ebook img

New order bounds in differential elimination algorithms PDF

0.18 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New order bounds in differential elimination algorithms

✩ New order bounds in differential elimination algorithms RichardGustavson CUNYGraduateCenter,Ph.D.PrograminMathematics,365FifthAvenue,NewYork,NY10016,USA AlexeyOvchinnikov 6 1 CUNYQueensCollege,DepartmentofMathematics,65-30KissenaBoulevard,Queens,NY11367,USA 0 2 GlebPogudin v JohannesKeplerUniversity,InstituteforAlgebra,ScienceParkII,3rdFloor,4040Linz,Austria o N 0 3 Abstract ] C WepresentanewupperboundfortheordersofderivativesintheRosenfeld-Gro¨bneralgorithm. A This algorithm computes a regular decomposition of a radical differential ideal in the ring of . h differentialpolynomialsoveradifferentialfield ofcharacteristiczerowithan arbitrarynumber t of commutingderivations. Thisdecompositioncan then be used to test formembershipin the a m given radical differential ideal. In particular, this algorithm allows us to determine whether a systemofpolynomialPDEsisconsistent. [ Previously, the only known order upper bound was given by Golubitsky, Kondratieva, 2 MorenoMaza, and Ovchinnikovfor the case of a single derivation. We achieve our boundby v associatingtothealgorithmantichainsequenceswhoselengthscanbeboundedusingtheresults 6 ofLeo´nSa´nchezandOvchinnikov. 4 2 Keywords: Polynomialdifferentialequations;differentialeliminationalgorithms; 0 computationalcomplexity 0 . 2 0 6 1 1. Introduction : v TheRosenfeld-Gro¨bneralgorithmisafundamentalalgorithminthealgebraictheoryofdif- i X ferentialequations. Thisalgorithm,whichfirstappearedin(Boulieretal.,1995,2009),takesas r itsinputafinitesetF ofdifferentialpolynomialsandoutputsarepresentationoftheradicaldif- a ferentialidealgeneratedbyF asafiniteintersectionofregulardifferentialideals. Thealgorithm has many applications; for example, it can be used to test membershipin a radicaldifferential ideal,and,inconjunctionwiththedifferentialNullstellensatz,canbeusedtotesttheconsistency ✩ Thisworkwaspartially supported bytheNSFgrants CCF-095259, CCF-1563942, DMS-1606334, bythe NSA grant#H98230-15-1-0245,byCUNYCIRG#2248,byPSC-CUNYgrant#69827-0047,bytheAustrianScienceFund FWFgrantY464-N18. Emailaddresses:[email protected](RichardGustavson),[email protected] (AlexeyOvchinnikov),[email protected](GlebPogudin) PreprintsubmittedtoElsevier December1,2016 of a system of polynomialdifferentialequations. See (Golubitskyetal., 2008) for a history of thedevelopmentoftheRosenfeld-Gro¨bneralgorithmandsimilardecompositionalgorithms. The Rosenfeld-Gro¨bner algorithm has been implemented in Maple as a part of the DifferentialAlgebrapackage. In order to determine the complexity of the algorithm, we need to (among other things) find an upper bound on the orders of derivatives that appear in allintermediatestepsandin theoutputofthealgorithm. Thefirststep inansweringthisques- tionwascompletedin(Golubitskyetal.,2008),inwhichanupperboundinthecaseofasingle derivationandanyrankingonthesetofderivativeswasfound.Iftherearenunknownfunctions andtheorderoftheoriginalsystemish,theauthorsshowedthatanupperboundontheorders oftheoutputoftheRosenfeld-Gro¨bneralgorithmish(n 1)!. − In this paper, we extend this result by finding an upperboundfor the ordersof derivatives thatappearintheintermediatestepsandintheoutputoftheRosenfeld-Gro¨bneralgorithminthe caseofanarbitrarynumberofcommutingderivationsandaweightedrankingonthederivatives. We first compute an upper bound for the weights of the derivatives involved for an arbitrary weightedranking;bychoosingaspecificweight,weobtainanupperboundfortheordersofthe derivatives.Forthis,weconstructspecialantichainsequencesinthesetZm 1,...,n equipped >0×{ } withaspecificpartialorder.Wethenuse(Leo´nSa´nchezandOvchinnikov,2016)toestimatethe lengthsofoursequences. Ageneralanalysisoflengthsofantichainsequencesbeganin(Pierce, 2014)andcontinuedin(FreitagandLeo´nSa´nchez,2016). Weshowthatanupperboundfortheweightsofderivativesintheintermediatestepsandin theoutputoftheRosenfeld-Gro¨bneralgorithmisgivenbyhf ,wherehistheweightofourin- L+1 putsystemofdifferentialequations, f , f , f ,... istheFibonaccisequence 0,1,1,2,3,5,... , 0 1 2 { } { } and Listhemaximalpossiblelengthofacertainantichainsequence(thatdependssolelyonh, thenumbermofderivations,andthenumbernofunknownfunctions).Form=2,werefinethis upperboundinanewwaybyshowingthattheweightsofthederivativesinquestionarebounded abovebyasequencedefinedsimilarlytotheFibonaccisequencebutwithaslowergrowthrate. Bychoosingaspecificweight,weareabletoproduceanupperboundfortheordersofthe derivativesintheintermediatestepsandintheoutputoftheRosenfeld-Gro¨bneralgorithm.Note that this bound is different from the upper bounds for the effective differential Nullstellensatz (D’Alfonsoetal.,2014;Gustavsonetal.,2016a),whicharehigherandalsodependonthedegree ofthegivensystemofdifferentialequations. Ourresultisanimprovementof(Gustavsonetal., 2016b) because it allows us to compute sharper order upper bounds with respect to specific derivationsthanthepreviousupperbounddid,andbecauseoftherefinementinthecasem = 2. Forexample,ifn=2andh=3,4,5,thenewboundis3,8,33timesbetter,respectively. Thepaperisorganizedasfollows.InSection2,wepresentthebackgroundmaterialfromdif- ferentialalgebrathatisnecessarytounderstandtheRosenfeld-Gro¨bneralgorithm. InSection3, wedescribethisalgorithmasitispresentedin(Hubert,2003),aswellastwonecessaryauxiliary algorithms.InSection4,weproveourmainresultontheupperbound.InSection5,wecalculate theupperboundforspecificvaluesusingtheresultsof(Leo´nSa´nchezandOvchinnikov,2016). InSection6, wegiveanexampleshowingthatthelowerboundfortheordersofderivativesin theRosenfeld-Gro¨bneralgorithmisatleastdouble-exponentialinthenumberofderivations. 2. Backgroundondifferentialalgebra Inthissection,wepresentbackgroundmaterialfromdifferentialalgebrathatispertinentto theRosenfeld-Gro¨bneralgorithm.Foramorein-depthdiscussion,wereferthereaderto(Hubert, 2003;Kolchin,1973). 2 Definition 1. A differential ring is a commutative ring R with a collection of m commuting derivations∆= ∂ ,...,∂ onR. 1 m { } Definition2. AnidealI ofadifferentialringisadifferentialidealifδa Iforalla I,δ ∆. ∈ ∈ ∈ ForasetA R,let(A), √(A),[A],and A denotethesmallestideal,radicalideal,differential ⊆ { } ideal,andradicaldifferentialidealcontainingA,respectively.IfQ R,then A = √[A]. ⊆ { } Remark3. Inthispaper,asusual,wealsousethebraces a ,a ,... todenotethesetcontaining 1 2 { } the elementsa ,a ,.... Even thoughthisnotationconflictswith the abovenotationforradical 1 2 differentialideals(usedhereforhistoricalreasons),itwillbeclearfromthecontextwhichofthe twoobjectswemeanineachparticularsituation. In this paper, k is a differential field of characteristic zero with m commuting derivations. Thesetofderivativeoperatorsisdenotedby Θ:= ∂i11···∂imm :ij ∈Z>0,16 j6m . n o ForY = y ,...,y asetofndifferentialindeterminates,thesetofderivativesofY is 1 n { } ΘY := θy:θ Θ,y Y . { ∈ ∈ } Thentheringofdifferentialpolynomialsoverkisdefinedtobe k Y =k y ,...,y :=k[θy:θy ΘY]. 1 n { } { } ∈ Wecannaturallyextendthederivations∂ ,...,∂ totheringk Y bydefining 1 m { } ∂j ∂i11···∂immyk :=∂i11···∂ijj+1···∂immyk. (cid:16) (cid:17) Foranyθ=∂i1 ∂im Θ,wedefinetheorderofθtobe 1 ··· m ∈ ord(θ):=i + +i . 1 m ··· Foranyderivativeu=θy ΘY,wedefine ∈ ord(u):=ord(θ). Foradifferentialpolynomial f k Y k,wedefinetheorderof f tobethemaximumorderof ∈ { }\ allderivativesthatappearin f. ForanyfinitesetA k Y k,weset ⊆ { }\ (A):=max ord(f): f A . (1) H { ∈ } Foranyθ=∂i1 ∂im andpositiveintegersc ,...,c Z ,wedefinetheweightofθtobe 1 ··· m 1 m ∈ >0 w(θ)=w ∂i11···∂imm :=c1i1+···+cmim. (cid:16) (cid:17) Note thatif all ofthe c = 1, then w(θ) = ord(θ) forall θ Θ. For a derivativeu = θy ΘY, i ∈ ∈ wedefinetheweightofutobew(u) := w(θ). Foranydifferentialpolynomial f k Y k,we ∈ { }\ definetheweightof f, w(f),tobethemaximumweightofallderivativesthatappearin f. For anyfinitesetA k Y k,weset ⊆ { }\ (A):=max w(f): f A . W { ∈ } 3 Definition4. ArankingonthesetΘY isatotalorder<satisfyingthefollowingtwoadditional properties: forallu,v ΘY andallθ Θ,θ,id, ∈ ∈ u<θu and u<v = θu<θv. ⇒ Aranking<iscalledanorderlyrankingifforallu,v ΘY, ∈ ord(u)<ord(v) = u<v. ⇒ Givenaweightw,aranking<onΘY iscalledaweightedrankingifforallu,v ΘY, ∈ w(u)<w(v) = u<v. ⇒ Remark 5. Note thatif w ∂i1 ∂im = i + +i (thatis, w(θ) = ord(θ)), then a weighted 1 ··· m 1 ··· m ranking<onΘY isinfacta(cid:16)norderly(cid:17)ranking. Fromnowon,wefixaweightedranking<onΘY. Definition6. Let f k Y k. ∈ { }\ The derivative u ΘY of highestrank appearingin f is called the leader of f, denoted • ∈ lead(f). If we write f as a univariate polynomialin lead(f), the leading coefficient is called the • initialof f,denotedinit(f). Ifweapplyanyderivativeδ ∆to f,theleaderofδf isδ(lead(f)),andtheinitialofδf is • ∈ calledtheseparantof f,denotedsep(f). GivenasetA k Y k,wewilldenotethesetofleadersofAbyL(A),thesetofinitialsof ⊆ { }\ AbyI ,andthesetofseparantsofAbyS ;wethenletH = I S bethesetofinitialsand A A A A A ∪ separantsofA. Foraderivativeu ΘY,welet(ΘY) (respectively,(ΘY) )bethecollectionofallderiva- <u 6u ∈ tivesv ΘYwithv<u(respectively,v6u).Foranyderivativeu ΘY,weletA (respectively, <u ∈ ∈ A )betheelementsofAwithleader<u(respectively,6u),thatis, 6u A := A k[(ΘY) ] and A := A k[(ΘY) ]. <u <u 6u 6u ∩ ∩ Wecansimilarlydefine(ΘA) and(ΘA) ,where <u 6u ΘA:= θf :θ Θ, f A . { ∈ ∈ } Given f k Y ksuchthatdeg (f)=d,wedefinetherankof f tobe ∈ { }\ lead(f) rank(f):=lead(f)d. The weighted ranking < on ΘY determines a pre-order(that is, a relation satisfying all of the propertiesofanorder,exceptforthepropertythata6bandb6aimplythata=b)onk Y k: { }\ Definition7. Given f , f k Y k,wesaythat 1 2 ∈ { }\ rank(f )<rank(f ) 1 2 iflead(f )<lead(f )oriflead(f )=lead(f )anddeg (f )<deg (f ). 1 2 1 2 lead(f1) 1 lead(f2) 2 4 Definition8. Adifferentialpolynomial f ispartiallyreducedwithrespecttoanotherdifferential polynomialgifnoproperderivativeoflead(g)appearsin f,and f isreducedwithrespecttog if,inaddition, deg (f)<deg (g). lead(g) lead(g) A differential polynomialis then (partially) reduced with respect to a set A k Y k if it is ⊆ { }\ (partially)reducedwithrespecttoeveryelementofA. Definition9. ForasetA k Y k,wesaythatAis: ⊆ { }\ autoreducedifeveryelementofAisreducedwithrespecttoeveryotherelement. • weakd-triangularifL(A)isautoreduced. • d-triangular if A is weak d-triangular and every element of A is partially reduced with • respecttoeveryotherelement. Notethateveryautoreducedsetisd-triangular. Everyweakd-triangularset(andthusevery d-triangularandautoreducedset)isfinite(Hubert,2003,Proposition3.9).Sincethesetofleaders ofaweakd-triangularsetAisautoreduced,distinctelementsofAmusthavedistinctleaders. If u ΘY istheleaderofsomeelementofaweakd-triangularsetA,weletA denotethiselement. u ∈ Definition 10. We define a pre-order on the collection of all weak d-triangular sets, which we also call rank, as follows. Given two weak d-triangular sets A = A ,...,A and B = 1 r { } B ,...,B ,ineachcasearrangedinincreasingrank,wesaythatrank(A)<rank(B)ifeither: 1 s { } thereexistsak 6min(r,s)suchthatrank(A)=rank(B)forall16i<kandrank(A )< i i k • rank(B ),or k r> sandrank(A)=rank(B)forall16i6 s. i i • Wealsosaythatrank(A)=rank(B)ifr= sandrank(A)=rank(B)forall16i6r. i i We can restrict this rankingto the collection of all d-triangularsets or the collection of all autoreducedsets. Definition11. AcharacteristicsetofadifferentialidealIisanautoreducedsetC Iofminimal ⊆ rankamongallautoreducedsubsetsofI. GivenafinitesetS k Y , letS denotethemultiplicativesetcontaining1andgenerated ∞ ⊆ { } byS. ForanidealI k Y ,wedefinethecolonidealtobe ⊆ { } I :S := a k Y : s S withsa I . ∞ ∞ { ∈ { } ∃ ∈ ∈ } IfI isadifferentialideal,thenI :S isalsoadifferentialideal(Kolchin,1973,SectionI.2). ∞ Definition 12. For a differential polynomial f k Y and a weak d-triangularset A k Y , ∈ { } ⊆ { } a differential partial remainder f and a differential remainder f of f with respect to A are 1 2 differentialpolynomialssuchthatthereexist s S , h H suchthat sf f mod [A]and ∈ ∞A ∈ A∞ ≡ 1 hf f mod [A],with f partiallyreducedwithrespecttoAand f reducedwithrespecttoA. 2 1 2 ≡ 5 We denotea differentialpartialremainderof f with respectto A bypd-red(f,A)anda dif- ferential remainder of f with respect to A by d-red(f,A). There are algorithms to compute pd-red(f,A)andd-red(f,A)forany f and A (Hubert, 2003, Algorithms3.12and3.13). These algorithmshavethepropertythat rank(pd-red(f,A)), rank(d-red(f,A))6rank(f); sincewehaveaweightedranking,thisimpliesthat w(pd-red(f,A)), w(d-red(f,A))6w(f). Definition 13. Two derivatives u,v ΘY are said to have a common derivative if there exist ∈ φ,ψ Θsuchthatφu = ψv. Notethisisthecasepreciselywhenu = θ yandv = θ yforsome 1 2 ∈ y Y andθ ,θ Θ. 1 2 ∈ ∈ Definition14. Ifu=∂i1 ∂imyandv=∂j1 ∂jmyforsomey Y,wedefinetheleastcommon 1 ··· m 1 ··· m ∈ derivativeofuandv,denotedlcd(u,v),tobe lcd(u,v)=∂max(i1,j1) ∂max(im,jm)y. 1 ··· m Definition15. For f,g k Y k, we definethe∆-polynomialof f andg, denoted∆(f,g), as ∈ { }\ follows. If lead(f) and lead(g) have no common derivatives, set ∆(f,g) = 0. Otherwise, let φ,ψ Θbesuchthat ∈ lcd(lead(f),lead(g))=φ(lead(f))=ψ(lead(g)), anddefine ∆(f,g):=sep(g)φ(f) sep(f)ψ(g). − Definition16. Apair(A,H)iscalledaregulardifferentialsystemif: Aisad-triangularset • HisasetofdifferentialpolynomialsthatareallpartiallyreducedwithrespecttoA • S H A ∞ • ⊆ forall f,g A,∆(f,g) ((ΘA) ):H ,whereu=lcd(lead(f),lead(g)). <u ∞ • ∈ ∈ Definition17. Anyidealoftheform[A] : H ,where(A,H)isaregulardifferentialsystem, is ∞ calledaregulardifferentialideal. Everyregulardifferentialidealisaradicaldifferentialideal(Hubert,2003,Theorem4.12). Definition18. GivenaradicaldifferentialidealI k Y ,aregulardecompositionofIisafinite ⊆ { } collectionofregulardifferentialsystems (A ,H ),...,(A ,H ) suchthat 1 1 r r { } r I = [A]: H . i i∞ \i=1 DuetotheRosenfeld-Gro¨bneralgorithm,everyradicaldifferentialidealink Y hasaregular { } decomposition. 6 Definition19. Ad-triangularsetC iscalledadifferentialregularchainifitisacharacteristic setof[C]:H ;inthiscase,wecall[C]:H acharacterizabledifferentialideal. C∞ C∞ Definition20. AcharacteristicdecompositionofaradicaldifferentialidealI k Y isarepre- ⊆ { } sentationofI asanintersectionofcharacterizabledifferentialideals. AswewillrecallinSection3,everyradicaldifferentialidealalsohasacharacteristicdecom- position. 3. Rosenfeld-Gro¨bneralgorithm BelowwereproducetheRosenfeld-Gro¨bneralgorithmfrom(Hubert,2003,Section6).This algorithmrelieson two others, called auto-partial-reduce and update, whichwe also include. Weincludethesetwoauxiliaryalgorithmsbecause,inSection4,wewillstudytheireffectonthe growthoftheweightsofderivativesinRosenfeld-Gro¨bner. Rosenfeld-Gro¨bnertakesasitsinputtwofinitesubsetsF,K k Y andoutputsafiniteset ∈ { } ofregulardifferentialsystemssuchthat A F :K = [A]:H , (2) ∞ ∞ { } (A,\H) ∈A where =∅if1 F :K . ∞ A ∈{ } If we have a decomposition of F : K as in (2), we can compute, using only algebraic ∞ { } operations,adecompositionoftheform F :K = [C]:H , (3) { } ∞ C∞ C\ ∈C where is finite and eachC is a differentialregular chain (Hubert, 2003, Algorithms7.1 C ∈ C and7.2).Thismeansthatanupperboundon (A H)from(2)willalsobeanupper bouRndosoennSfeCld∈C-GWro¨(bCn)efrrohmas(3m)a.ny immediatSe (aAp,Hp)l∈iAcaWtions.∪For example, if K = 1 , then { } F : K = F , sointhiscase,Rosenfeld-Gro¨bnercomputesaregulardecompositionof F , ∞ { } { } { } whichthenalsogivesusacharacteristicdecompositionof F bythediscussionintheprevious { } paragraph. TheweakdifferentialNullstellensatzsaysthatasystemofpolynomialdifferentialequations F =0isconsistent(thatis,hasasolutioninsomedifferentialfieldextensionofk)ifandonlyif 1<[F](Kolchin,1973,SectionIV.2). Thus,sinceRosenfeld-Gro¨bner(F,K)=∅ifandonlyif 1 F :K ,weseethatF =0isconsistentifandonlyifRosenfeld-Gro¨bner(F, 1 ),∅. ∞ ∈{ } { } Moregenerally,Rosenfeld-Gro¨bneranditsextensionforcomputingacharacteristicdecom- position of a radical differential ideal allow us to test for membership in a radical differential ideal,asfollows. Supposewehavecomputedacharacteristicdecomposition F = [C]:H . { } C∞ C\ ∈C Now,adifferentialpolynomial f k Y iscontainedin F ifandonlyif f [C] : H forall ∈ { } { } ∈ C∞ C ;thislattercaseistrueifandonlyifd-red(f,C) = 0,whichcanbetestedusing(Hubert, ∈ C 2003,Algorithm3.13). Rosenfeld-Gro¨bner,auto-partial-reduce,andupdaterelyonthefollowingtuplesofdiffer- entialpolynomials: 7 Definition 21. A Rosenfeld-Gro¨bnerquadruple(or RG-quadruple)is a 4-tuple (G,D,A,H)of finitesubsetsofk Y suchthat: { } Aisaweakd-triangularset,H H,Disasetof∆-polynomials,and A • ⊆ forall f,g A,either∆(f,g)=0or∆(f,g) Dor • ∈ ∈ ∆(f,g) (Θ(A G) ):H , ∈ ∪ <u u∞ whereu=lcd(lead(f),lead(g))andH = H (H H ) k[(ΘY) ]. u A<u ∪ \ A ∩ <u Algorithm:Rosenfeld-Gro¨bner,(Hubert,2003,Algorithm6.11) Data: F,K finitesubsetsofk Y { } Result: Aset ofregulardifferentialsystemssuchthat: A isemptyifithasbeendetectedthat1 F : K ∞ • A ∈{ } F : K = [A]:H otherwise ∞ ∞ • { } (A,H) T∈A := (F,∅,∅,K) ; S { } :=∅; A while ,∅do S (G,D,A,H):=anelementof ; S ¯ = (G,D,A,H); S S\ if G D=∅then ∪ := auto-partial-reduce(A,H); A A∪ else p:=anelementofG D; G¯,D¯ :=G p ,D p∪; \{ } \{ } p¯ :=d-red(p,A); if p¯ =0then ¯ := ¯ (G¯,D¯,A,H) ; S S∪{ } else if p¯ <kthen p¯ := p¯ init(p¯)rank(p¯) p¯ :=deg (p¯)p¯ lead(p¯)sep(p¯); i − s lead(p¯) − ¯ := ¯ update(G¯,D¯,A,H,p¯),(G p¯ ,sep(p¯) ,D¯,A,H s Sinit(pS¯)∪),{(G¯ p¯ ,init(p¯) ,D¯,A,H)∪; { } ∪ i { } ∪{ } } end end end := ¯; S S end return ; A Remark22. TheRG-quadruplethatisoutputbyupdatesatisfiesadditionalpropertiesthatwe donotlist,astheyarenotimportantforouranalysis. Formoreinformation,wereferthereader to(Hubert,2003,Algorithm6.10) 8 Algorithm:auto-partial-reduce,(Hubert,2003,Algorithm6.8) Data:TwofinitesubsetsA,Hofk Y suchthat(∅,∅,A,H)isanRG-quadruple { } Result: Theemptysetifitisdetectedthat1 [A]:H ∞ • ∈ Otherwise,asetwithasingleregulardifferentialsystem(B,K)withL(A)=L(B), • H K,and[A]:H =[B]: K B ∞ ∞ ⊆ B:=∅; for u L(A)increasinglydo ∈ b:=pd-red(A ,B); u if rank(b)=rank(A )then u B:= B b ; ∪{ } else return(∅); end end K := H pd-red(p,B): p H H ; B A ∪{ ∈ \ } if 0 K then ∈ return(∅); else return (B,K) ; { } end Algorithm:update(Hubert,2003,Algorithm6.10) Data: A4-tuple(G,D,A,H)offinitesubsetsofk Y • { } AdifferentialpolynomialpreducedwithrespecttoAsuchthat(G p ,D,A,H)isan • ∪{ } RG-quadruple Result: AnewRG-quadruple(G¯,D¯,A¯,H¯) u:=lead(p); G := a A lead(a) Θu ; A A¯ := A{ G∈ ; | ∈ } A G¯ :=G\ G ; A D¯ := D∪ ∆(p,a) a A¯ 0 ; H¯ := H∪{sep(p),|init∈(p)};\{ } return (∪G¯{,D¯,A¯ p ,H¯)}; ∪{ } 9 4. Orderupperbound GivenfinitesubsetsF,K k Y ,leth= (F K). Ourgoalistofindanupperboundfor ⊆ { } W ∪ (A H) , W ∪  (A,[H)∈A  where = Rosenfeld-Gro¨bner(F,K),intermsofh,m(thenumberofderivations),andn(the A numberofdifferentialindeterminates).Bythenchoosingaspecificweight,wecanfindanupper boundfor (A H) intermsofm,n,and (F K). WeappHro(cid:16)aSch(At,hHi)s∈Aprob∪lema(cid:17)sfollows. Every(A,HH) ∪isformedbyapplyingauto-partial- ∈A reducetoa4-tuple(∅,∅,A,H ) . Thus,itsuffices: ′ ′ ∈S toboundhowauto-partial-reduceincreasestheweightofacollectionofdifferentialpoly- • nomials(itturnsouttonotincreasetheweight),and to bound (G D A H) for all (G,D,A,H) added to throughout the course of • W ∪ ∪ ∪ S Rosenfeld-Gro¨bner. We accomplishthelatterbydeterminingwhentheweightofa tuple(G,D,A,H)addedto is S largerthantheweightsofthepreviouselementsof andbounding (G D A H)inthis S W ∪ ∪ ∪ instance,andthenboundingthenumberoftimeswecanaddsuchelementsto . S There is a sequence (G,D,A,H) N corresponding to each regular differential system { i i i i }i=0 (A,H)intheoutputofRosenfeld-Gro¨bner,whereN = N ,suchthat(G ,D ,A ,H ) (A,H) i+1 i+1 i+1 i+1 is obtained from (G,D,A,H) during the while loop, (G ,D ,A ,H ) = (F,∅,∅,K), and i i i i 0 0 0 0 (A,H)=auto-partial-reduce(A ,H ). N N We begin with an auxiliary result, which is an analogue of the first property from (Golubitskyetal.,2009,Section5.1). Lemma 23. Forevery f A andi < j, there exists g A such thatlead(f) Θlead(g). In i j ∈ ∈ ∈ particular,if pisreducedwithrespecttoA ,then pisreducedwithrespecttoA foralli< j. j i Proof. Itissufficienttoconsiderthecase j=i+1. If(G ,D ,A ,H )wasobtainedfrom i+1 i+1 i+1 i+1 (G,D,A,H)withoutapplyingupdate,thenA = A . Otherwise,either f A G (weuse i i i i i i+1 ∈ i\ Ai thenotationfromupdate),or f G . Intheformercase, f A aswell,sowecansetg= f. ∈ Ai ∈ i+1 Inthelattercase,lead(f) Θlead(p),sowecansetg= p. ∈ We definea partialorder4onthe setofderivativesΘY asfollows. Foru,v ΘY, we say ∈ that u 4 v if there exists θ Θ such that θu = v. Note that this implies thatu and v are both ∈ derivativesofthesamey Y. ∈ Definition 24. An antichainsequencein ΘY is a sequenceofelements S = s ,s ,... ΘY 1 2 { } ⊆ thatarepairwiseincomparableinthispartialorder. Givenasequence (G,D,A,H) N asabove(whereN = N forsomeregulardifferential { i i i i }i=0 (A,H) system (A,H) in the output of Rosenfeld-Gro¨bner), we will construct an antichain sequence S = s ,s ,... ΘY inductivelygoingalongthe sequence (G,D,A,H) . SupposeS = 1 2 i i i i j 1 { } ⊆ { } − s ,...,s hasbeenconstructedafterconsidering(G ,D ,A ,H ),...,(G ,D ,A ,H ), 1 j 1 0 0 0 0 i 1 i 1 i 1 i 1 w{ hereS −=}∅. A4-tuple(G,D,A,H)canbeobtainedfromthetuple(G− ,D− ,A− ,H− ) 0 i i i i i 1 i 1 i 1 i 1 − − − − intwoways: 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.