ebook img

New Results on the 3-Loop Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering PDF

0.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Results on the 3-Loop Heavy Flavor Wilson Coefficients in Deep-Inelastic Scattering

DESY12-247,DO-TH12/39,SFB/CPP12-104,LPN12-141, arXiv:1212.5950[hep-ph] 3 New Results on the 3-Loop Heavy Flavor Wilson 1 0 Coefficients in Deep-Inelastic Scattering 2 n a J 2 ] h JakobAblingera, JohannesBlümleinb,Abilio DeFreitas∗b, AlexanderHassel- p - huhna,b,SebastianKleinc,CarstenSchneidera,FabianWißbrockb p e a ResearchInstituteforSymbolicComputation(RISC)JohannesKeplerUniversity, h Altenbergerstraße69,A-4040Linz,Austria [ b DeutschesElektronen-Synchrotron,DESY,Platanenalle6,D-15738Zeuthen,Germany. 2 cInstitutfürTheoretischePhysikE,RWTHAachenUniversity,D-52056Aachen,Germany. v 0 5 9 We report on recent results obtained for the 3-loop heavy flavor Wilson coefficients in deep- 5 . inelasticscattering(DIS)atgeneralvaluesoftheMellinvariableN atlargerscalesofQ2. These 2 1 concerncontributionstothegluonicladder-topologies,thetransitionmatrixelementsinthevari- 2 able flavor scheme of O(n T2) and O(T2), and first results on higher 3-loop topologies. The 1 f F F : knowledgeoftheheavyflavorWilsoncoefficientsat3-looporderisofimportancetoextractthe v i partondistributionfunctionsanda (M2)incompleteNNLOQCDanalysesoftheworldprecision X s Z dataonthestructurefunctionF (x,Q2). r 2 a 36thInternationalConferenceonHighEnergyPhysics 4-11July2012 Melbourne,Australia ∗Speaker. (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas The massive Wilson coefficients in deep-inelastic scattering are known to be expressible in the limit of high virtualities Q2 ≫m2 as convolutions between massive operator matrix elements (OMEs) and massless Wilson coefficients [1]. Here m denotes the heavy quark mass. The gen- eral structure of the Wilson coefficients to O(a 3) has been derived in [2]. These massive Wilson s coefficientsareinturnconvolutedwithpartondistributionfunctionstoobtaintheheavyflavorcon- tributions to DIS structure functions at leading twist. They have been calculated for the twist-2 heavy flavorcontributions totheunpolarized structure functions atleading[3]andnext-to-leading order [4] 1 for general values of Q2. Since the massless Wilson coefficients are known by now at 3-looporder[6],itremainstocomputetheOMEsanalyticallyatO(a 3),inordertoobtainthemas- s siveWilsoncoefficientsatNNLO.ThesecoefficientswillallowforaconsistentNNLOanalysisof thedeep-inelastic worlddataatQ2>20GeV2,cf.[7]. ∼ Intheseproceedings,wediscussrecentprogressobtainedinthisdirection. Ouraimistocalcu- lateallcontributing OMEsforgeneralvaluesoftheMellinvariable N. Animportantpreviousstep towards this goal was the computation of the moments of the massive OMEsfor N =2...10(14) contributing in the fixedand variable 2 flavorschemes [2]. The3-loop heavy flavorcorrections to F (x,Q2)intheasymptoticcasewerecalculated in[9]. Firstresults forgeneralvaluesofN forthe L colorfactorfactorsT2C werecalculatedin[10]fortwoheavyquarklinesofthesamemass. The F A,F case of two different quark masses was considered in [10,11] for fixed moments. Results for the colorfactors n T2C forgeneral N wereobtainedin[12,13]andthecalculation of3-loopladder f F A,F topologies was performed in [14]. Two–loop results up to O(e ) were obtained in [15]. Here the massiveOMEsarecomputedforon-shellexternalmasslesspartons. Thecaseofamassiveon-shell external fermionlinewasstudied attwoloopsin[16]incase ofQED. In the following we will describe the methods used to perform these computations. We gen- erate the Feynman diagrams using QGRAF[17]. After the numerators of these diagrams are con- tracted with appropriate projectors we end up with a large set of scalar integrals. Many of these integrals arecalculated usingavarietyofapproaches, namely, 1. Modernsummationalgorithms, implemented inthe MathematicapackageSigma[18]. 2. Themethodofhyperlogarithmsforconvergentintegrals, generalizingthemethoddeveloped in[19]tooneadditional variable x. 3. Mellin-Barnes integralrepresentations [20]. 4. Theuseofintegration byparts identities [21]toexpress allintegrals intermsofasmallset ofmastersintegrals. Wewillfocushereonthefirsttwomethodsandshowafewexamples. TheFeynmandiagrams with operator insertions may be turned into nested sums [22]. These infinite and finite sums may be solved using Sigma whenever they have a representation in terms of elements of difference- andproductfields. Thisincludesdivergentdiagrams,sincethedifferentpolesandpowersine may be separated. Letus consider the scalar integrals associated with the ladder diagrams like the one shown in Fig. 1. In this diagram, the loop fermion is massive and the momentum of the external 1ForapreciseimplementationinMellinspacesee[5]. 2Inusingvariableflavorschemesacorrectscalematchingisofimportance[8]. 2 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas l q q −l k p → → p q −p k−l k −p l −p Figure1: 3-loopladderdiagramcontainingacentrallocaloperatorinsertion. gluons is p, with p2 =0. We consider the case where all powers of propagators are equal to one, and in the numerator of the integral we only have the operator insertion (D ·l)N. The result after Feynmanparameterization andcalculation oftheloop-momentum integralsturnsouttobe[14] I = i(D .p)Na3sSe3Iˆ , (1) 1a (m2)2−32e 1a whereSe isthespherical factor Se =exp e2(gE−ln(4p )) ,and (cid:2) (cid:3) Iˆ = −exp −3eg G (2−3e /2)(cid:213) 7 1dw q (1−w1−w2)w−1e/2w2−e/2(1−w1−w2) 1a 2 E i 2−3e/2 (cid:18) (cid:19) i=1Z0 1+w w3 +w w4 11−w3 21−w4 ×we/2(1−w )−1+e/2we/2(1−w )−1+e/2(1−(cid:16)w w −w w −(1−w(cid:17)−w )w )N . (2) 3 3 4 4 5 1 6 2 1 2 7 Expanding the polynomial that appears raised to the Nthpower, one can see that the w - and 1 w -integrals, can be written in terms of an Appell hypergeomteric function. After an appropri- 2 ate analytic continuation, we end up with the following representation of the integral in terms of multiplesums, Iˆ = exp −23eg E G (2−3e /2) (cid:229)¥ 1a (N+1)(N+2)(N+3) (cid:0) (cid:1) m,n=0( N(cid:229) +2 N+3 (t−e /2)m(N+2+e /2)m+n(N+3−t−e /2)n t (N+4−e ) t=1(cid:18) (cid:19) m+n t,t−e /2,m+1+e /2,n+1+e /2,N+3−t,N+3−t−e /2 ×G N+4−e ,m+1,n+1,m+t+1+e /2,N+n−t+4+e /2 (cid:20) (cid:21) −N(cid:229) +3s(cid:229)−1 s N+3 (−1)s(r−e /2)m(s−1+e /2)m+n(s−r−e /2)n r s (s+1−e ) s=1r=1(cid:18) (cid:19)(cid:18) (cid:19) m+n r,r−e /2,s−r,m+1+e /2,n+1+e /2,s−r−e /2 ×G . (3) m+1,n+1,m+r+1+e /2,s−r+n+1+e /2,s+1−e ) (cid:20) (cid:21) Wecannowexpandine ,andtheresultingmultiplesumscanthenbeperformedusing thepackage Sigma. The result for this and other integrals can be written in terms of harmonic sums S [23] ~a 3 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas andtheirgeneralizations S (~x ;N)[24,25]3: ~a (cid:229)N sign(b)k S (N) = S (k), S (k)=1 b,~a k|b| ~a 0/ k=1 N h k S (h ,~x ;N) = (cid:229) S (~x ;k), S =1, h ,x ∈R. (4) b,~a kb ~a 0/ k=1 Omittingtheexplicitdependence oftheharmonicsumsonN,weobtain 4(N+1)S +4 2S 1 S4 Iˆ = − 1 z + 2,1,1 + −2(3N+5)S − 1 1a (N+1)2(N+2) 3 (N+2)(N+3) (N+1)(N+2)(N+3) 3,1 4 (cid:26) 4(N+1)S −4N 5N+6 2(3N+5)S2 9+4N + 1 S +2 (2N+3)S + S + 1 + S2 N+1 2,1 1 N+1 3 (N+1)(N+2) 4 2 (cid:20) (cid:21) 7N+11 5N 5 N 4(2N+3) + 2 + S − S2 S + S3+ S (N+1)(N+2) N+1 1 2 1 2 N+1 1 (N+1)2(N+2) 1 (cid:20) (cid:21) 1 2N+3 − (2N+3)S +8 . (5) 2 4 (N+1)3(N+2) (cid:27) This result was checked using MATAD [27] for the fixed moments N =1...10. Other, more in- volved, integrals calculated inasimilarwayweregiveninRef.[14]. Thesecondmethodwehaveusedtocomputetheintegrals isbasedonanalgorithm originally proposed in [19]. It is applicable when the integral turns out to be finite, even in case for local operator insertions for a fixed integer value of the Mellin variable N. We have generalized this method to the case allowing for one non-vanishing fermion mass and local operator insertions in order to find the general N-representations for convergent 3-loop topologies. We work in the a -representation andobtainintegrals oftheform I (N)= ··· da da da da da da da da T d 1−(cid:229) a . (6) 4 1 2 3 4 5 6 7 8 U2V2 i Z Z i ! Thecorresponding graphpolynomials ofagraph Garegivenby • U =(cid:229) (cid:213) a ,whereT denotesthespanning treesofG. T l∈/T l • V =(cid:229) a . l∈massive l • Dodgson polynomials [28] T arise from the operator insertions. Theform ofthese poly- nomialswilldepend onthespecificoperatorinsertion weare considering. The integrals given by (6) are projective integrals, where one a -parameter may be set to one eliminatingthed –distribution. Theoperatorssitonon-shelldiagramswhichobeyspecificsymme- tries. These are generally not obeyed by the operator insertion. TheFeynman parameter integrals arenowperformed intermsofhyperlogarithms [19] L(−→w,z):C\S →C,where • S ={s ,s ,...,s }aredistinctpointsinCwhichmaycontain integration variables. 0 1 N 3Cyclotomicandgeneralizedcyclotomicharmonicsumsandpolylogarithmsandtheirrelationshavebeentreated in[26]. 4 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas • →−w isawordoverthealphabet A={a ,a ,...,a }, where each letter a corresponds toa 0 1 N i points . i −→ L(w,z)isuniquelydefinedbythefollowingproperties : 1 L({},z)=1, and L(0n,z,)= logn(z) for n≥1 n! ¶ L({a−→w},z)= 1 L(−→w,z) for z∈C\S ¶ z i z−s i −→ →− If w isnotoftheform w=(0,0,···,0), thenlimL(w,z)=0. (7) z→0 Forexample, L(a,z)=log(z−s )−log(s ). i i i Thehyperlogarithms satisfyshufflerelations, e.g. L({a ,a },z)L({a },z)=L({a ,a ,a },z)+L({a ,a ,a },z)+L({a ,a ,a },z) . (8) 1 2 3 3 1 2 1 3 2 1 2 3 The points to which the indices a correspond may contain further integration variables. Using i theseproperties afterpartialfractioning andintegration byparts,onecanexpressanyprimitivefor expressions consisting of rational and hyperlogarithmic functions in terms of different hyperloga- rithmic functions. These primitives have to be evaluated at the respective integration limits. Due to the operator-insertions leading to power-type functions, the integrals do not fit directly into the frameworkofthealgorithmforgeneralvaluesof N. Inordertoobtainthecorresponding extension agenerating function isconstructed bythemapping, ¥ p(a ,···,a )N → (cid:229) xkp(a ,···,a )k = 1 . (9) 1 n 1 n 1−x p(a ,···,a ) k=0 1 n Figure2: A3-loopBenzdiagram. PerformingtheFeynman-parameterintegrations thenleads toanexpressionwhichcontainshyper- logarithmsL inthevariablex. Usingthismethod,thescalarintegralwithallpowersofpropagators w equal tooneassociated withthe diagram shown inFig.2, corresponding toaBenz-type topology, yields 1 I(x) = z 2L({−1},x)−2(−1+2x)L({1},x)−4L({1,1},x) 3 (1+N)(2+N)x ( h i −3L({−1,0,0,1},x)+2L({−1,0,1,1},x)−2xL({0,0,1,1},x)+3xL({0,1,0,1},x) −xL({0,1,1,1},x)+(−3+2x)L({1,0,0,1},x)+2xL({1,0,1,1},x)−L({1,0,1,1,1},x) 5 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas −(5x−1)L({1,1,0,1},x)+xL({1,1,1,1},x)−2L({1,0,0,1,1},x)+3L({1,0,1,0,1},x) +2L({1,1,0,0,1},x)+2L({1,1,0,1,1},x)−5L({1,1,1,0,1},x)+L({1,1,1,1,1},x) . ) (10) Finally, theNthcoefficient ofthisexpression in xhas tobeextracted analytically inordertoundo themapping(9). ThisisachievedusingtheGetMomentsoptionofthepackageHarmonicSums [25]. One may also use guessing-methods to obtain the corresponding difference equation based on a huge number of moments, cf. [29]. Fora more complicated graph with non-trivial argument structure in xwewereabletoproduce ∼1500moments[30]. Oneobtains fromEq.(10) 1 648+1512N+1458N2+744N3+212N4+32N5+2N6 I(N) = (N+1)(N+2)(N+3) (1+N)3(2+N)3(3+N)3 ( 2 −1+(−1)N+N+(−1)NN N 1 1 − z −(−1)NS − S3+ S4− S (1+N) 3 −3 6(1+N) 1 24 1 4 4 (cid:0) (cid:1) 7+22N+10N2 19 1+4N+2N2 9 (−9+4N) − S − S2− S2+ S − S 2(1+N)2(2+N) 2 8 2 2(1+N)2(2+N) 1 4 2 3(1+N) 3 (cid:0) (cid:1) (−1+6N) 54+207N+246N2+130N3+32N4+3N5 −2(−1)NS + S + S −2,1 (1+N) 2,1 (1+N)3(2+N)2(3+N)2 1 (−2+7N) 13 +4z S − S S + S S −7S S −7S +10S . (11) 3 1 2 1 3 1 2,1 1 3,1 2,1,1 2(1+N) 3 ) Anotherexample, wherethistechnique hasbeenapplied, isshowninFig.3. Figure3: Asecondexampleofa3-loopBenztopology. Inthiscasetheresultis 1 2 1−13(−1)N+(−1)N23+N+N−7(−1)NN+3(−1)N21+NN I(N) = z 3 (N+1)(N+2) (1+N)(2+N) ( (cid:0) (cid:1) 1 (−1)N (−1)N(3+2N) 5(−1)N 2(−1)N(3+N) + S + S3− S + S2+ S (2+N) 3 2(2+N) 1 2(1+N)2(2+N) 2 2 2 (1+N)(2+N) 2,1 (−1)N(3+2N) (−1)N 3(−1)N(4+3N) 2 + S2− S S2+ S +3(−1)NS + S 2(1+N)2(2+N) 1 2 2 1 (1+N)(2+N) 3 4 (2+N) −2,1 (−1)N(5+7N) −12(−1)NS z + S S +3(−1)NS S +4(−1)NS S −4(−1)NS 1 3 1 2 1 3 2,1 1 3,1 2(1+N)(2+N) 6 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas 4 (−1)N22+N−3(−2)NN+3(−1)N21+NN 1 − S ,1 −5(−1)NS 1,2 2,1,1 (1+N)(2+N) 2 (cid:0) (cid:1) (cid:18) (cid:19) 2 −(−1)N22+N−13(−2)NN+5(−1)N21+NN 1 +2(−1)Nz S (2)+ S ,1,1 3 1 1,1,1 (1+N)(2+N) 2 (cid:0) (cid:1) (cid:18) (cid:19) 1 1 −2(−1)NS 2, ,1 −(−1)NS 2, ,1,1 . (12) 1,1,2 1,1,1,1 2 2 ) (cid:18) (cid:19) (cid:18) (cid:19) Notice the presence of generalized harmonic sums and highly divergent factors in the limit N →¥ , such as 2N. It can be shown, however, that the complete expression is convergent in this limit and possesses a well-defined asymptotic expansion for N →¥ . In general neither the repre- sentationinindividualnestedsumsorbyiteratedintegralsshowsthisproperty,butacorresponding combination oftermsdoes. We calculated the contributions of O(n T2C ) to all massive OMEs completely [12,13]. f F A,F Furthermore, first systematic results were obtained for the case of graphs containing two massive fermionlineswithm =m . AtypicalgraphisshowninFig.4inthegluoniccase. 1 2 Figure4: A3-loopgraphcontainingtwomassivefermionlinesm =m andanoperatorinsertion. 1 2 Oneobtains 1 1 74N3−455N2+381N−210 1 I= + − S (N) 105e 2 e 44100(N−1)N(N+1) 210 1 " # 8903N3+39537N2−114440N+36576 + S (N) 1 2822400(N+1)(2N−3)(2N−1) P 1 + 1 + S (N)2+S (N)+3z 148176000(N−1)2N2(N+1)2(2N−3)(2N−1) 840 1 2 2 (cid:16) (cid:17) +2−2N−9(N−1)N(5N−6) 2N −7z −(cid:229)N 4j +(cid:229)N 4jS1(j) , (13) 3(2N−3)(2N−1) (cid:18)N (cid:19) 3 j=1 2jj j3 j=1 2jj j2 ! (cid:0) (cid:1) (cid:0) (cid:1) P =1795487N8−7087789N7+10654130N6−5797102N5+6828839N4−16594069N3 1 +9651144N2+902160N−1058400. (14) Integrals of this type usually contain finite binomial and inverse binomial sums, which even may benested. In conclusion, we have seen that the methods shown here allow us to obtain analytic expres- sionsatgeneralvaluesofN for3–loopintegralscontributingtothemassiveOMEswhichcouldnot be obtained byother methods before. Wecontinue working onthe setofintegrals that weneed in ordertoobtainallnecessaryoperatormatrixelements. Inparticular,wearestudyingthepossibility 7 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas also to extend the method of hyperlogarithms. Application of these methods to the more compli- cated case of non-planar integrals are underway. The package Sigma and related packages are continuously beingupgraded tobeabletomeetthechallenges thatkeeparisinginthisendeavor. Acknowledgment. WewouldliketothankF.Brownfordiscussions. TheFeynmandiagramshave been drawn using Axodraw. This work has been supported in part by DFG Sonderforschungs- bereich Transregio 9, Computergestützte Theoretische Teilchenphysik, by the Austrian Science Fund (FWF) grant P203477-N18, by the EU Network LHCPHENOnetPITN-GA-2010-264564, andERCStartingGrantPAGAPFP7-257638. References [1] M.Buza,Y.Matiounine,J.Smith,R.MigneronandW.L.vanNeerven,Nucl.Phys.B472(1996)611 [hep-ph/9601302]. [2] I.Bierenbaum,J.BlümleinandS.Klein,Nucl.Phys.B820(2009)417[arXiv:0904.3563[hep-ph]]. [3] E.Witten,Nucl.Phys.B104(1976)445; J.Babcock,D.W.SiversandS.Wolfram,Phys.Rev.D18(1978)162; J.P.LeveilleandT.J.Weiler,Nucl.Phys.B147(1979)147; M.Glück,E.HoffmannandE.Reya,Z.Phys.C13(1982)119. [4] E.Laenen,S.Riemersma,J.SmithandW.L.vanNeerven,Nucl.Phys.B392(1993)162;229; S.Riemersma,J.SmithandW.L.vanNeerven,Phys.Lett.B347(1995)143[hep-ph/9411431]. [5] S.I.AlekhinandJ.Blümlein,Phys.Lett.B594(2004)299[hep-ph/0404034]. [6] J.A.M.Vermaseren,A.VogtandS.Moch,Nucl.Phys.B724(2005)3[hep-ph/0504242]. [7] J.Blümlein,TheTheoryofDeeplyInelasticScattering,arXiv:1208.6087[hep-ph]. [8] J.BlümleinandW.L.vanNeerven,Phys.Lett.B450(1999)417[hep-ph/9811351]. [9] J.Blümlein,A.DeFreitas,W.L.vanNeervenandS.Klein,Nucl.Phys.B755(2006)272 [hep-ph/0608024]. [10] J.Ablinger,J.Blümlein,S.Klein,C.SchneiderandF.Wißbrock,arXiv:1106.5937[hep-ph]. [11] J.Ablinger,J.Blümlein,A.Hasselhuhn,S.Klein,C.SchneiderandF.Wißbrock,PoS (RADCOR2011)031,arXiv:1202.2700[hep-ph]. [12] J.Ablinger,J.Blümlein,S.Klein,C.SchneiderandF.Wißbrock,Nucl.Phys.B844(2011)26 [arXiv:1008.3347[hep-ph]]. [13] J.Blümlein,A.Hasselhuhn,S.KleinandC.Schneider,Nucl.Phys.B866(2013)196 [arXiv:1205.4184[hep-ph]]. [14] J.Ablinger,J.Blümlein,A.Hasselhuhn,S.Klein,C.SchneiderandF.Wißbrock,Nucl.Phys.B864 (2012)52[arXiv:1206.2252[hep-ph]]. [15] I.Bierenbaum,J.BlümleinandS.Klein,Nucl.Phys.B780(2007)40[hep-ph/0703285[HEP-PH]]; Phys.Lett.B672(2009)401[arXiv:0901.0669[hep-ph]]; I.Bierenbaum,J.Blümlein,S.KleinandC.Schneider,Nucl.Phys.B803(2008)1[arXiv:0803.0273 [hep-ph]]. [16] J.Blümlein,A.DeFreitasandW.vanNeerven,Nucl.Phys.B855(2012)508[arXiv:1107.4638 [hep-ph]]. 8 NewResultsonthe3-LoopHeavyFlavorWilsonCoefficients... AbilioDeFreitas [17] P.Nogueira,J.Comput.Phys.105(1993)279. [18] C.Schneider,J.SymbolicComput.43(2008)611[arXiv:0808.2543];Ann.Comb.9(2005)75;J. Differ.EquationsAppl.11(2005)799;Ann.Comb.14(2010)[arXiv:0808.2596];ClayMathematics Proceedings12(2010)285;Sem.Lothar.Combin.56(2007)1,ArticleB56b,Habilitationsschrift JKULinz(2007)andreferencestherein; J.Ablinger,J.Blümlein,S.Klein,C.Schneider,Nucl.Phys.(Proc.Suppl.)205-206(2010)110 [arXiv:1006.4797]. [19] F.Brown,Commun.Math.Phys.287(2009)925[arXiv:0804.1660]. [20] V.A.Smirnov,Phys.Lett.B460(1999)397[hep-ph/9905323]; I.Bierenbaum,J.BlümleinandS.Klein,Phys.Lett.B648(2007)195[hep-ph/0702265];Nucl.Phys. Proc.Suppl.160(2006)85[hep-ph/0607300]. [21] K.G.Chetyrkin,A.L.KataevandF.V.Tkachov,Nucl.Phys.B174(1980)345. [22] J.Blümlein,Comput.Phys.Commun.180(2009)2218[arXiv:0901.3106[hep-ph]]; J.Blümlein,S.Klein,C.SchneiderandF.Stan,J.SymbolicComput.47(2012)1267-1289 [arXiv:1011.2656[cs.SC]]. [23] J.BlümleinandS.Kurth,Phys.Rev.D60(1999)014018[hep-ph/9810241]; J.A.M.Vermaseren,Int.J.Mod.Phys.A14(1999)2037[hep-ph/9806280]. [24] S.Moch,P.UwerandS.Weinzierl,J.Math.Phys.43(2002)3363[hep-ph/0110083]; [25] J.Ablinger,J.BlümleinandC.Schneider,DESY12–210; J.Ablinger,ComputerAlgebraAlgorithmsforSpecialFunctionsinParticlePhysics,J.Kepler UniversityLinz.PhDThesis.April2012; http://www.risc.jku.at/research/combinat/software/ [26] J.Ablinger,J.BlümleinandC.Schneider,J.Math.Phys.52(2011)102301[arXiv:1105.6063 [math-ph]]. [27] M.Steinhauser,Comput.Phys.Commun.134(2001)335[hep-ph/0009029]. [28] C.BognerandS.Weinzierl,Int.J.Mod.Phys.A25(2010)2585[arXiv:1002.3458[hep-ph]]; F.BrownandO.Schnetz,arXiv:1006.4064[math.AG]. [29] J.Blümlein,M.Kauers,S.KleinandC.Schneider,Comput.Phys.Commun.180(2009)2143 [arXiv:0902.4091[hep-ph]]. [30] J.Ablinger,J.Blümlein,C.SchneiderandF.Wißbrock,inpreparation. [31] J.A.M.Vermaseren,Axodraw,Comput.Phys.Commun.83(1994)45. 9

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.