progress concerning precise predictions for the LHC. We give a statusreportofthreeapplicationsofourmethodtodealwithmulti-legone-loopamplitudes:The interferenceterm ofHiggsproductionbygluon-andweak bosonfusionto orderO(a 2a 3) and s thenext-to-leadingordercorrectionstothetwoprocesses pp→ZZjetanduu¯→dd¯ss¯. Thelatter isasubprocessofthefourjetcrosssectionattheLHC. 8thInternationalSymposiumonRadiativeCorrections(RADCOR) October1-52007 Florence,Italy ∗Speaker. †ThisworkwassupportedbytheBritishScienceandTechnologyFacilitiesCouncil(STFC),theScottishUniversi- tiesPhysicsAlliance(SUPA)andtheDeutscheForschungsgemeinschaft(DFG,BI-1050/1). (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NLOprocessesforLHC ThomasBinoth 1. Introduction The Large Hadron Collider (LHC) at CERN will probe our understanding of electroweak symmetry breaking and explore physics in the TeV region. A detailed theoretical knowledge of various kinds ofStandard Model backgrounds isindispensable forthese studies. Especially inthe startup-phase whenitisnecessary tocalibrate detectors usingmulti-jetsignatures, preferably with identifiable leptons, Standard Model processes will play an important role. Precise predictions forsuchmulti-partonic crosssections areonlypossible byincluding higher ordercorrections such that renormalisation andfactorisation scale dependencies aretamed. While corrections atnext-to- leadingorderinthestrongcouplingconstanta areknowntobasicallyallrelevant2→2processes, s the situation for 2→N processes whith N ≥3 is less satisfactory, although tremendous progress hasbeenmadeinthelastfewyears. For2→3processes,variousmethodshavebeenusedrecently to obtain NLOQCD predictions for multi-boson production pp→ZZZ,WWZ,HHH [1, 2, 3, 4], processes in the context of weak boson fusion, like pp→WW jj,WZjj [5, 6], pp→ Hjj with effectivegluon-Higgs couplings [7],gg→Hqq¯[8],and pp→tt¯j[9]. Manydifferenttechniquesareusedfortheevaluationofmulti-particleprocesses,asaresultof recent developments whichweretriggered bytheobservation thatthestandard Passarino-Veltman reductioningeneraldoesnotleadtonumericallystableamplituderepresentations forthereduction offive-pointintegrals. Apartfrom Feynmandiagrammatic approaches whichapplynewreduction techniques for some or all scalar and tensor integrals [10, 11, 12] the evaluation of one loop am- plitudes byextracting thecoefficientsofacertain basissetofscalarintegrals usingunitarity based methods[13]bothinalgebraic [14,15,16]andnumerical[17,18,19]variantshasseensubstantial progressrecently. PurelynumericalapproachesbasedonFeynmandiagrams,whichdonotuseany reduction to“basisintegrals” arealsoviable[1,20,21,22]. In [11] we have proposed a framework for the evaluation of one-loop multi-leg amplitudes, based on reduction formulas in Feynman parameter space [23, 24] in the context of dimensional regularisation. The reduction of rank R N-point to rank R-1 (N-1)-point integrals can be obtained algebraically forN >5. ForN ≤5weprovide form factor representations whichareexpressed in termsof3-and4-pointscalarintegralswithFeynmanparametersinthenumerator. Thedimension- alityoftheboxfunctionsissuchthatallIRdivergences,i.e. polesin1/(n−4),areisolatedintothe triangle functions. Forall IRdivergent triangle functions explicit representations can beobtained. WehavecodedallformulasuptoN=6formasslessinternalkinematicsintoaFORTRAN90code, called golem90 [32]. The code allows to switch between a semi-numerical and completely nu- mericalevaluationofthebasisfunctions. Thelatterispreferableinexceptionalphasespaceregions where certain basis integrals canbecome linearly dependent. Inthiswaytheproblems ofinstabil- ities due to inverse Gram determinants can be tamed. Optionally, our reduction formalism also allowsareductiontoascalarintegralbasisof1-,2-,3-pointfunctionsinndimensionsand4-point functionsinn+2dimensions,denotedbyIn,In,In In+2. Thisfullyalgebraicreductionistobeused 1 2 3 4 awayfromexceptional phasespacepoints, whereitisfastandreliable. In the following we will discuss three applications of our method relevant for LHC phe- nomenology. 2 NLOprocessesforLHC ThomasBinoth b] b] a150 a150 [jj [jj f f D/d100 D/d100 sd sd 50 50 0 u-u- 0 u-u+ -50 uu--dd-+ -50 Sum -100 -100 d-u- d-u+ d-d- -150 -150 d-d+ Sum -3 -2 -1 0 1 2 D3f -3 -2 -1 0 1 2 D3f jj jj Figure 1: The D f -distributionfor various flavour and helicity-configurations. The purple histogram la- jj belled “Sum” indicates the sum over the four contributionsshown. The sum over all flavour and helicity assignmentsincludingallseaflavoursisshownintheblackhistogram.WBFcutshavebeenused[27]. 2. Interference term for pp→Hjj atorder O(a 2a 3) s Weak boson fusion is one of the most promising discovery channels for the Higgs boson. As such it deserves a careful consideration of higher order effects. Very recently, the electroweak corrections, including a recalculation of QCD corrections have been evaluated in [25]. A Born levelinterference termbetween thegluon fusionandweakboson fusion isonlyallowedbycolour conservationifthein-andoutgoingquarksarecrossedinthet↔u-channel,whichiskinematically disfavoured. Such interference terms are included in the calculations of [26, 25]. However, the exchange of an extra gluon between the quark lines opens up a viable colour channel. We have obtained a fully analytic result of this one-loop interference term between gluon fusion and weak bosonfusion[27],andimplemented theevaluationinaflexibleC++MonteCarloprogramme. Figure 1 displays the contribution to the distribution in D f from the interference terms for jj various helicityandflavourconfigurations foraHiggsbosonmassof115GeV. NotethattheintegraloftheabsolutevalueoftheD f distribution, jj p ds dD f | | , Z−p jj dD f jj is a useful measure of the impact of the interference effect on the extraction of the ZZH-vertex. This integral evaluates to9.1 ab. Thetotal integral overthe absolute value of thefully differential cross section leads to 29.6 ab. We conclude that the interference term can be safely neglected in phenomenological studies, butthisneededtobechecked bydoingtheexplicitcalculation. 3. The virtual O(a ) corrections to pp→ZZj s During the Les Houches 2005 workshop the process pp→VV j was identified as one of the most important missing NLOcalculations [28]. Theprocess with acharged vector boson pair has beenevaluatedveryrecentlybytwoindependent groups[29,30]. TheevaluationforZZplusjetis stillmissing. Theprocessiscomposed ofthreepartonicreactions qq¯→ZZg, gq→ZZq, gq¯→ZZq¯, (3.1) 3 NLOprocessesforLHC ThomasBinoth 16 24 LO 2 LO 2 14 LO+virt 1.6 LO+virt 1.6 1.2 20 1.2 GeV] 1120 00..084 dσdLσOL+Ovirt GeV] 16 00..084 dσdLσOL+Ovirt b/ 200 300 400 b/ 0 50 100 [f 8 [f 12 Z Z dσ/dMZ 64 dσ/dpT, 8 4 2 0 0 150 200 250 300 350 400 0 20 40 60 80 100 MZZ[GeV] pT,Z[GeV] Figure2: ThefinitevirtualNLOcontributiontothehelicitycomponent−−+++ofthepartonicprocess qq¯→ZZg. TheinvariantmassoftheZpairisshownontheleftandthe p distributionontheright.Weuse T thecut p >20GeVandapartonandbeampipeseparationcutofq >1.50. T,jet ij Withourmethods wehaveobtained thevirtual order O(a )corrections forallhelicity amplitudes s of both processes. Using spinor helicity methods we have obtained analytical formulas for the coefficients of all basis scalar integrals. We work in dimensional regularisation and treat g by 5 applying the ’t Hooft-Veltman scheme. As an illustration we show the contribution of the virtual correction to some typical distributions. Only the contributions which are related to finite basis integrals areplotted. Forthefullresulttherealemissioncorrections remaintobeincluded [31]. 4. The amplitude uu¯→dd¯ss¯ Not a single NLO 2 → 4 process relevant for LHC phenomenology has been evaluated so far. As a test case for our reduction methods we have evaluated the 6-photon amplitude [15] and have compared our result with an evaluation using a fully numerical approach [21] and unitarity based methods[18,16]. Thesameset-upcanbeusedtoattack nowprocesses like pp→ jjjj and pp→bb¯bb¯ which are of relevance for background studies at the LHC. As an example we show the result of one colour factor of the finite virtual NLO contribution to the uu¯→dd¯ss¯amplitude in massless QCD. The calculation has been carried out using spinor helicity amplitudes in the ’t Hooft-Veltman scheme. We have chosen a convenient colour basis, which allows to split the amplitude asfollows 6 (cid:229) (cid:229) CiAl (p ,...,p ), (4.1) i 1 6 l i=1 l whereA arethehelicityandcoloursub-amplitudes. Inparticular wechosethecolourstructures c ~C=(d c2d c3d c5,d c2d c5d c3,d c5d c2d c3,d c5d c3d c2,d c3d c5d c2,d c3d c2d c5). (4.2) c1 c4 c6 c1 c4 c6 c1 c4 c6 c1 c4 c6 c1 c4 c6 c1 c4 c6 Inournotationl isthevector(l ,...,l ),andl =±1isthehelicityoftheparticlewithmomen- 1 6 j tum p ofwhichthecolourindexisc . Inthesix-quarkamplitudeonecanidentifytwoindependent j j helicity configurations, l a=(+,+,+,+,+,+)andl b=(+,+,+,+,−,−). We reduced the tensor integrals to form factors as outlined above (for more details see [11]), and deal with the spinor algebra by completing spinor lines to traces. The expressions for the 4 NLOprocessesforLHC ThomasBinoth 0.8 la lb 0.7 0.6 0.5 -3s aM| 0.4 | 0.3 0.2 0.1 00 p /2 p 3p /2 2p q Figure 3: Six-quark amplitude. The finite parts of the two helicity configurations s|Al a|a −3 (solid) and 1 s s|Al b|a −3 (dashed)areplottedforanarbitrarykinematicalpointwherethefinalstate momentahavebeen 1 s rotatedaboutthey-axisbyanangleq . diagrams are transformed into a Fortran90 program. The golem90 library is used for the numerical evaluation oftheformfactors. Thecodereturnsthesub-amplitudes intheform g6 1 A B Al (p ,...,p )= s + +C+O(e ) (4.3) i 1 6 4p 2 s (cid:18)e 2 e (cid:19) for each of the six colour structures and forall non-zero helicities, where A, BandC are complex coefficients. AsanexampleinFig.3weplottheamplitudes|Al |a −3forthecolourstructurec=1 c s and the two helicity configurations l a and l b. The initial state momenta have been fixed to be alignedwiththez-axiswhilethefinalstatemomentahavebeenrotatedaboutthey-axisbyanangle q . Forq =0themomentaarechosenasinRef.[21]. Inthechosenunitstherenormalisation scale is m =1. The amplitude has been evaluated at 50 successive points between q =0 and q =2p , whichtook2.4seconds perpointandhelicity onanIntelPentium4CPU(3.2GHz). 5. Conclusion The LHC demands next-to-leading order precision for many multi-particle processes. We havepresentedinthistalksomerecentresultsusingourone-loopreductionmethods,rangingfrom completely massless amplitudes to ones with several mass scales. The progress which has been madeinthelastyearsinthecontextofprecisionphenomenology bymanygroupsisgoodnewsfor theLHC.Manyrelevant predictions beyond leading order areorwillbecomeavailable inthenear future and there is a clear movement towards largely automated NLO tools as well as combining NLOamplitudes withpartonshowers. References [1] A.Lazopoulos,K.MelnikovandF.Petriello,Phys.Rev.D76(2007)014001 [arXiv:hep-ph/0703273]. [2] V.HankeleandD.Zeppenfeld,arXiv:0712.3544[hep-ph]. 5 NLOprocessesforLHC ThomasBinoth [3] T.PlehnandM.Rauch,Phys.Rev.D72(2005)053008[arXiv:hep-ph/0507321]. [4] T.Binoth,S.Karg,N.KauerandR.Ruckl,Phys.Rev.D74(2006)113008[arXiv:hep-ph/0608057]. [5] B.Jager,C.OleariandD.Zeppenfeld,JHEP0607(2006)015[arXiv:hep-ph/0603177]. [6] G.Bozzi,B.Jager,C.OleariandD.Zeppenfeld,Phys.Rev.D75(2007)073004 [arXiv:hep-ph/0701105]. [7] J.M.Campbell,R.K.EllisandG.Zanderighi,JHEP0610(2006)028[arXiv:hep-ph/0608194]. [8] M.M.Weber,Nucl.Phys.Proc.Suppl.160(2006)200. [9] S.Dittmaier,P.UwerandS.Weinzierl,Phys.Rev.Lett.98(2007)262002[arXiv:hep-ph/0703120]. [10] W.T.GieleandE.W.N.Glover,JHEP0404(2004)029[arXiv:hep-ph/0402152]. [11] T.Binoth,J.P.Guillet,G.Heinrich,E.PilonandC.Schubert,JHEP0510(2005)015 [arXiv:hep-ph/0504267]. [12] A.DennerandS.Dittmaier,Nucl.Phys.B734(2006)62[arXiv:hep-ph/0509141]. [13] Z.Bern,L.J.DixonandD.A.Kosower,AnnalsPhys.322(2007)1587[arXiv:0704.2798[hep-ph]]. [14] R.Britto,B.FengandP.Mastrolia,Phys.Rev.D73(2006)105004[arXiv:hep-ph/0602178]. [15] T.Binoth,G.Heinrich,T.GehrmannandP.Mastrolia,Phys.Lett.B649(2007)422 [arXiv:hep-ph/0703311]. [16] C.BernicotandJ.P.Guillet,arXiv:0711.4713[hep-ph]. [17] G.Ossola,C.G.PapadopoulosandR.Pittau,Nucl.Phys.B763(2007)147[arXiv:hep-ph/0609007]. [18] G.Ossola,C.G.PapadopoulosandR.Pittau,JHEP0707(2007)085[arXiv:0704.1271[hep-ph]]. [19] R.K.Ellis,W.T.GieleandZ.Kunszt,arXiv:0708.2398[hep-ph]. [20] C.Anastasiou,S.BeerliandA.Daleo,JHEP0705(2007)071[arXiv:hep-ph/0703282]. [21] Z.NagyandD.E.Soper,Phys.Rev.D74(2006)093006[arXiv:hep-ph/0610028]. [22] A.Ferroglia,M.Passera,G.PassarinoandS.Uccirati,Nucl.Phys.B650(2003)162 [arXiv:hep-ph/0209219]. [23] Z.Bern,L.J.DixonandD.A.Kosower,Nucl.Phys.B412(1994)751[arXiv:hep-ph/9306240]. [24] T.Binoth,J.P.GuilletandG.Heinrich,Nucl.Phys.B572(2000)361[arXiv:hep-ph/9911342]. [25] M.Ciccolini,A.DennerandS.Dittmaier,arXiv:0710.4749[hep-ph]. [26] J.R.AndersenandJ.M.Smillie,Phys.Rev.D75,037301(2007)[arXiv:hep-ph/0611281]. [27] J.R.Andersen,T.Binoth,G.HeinrichandJ.M.Smillie,arXiv:0709.3513[hep-ph]. [28] C.Buttaretal.,arXiv:hep-ph/0604120. [29] S.Dittmaier,S.KallweitandP.Uwer,arXiv:0710.1577[hep-ph]. [30] J.M.Campbell,R.K.EllisandG.Zanderighi,arXiv:0710.1832[hep-ph]. [31] T.Binoth,J.-Ph.Guillet,S.Karg,N.Kauer,G.Sanguinetti;inpreparation. [32] T.Binoth,J.-Ph.Guillet,G.Heinrich,T.Reiter;inpreparation. 6