ebook img

New Rounding Techniques for the Design and Analysis of Approximation Algorithms PDF

321 Pages·2014·1.76 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Rounding Techniques for the Design and Analysis of Approximation Algorithms

NEW ROUNDING TECHNIQUES FOR THE DESIGN AND ANALYSIS OF APPROXIMATION ALGORITHMS A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MANAGEMENT SCIENCE AND ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Shayan Oveis Gharan May 2014 Abstract We study two of the most central classical optimization problems, namely the Traveling Salesman problems and Graph Partitioning problems and develop new approximation algorithms for them. We introduce several new techniques for rounding a fractional solution of a continuous relaxation of theseproblemsintonearoptimalintegralsolutions. Thetwomostnotableofthosearethemaximum entropy rounding by sampling method and a novel use of higher eigenvectors of graphs. iv To my beloved wife, Farnaz, my mum, my dad, Sheida, Shahram, Shadi, Shahab and all members of my family. v Acknowledgements Foremost, I would like to express my deepest appreciation to my advisor, Amin Saberi, who intro- duced me to the field of computing. Amin thought me how to conduct academic research, how to write a mathematical paper and how to present my work effectively to others; the three skills that shaped my career. I would like to express my gratitude to Luca Trevisan who introduced me to the fieldofSpectralgraphtheory. Istartedworkingwith Lucaaftertakingacourseonthissubject and we have managed to advance this area in several directions since then. I would like to thank all my teachers at Stanford University for offering advanced courses that have helped me throughout my career. In particular, I would like to thank Persi Diaconis, Ashish Goel, Serge Plotkin, Tim Roughgarden, Ryan Williams and Yinyu Ye. In addition, a thank you to all my coauthors: Arash Asadpour, Michel Goemans, Tsz Chiu Kwok, Bundit Laekhanukit, Lap Chi Lau, James Lee, Yin Tat Lee, Russell Lyons, Aleksander Madry, Vahideh Manshadi, Vahab Mirrokni, Mohit Singh, Jan Vondrak and Morteza Zadimoghaddam; working with each one of them has been a tremendous learning experience. IamdeeplygratefultotheManagementScienceandEngineeringdepartment,StanfordSchoolof Engineering, Caroline Pease and Anne Schnoebele for supporting my graduate research during the past five years. Also, I gratefully acknowledge the National Science Foundation for their financial support. I have greatly benefited from the summer internships at IBM Almaden Research Center, Mi- crosoft Research, New England and Microsoft Research, Redmond. I want to thank my supervisors in those institutes for giving me the opportunity to work and network with researchers from all around the world. Last but not least, my special thanks goes to my wife, Farnaz, and everyone else in my family: my mum, my dad, Sheida, Shahram, Shadi and Shahab. They have supported me during this PhD by means that words cannot explain. vi Contents Abstract iv Acknowledgements vi 1 Introduction 2 1.1 New Approximation Algorithms to the Traveling Salesman Problem . . . . . . . . . 3 1.1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.1.2 Rounding by Sampling and Online Stochastic Matching Problem . . . . . . . 7 1.2 New Analysis of Spectral Graph Algorithms through Higher Eigenvalues . . . . . . . 11 1.2.1 Spectral Clustering Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.2.2 Spectral Graph Algorithms in Theory . . . . . . . . . . . . . . . . . . . . . . 13 1.2.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.2.4 An Upper Bound on Graph Diameter based on Laplacian Eigenvalues . . . . 19 I New Approximation Algorithms to the Traveling Salesman Problem 23 2 Background 24 2.1 The Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.2 Linear and Convex Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3 Matroids and Spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 Linear Programming Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.4.1 Integrality Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4.2 Integral Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 The Christofides’ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.6 Structure of Minimum Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.1 Properties of Minimum Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.2 The Cactus Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6.3 Properties of Tree Hierarchy and Cactus Representation . . . . . . . . . . . . 41 vii 2.7 Structure of Near Minimum Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.7.1 Structure of (1+η) near min cuts for small η . . . . . . . . . . . . . . . . . 44 2.7.2 Structure of α near minimum cuts for large α . . . . . . . . . . . . . . . . . . 47 2.8 Random Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 2.8.1 Sampling a λ-Random Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.8.2 Electrical Networks and λ-Random Trees . . . . . . . . . . . . . . . . . . . . 50 2.8.3 Negative Correlation and Concentration Inequalities. . . . . . . . . . . . . . . 52 2.8.4 λ-Random Trees and Determinantal Measures. . . . . . . . . . . . . . . . . . 53 2.9 Strongly Rayleigh Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 2.9.1 Operations defined on Strongly Rayleigh Measures . . . . . . . . . . . . . . . 55 2.9.2 Properties of Strongly Rayleigh Measures . . . . . . . . . . . . . . . . . . . . 56 2.9.3 Properties of Rank Function of Strongly Rayleigh Measures . . . . . . . . . . 58 3 New Machineries 63 3.1 Rounding by Sampling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.1.1 Maximum Entropy Rounding by Sampling Method . . . . . . . . . . . . . . . 66 3.1.2 Computation of Maximum Entropy Distribution . . . . . . . . . . . . . . . . 70 3.1.3 Other Methods for Rounding with Negative Correlation Property . . . . . . . 75 3.2 The Cactus-like Structure of Near Minimum Cuts. . . . . . . . . . . . . . . . . . . . 76 3.2.1 Cut Classes with Inside Atoms . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.2 Applications to TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.3 Locally Hamiltonian Property of Random Spanning Trees . . . . . . . . . . . . . . . 93 4 Asymmetric TSP 103 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.1.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2 Thin Trees and Asymmetric TSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.3 Construction of a Thin Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4.4 Tight Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5 Planar Asymmetric TSP 112 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.2 Constructing a thin-tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.3 Thin trees, Goddyn’s conjecture and ATSP . . . . . . . . . . . . . . . . . . . . . . . 116 5.3.1 Nowhere-zero flows and Jaeger’s conjecture . . . . . . . . . . . . . . . . . . . 118 6 Symmetric TSP 119 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.2 The Structure Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 viii 6.3 In Search of Good Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 6.4 Inside Good Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 6.5 Thread Good Edges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 6.5.1 Threads with non-proper Cut Classes . . . . . . . . . . . . . . . . . . . . . . 144 6.5.2 Threads with Proper Cut Classes . . . . . . . . . . . . . . . . . . . . . . . . . 147 II New Analysis of Spectral Graph Algorithms through Higher Eigen- values 151 7 Background 152 7.1 Spectral Graph Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 7.2 Laplacian Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 7.3 Cayley Graphs and Their Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 7.3.1 The Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.3.2 The Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 7.3.3 The Ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.3.4 The Hypercube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 7.4 Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.5 Gaussian Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 7.6 Eigenfunction Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.7 Expansion, Conductance and Sparsest Cut. . . . . . . . . . . . . . . . . . . . . . . . 172 7.7.1 Continuous Relaxations of Conductance . . . . . . . . . . . . . . . . . . . . . 175 7.7.2 Computability of Conductance . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.7.3 The Small Set Expansion Problem . . . . . . . . . . . . . . . . . . . . . . . . 177 7.8 Cheeger’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 7.8.1 Proof of the Cheeger’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 180 7.8.2 Tightness of Cheeger’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.9 Random Partitioning of Metric Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 183 8 New Machineries 187 8.1 Spectral Embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 8.2 Beyond log(n) dimensions, Johnson-Lindenstrauss to log(k) dimensional space. . . . 193 8.3 Improved Lower Bounds on Escape Probability . . . . . . . . . . . . . . . . . . . . . 198 8.3.1 Lower Bounds on Uniform Mixing Time of Random Walks . . . . . . . . . . 202 9 Universal Bounds on Laplacian Eigenvalues 205 9.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 9.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 ix 9.1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 9.2 Regular Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 9.3 General Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 9.4 Vertex-Transitive Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 9.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 10 Higher Order Cheeger’s Inequality 221 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 10.1.1 Finding many sets and small-set expansion . . . . . . . . . . . . . . . . . . . 223 10.1.2 Proof Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 10.1.3 A general algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 10.2 Localizing eigenfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 10.2.1 Smooth localization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 10.2.2 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 10.2.3 Random Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 10.2.4 Higher-order Cheeger inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 234 10.3 Gaps in the Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 10.4 A New Multiway Cheeger Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10.5 Noisy hypercubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 11 Improved Cheeger’s Inequality 244 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 11.1.1 Improvements on Applications of Cheeger’s Inequality . . . . . . . . . . . . . 245 11.1.2 More Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 11.1.3 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 11.2 Proof of the Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 11.2.1 Normalized Euclidean Distance Function. . . . . . . . . . . . . . . . . . . . . 250 11.2.2 Construction of Dense Well Separated Regions . . . . . . . . . . . . . . . . . 251 11.2.3 Lower Bounding the Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 11.2.4 Improved Cheeger’s Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 255 11.3 Extensions and Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 11.3.1 Spectral Multiway Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . 256 11.3.2 Balanced Separator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 12 Almost Optimal Local Graph Clustering 261 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 12.1.1 Almost Optimal Local Graph Clustering . . . . . . . . . . . . . . . . . . . . . 262 x 12.1.2 Approximating the Conductance Profile . . . . . . . . . . . . . . . . . . . . . 263 12.1.3 Approximating Balanced Separator . . . . . . . . . . . . . . . . . . . . . . . . 264 12.1.4 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 12.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 12.2.1 Evolving Set Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 12.2.2 The Volume-Biased Evolving Set Process . . . . . . . . . . . . . . . . . . . . 266 12.2.3 The Diaconis-Fill Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 12.3 Main Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 13 Partitioning into Expanders 274 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 13.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.1.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 13.1.3 Tightness of Existential Theorem . . . . . . . . . . . . . . . . . . . . . . . . 278 13.1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.1.5 Overview of the Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 13.1.6 Background on Higher Order Cheeger’s Inequality . . . . . . . . . . . . . . . 280 13.2 Proof of Existential Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 13.3 Proof of Algorithmic Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 13.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290 14 Open Problems 291 Bibliography 293 xi List of Figures 1.2.1Spectral Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.2.2An Application of Spectral Clustering in Image Segmentation . . . . . . . . . . . . . 16 2.4.1An Integrality Gap Example of Held-Karp Relaxation . . . . . . . . . . . . . . . . . 31 2.4.2An Example of an O-join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.5.3An Illustration of the output of Christofides’ 3/2 Approximation Algorithm for TSP 33 2.6.4An Example of Two Crossing Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6.5A Connected Family of Crossing Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.6.6The Cactus Representation of a Star Graph . . . . . . . . . . . . . . . . . . . . . . . 39 2.6.7An Example of a Tree Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.7.8A Family of near Minimum Cuts with an Inside Atom . . . . . . . . . . . . . . . . . 45 3.1.1A Fractional solution of the LP Relaxation of TSP as a Convex Combination of Spanning Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.1.2An Example of the Maximum Entropy Distribution of Spanning Trees . . . . . . . . 69 3.2.3Setting in the proof of Lemma 3.2.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.2.4An Example of a Chain of near Minimum Cuts . . . . . . . . . . . . . . . . . . . . . 82 3.2.5Setting in the Proof of Claim 3.2.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.2.6An Example of G(ψ(C)) for a Feasible solution of Held-Karp Relaxation . . . . . . . 90 3.2.7Each Edge of a Cycle of Lenght n is Contained in n−1 Minimum Cuts . . . . . . . 91 3.3.8An Example of a λ-random Spanning Tree distribution that is not Locally Hamiltonian 95 3.3.9An Example of a λ-random Spanning Tree Distribution µ where two vertices of Ex- pected 2 do not have even degree in T ∼µ with high Probability . . . . . . . . . . . 99 3.3.10Setting of Lemma 3.3.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.4.1A Tight Example for Theorem 4.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.1AsetU hasanoddnumberofodddegreeverticesofaSpanningTreeT,iff|T∩δ(U)| is odd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.2.2An Example of a Graph with no Good Edge . . . . . . . . . . . . . . . . . . . . . . . 125 xii

Description:
THE DESIGN AND ANALYSIS OF APPROXIMATION ALGORITHMS. A DISSERTATION. SUBMITTED TO THE DEPARTMENT OF MANAGEMENT.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.