ebook img

New Optimization Algorithms in Physics PDF

298 Pages·2004·5.452 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Optimization Algorithms in Physics

Titelei_Hartmann 18.03.2004 14:22 Uhr Seite 3 (Black/Process Black Bogen) New Optimization Algorithms in Physics Edited by Alexander K.Hartmann and Heiko Rieger Titelei_Hartmann 18.03.2004 14:22 Uhr Seite 4 (Black/Process Black Bogen) Editors This book was carefully produced.Nevertheless, editors,authors and publisher do not warrant the Alexander K.Hartmann information contained therein to be free of errors. Universität Göttingen,Germany Readers are advised to keep in mind that state- [email protected] ments,data,illustrations,procedural details or other items may inadvertently be inaccurate. Heiko Rieger Universität des Saarlandes,Germany Library of Congress Card No.:applied for [email protected] British Library Cataloging-in-Publication Data: A catalogue record for this book is available from the British Library Cover Picture Short artificial peptide (U.H.E.Hansmann); Bibliographic information published by Dense configuration of polydisperse hard discs (W. Die Deutsche Bibliothek Krauth);Cut Polytope for the complete graph with Die Deutsche Bibliothek lists this publication in N=3 (F.Liers et al);Factor graph for 3-SAT (R. the Deutsche Nationalbibliografie;detailed bibli- Zecchina) ographic data is available in the Internet at <http://dnb.ddb.de>. © 2004 WILEY-VCH Verlag GmbH & Co.KGaA, Weinheim All rights reserved (including those of translation into other languages).No part of this book may be reproduced in any form – nor transmitted or translated into machine language without written permission from the publishers.Registered names,trademarks,etc.used in this book,even when not specifically marked as such,are not to be considered unprotected by law. Printed in the Federal Republic of Germany Printed on acid-free paper Composition Uwe Krieg,Berlin Printing Strauss GmbH,Mörlenbach Bookbinding Litges & Dopf Buchbinderei GmbH,Heppenheim ISBN 3-527-40406-6 Contents ListofContributors XI 1 Introduction (A.K.HartmannandH.Rieger) 1 PartI ApplicationsinPhysics 5 2 ClusterMonteCarloAlgorithms (W.Krauth) 7 2.1 DetailedBalanceandaprioriProbabilities . . . . . . . . . . . . . . . . . . . 7 2.2 TheWolffClusterAlgorithmfortheIsingModel . . . . . . . . . . . . . . . 10 2.3 ClusterAlgorithmforHardSpheresandRelatedSystems . . . . . . . . . . . 12 2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.1 PhaseSeparationinBinaryMixtures. . . . . . . . . . . . . . . . . . 16 2.4.2 PolydisperseMixtures . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.3 Monomer-DimerProblem . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 LimitationsandExtensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3 ProbingSpinGlasseswithHeuristicOptimization Algorithms (O.C.Martin) 23 3.1 SpinGlasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.2 TheIsingModel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.3 ModelsofSpinGlasses. . . . . . . . . . . . . . . . . . . . . . . . . 24 3.1.4 SomeChallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2 SomeHeuristicAlgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.1 GeneralIssues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.2.2 VariableDepthSearch . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2.3 GeneticRenormalizationAlgorithm . . . . . . . . . . . . . . . . . . 36 3.3 ASurveyofPhysicsResults . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.1 ConvergenceoftheGround-stateEnergyDensity . . . . . . . . . . . 41 3.3.2 DomainWalls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 ClusteringofGroundStates . . . . . . . . . . . . . . . . . . . . . . 42 3.3.4 Low-energyExcitations . . . . . . . . . . . . . . . . . . . . . . . . 42 VI Contents 3.3.5 PhaseDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4 ComputingExactGroundStatesofHardIsingSpinGlassProblemsby Branch-and-cut (F.Liers,M.Jünger,G.Reinelt,andG.Rinaldi) 47 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 GroundStatesandMaximumCuts . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 AGeneralSchemeforSolvingHardMax-cutProblems . . . . . . . . . . . . 51 4.4 LinearProgrammingRelaxationsofMax-cut . . . . . . . . . . . . . . . . . 55 4.5 Branch-and-cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.6 ResultsofExactGround-stateComputations . . . . . . . . . . . . . . . . . . 62 4.7 AdvantagesofBranch-and-cut . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.8 ChallengesfortheYearstoCome . . . . . . . . . . . . . . . . . . . . . . . 66 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5 CountingStatesandCountingOperations (A.AlanMiddleton) 71 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 PhysicalQuestionsaboutGroundStates . . . . . . . . . . . . . . . . . . . . 72 5.2.1 HomogeneousModels . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.2.2 MagnetswithFrozenDisorder . . . . . . . . . . . . . . . . . . . . . 73 5.3 FindingLow-energyConfigurations . . . . . . . . . . . . . . . . . . . . . . 75 5.3.1 PhysicallyMotivatedApproaches . . . . . . . . . . . . . . . . . . . 75 5.3.2 CombinatorialOptimization . . . . . . . . . . . . . . . . . . . . . . 76 5.3.3 Ground-stateAlgorithmfortheRFIM . . . . . . . . . . . . . . . . . 78 5.4 TheEnergyLandscape: DegeneracyandBarriers . . . . . . . . . . . . . . . 80 5.5 CountingStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.5.1 Ground-stateConfigurationDegeneracy . . . . . . . . . . . . . . . . 83 5.5.2 ThermodynamicState . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.5.3 NumericalStudiesofZero-temperatureStates . . . . . . . . . . . . . 86 5.6 RunningTimesforOptimizationAlgorithms. . . . . . . . . . . . . . . . . . 91 5.6.1 RunningTimesandEvolutionoftheHeights . . . . . . . . . . . . . 92 5.6.2 HeuristicDerivationofRunningTimes . . . . . . . . . . . . . . . . 94 5.7 FurtherDirections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6 ComputingthePottsFreeEnergyandSubmodularFunctions (J.-C.Anglèsd’Auriac) 101 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 ThePottsModel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.2.1 DefinitionofthePottsModel. . . . . . . . . . . . . . . . . . . . . . 102 6.2.2 SomeResultsforNon-randomModels. . . . . . . . . . . . . . . . . 103 6.2.3 TheFerromagneticRandomBondPottsModel . . . . . . . . . . . . 103 Contents VII 6.2.4 HighTemperatureDevelopment . . . . . . . . . . . . . . . . . . . . 103 6.2.5 LimitofanInfiniteNumberofStates . . . . . . . . . . . . . . . . . 104 6.3 BasicsontheMinimizationofSubmodularFunctions . . . . . . . . . . . . . 105 6.3.1 DefinitionofSubmodularFunctions . . . . . . . . . . . . . . . . . . 105 6.3.2 ASimpleCharacterization . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.4 MinimizationofSubmodularFunction. . . . . . . . . . . . . . . . . 106 6.4 FreeEnergyofthePottsModelintheInfiniteq-Limit . . . . . . . . . . . . . 107 6.4.1 TheMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4.2 TheAuxiliaryProblem . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.4.3 TheMax-flowProblem: theGoldbergandTarjanAlgorithm . . . . . 111 6.4.4 AbouttheStructureoftheOptimalSets . . . . . . . . . . . . . . . . 111 6.5 ImplementationandEvaluation . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.5.2 ExampleofApplication . . . . . . . . . . . . . . . . . . . . . . . . 114 6.5.3 EvaluationoftheCPUTime . . . . . . . . . . . . . . . . . . . . . . 114 6.5.4 MemoryRequirement . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.5.5 VariousPossibleImprovements . . . . . . . . . . . . . . . . . . . . 115 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PartII PhaseTransitionsinCombinatorialOptimizationProblems 119 7 TheRandom3-satisfiabilityProblem: FromthePhaseTransitiontotheEfficient GenerationofHard,butSatisfiableProblemInstances (M.Weigt) 121 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.2 Random3-SATandtheSAT/UNSATTransition . . . . . . . . . . . . . . . . 122 7.2.1 NumericalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 7.2.2 UsingStatisticalMechanics . . . . . . . . . . . . . . . . . . . . . . 124 7.3 SatisfiableRandom3-SATInstances . . . . . . . . . . . . . . . . . . . . . . 127 7.3.1 TheNaiveGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.3.2 UnbiasedGenerators . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 8 AnalysisofBacktrackingProceduresforRandomDecisionProblems (S.Cocco,L.Ein-Dor,andR.Monasson) 139 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.2 PhaseDiagram,SearchTrajectoriesandtheEasySATPhase . . . . . . . . . 143 8.2.1 OverviewofConceptsUsefultoDPLLAnalysis . . . . . . . . . . . 144 8.2.2 ClausePopulations: Flows,AveragesandFluctuations . . . . . . . . 145 8.2.3 Average-caseAnalysisintheAbsenceofBacktracking . . . . . . . . 147 8.2.4 OccurrenceofContradictionsandPolynomialSATPhase. . . . . . . 150 VIII Contents 8.3 AnalysisoftheSearchTreeGrowthintheUNSATPhase . . . . . . . . . . . 153 8.3.1 NumericalExperiments . . . . . . . . . . . . . . . . . . . . . . . . 153 8.3.2 ParallelGrowthProcessandMarkovianEvolutionMatrix . . . . . . 155 8.3.3 GeneratingFunctionandLarge-sizeScaling . . . . . . . . . . . . . . 158 8.3.4 InterpretationinTermsofGrowthProcess . . . . . . . . . . . . . . . 161 8.4 HardSATPhase: AverageCaseandFluctuations . . . . . . . . . . . . . . . 164 8.4.1 MixedBranchandTreeTrajectories . . . . . . . . . . . . . . . . . . 164 8.4.2 DistributionofRunningTimes . . . . . . . . . . . . . . . . . . . . . 165 8.4.3 LargeDeviationAnalysisoftheFirstBranchintheTree . . . . . . . 167 8.5 TheRandomGraphColoringProblem . . . . . . . . . . . . . . . . . . . . . 171 8.5.1 DescriptionofDPLLAlgorithmforColoring . . . . . . . . . . . . . 171 8.5.2 ColoringintheAbsenceofBacktracking . . . . . . . . . . . . . . . 172 8.5.3 ColoringinthePresenceofMassiveBacktracking . . . . . . . . . . 173 8.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 9 NewIterativeAlgorithmsforHardCombinatorialProblems (R.Zecchina) 183 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9.2 CombinatorialDecisionProblems,K-SATandtheFactorGraphRepresentation185 9.2.1 RandomK-SAT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 9.3 GrowthProcessAlgorithm: Probabilities,MessagesandTheirStatistics . . . 190 9.4 TraditionalMessage-passingAlgorithm: BeliefPropagationasSimpleCavity Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 9.5 SurveyPropagationEquations . . . . . . . . . . . . . . . . . . . . . . . . . 194 9.6 DecimatingVariablesAccordingtoTheirStatisticalBias . . . . . . . . . . . 195 9.7 ConclusionsandPerspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 197 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 PartIII NewHeuristicsandInterdisciplinaryApplications 203 10 HystereticOptimization (K.F.Pál) 205 10.1 HystereticOptimizationforIsingSpinGlasses. . . . . . . . . . . . . . . . . 206 10.2 GeneralizationtoOtherOptimizationProblems . . . . . . . . . . . . . . . . 214 10.3 ApplicationtotheTravelingSalesmanProblem . . . . . . . . . . . . . . . . 221 10.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 11 ExtremalOptimization (S.Boettcher) 227 11.1 EmergingOptimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 11.2 ExtremalOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 11.2.1 BasicNotions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228 11.2.2 EOAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Contents IX 11.2.3 ExtremalSelection . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 11.2.4 RankOrdering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 11.2.5 DefiningFitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 11.2.6 DistinguishingEOfromotherHeuristics . . . . . . . . . . . . . . . 235 11.2.7 ImplementingEO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 11.3 NumericalResultsforEO. . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 11.3.1 EarlyResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 11.3.2 ApplicationsofEObyOthers . . . . . . . . . . . . . . . . . . . . . 242 11.3.3 Large-scaleSimulationsofSpinGlasses . . . . . . . . . . . . . . . . 243 11.4 TheoreticalInvestigations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 12 SequenceAlignments (A.K.Hartmann) 253 12.1 MolecularBiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 12.2 AlignmentsandAlignmentAlgorithms. . . . . . . . . . . . . . . . . . . . . 259 12.3 Low-probabilityTailofAlignmentScores . . . . . . . . . . . . . . . . . . . 266 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 13 ProteinFoldinginSilico–theQuestforBetterAlgorithms (U.H.E.Hansmann) 275 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 13.2 EnergyLandscapePaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 13.3 BeyondGlobalOptimization . . . . . . . . . . . . . . . . . . . . . . . . . . 280 13.3.1 ParallelTempering . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 13.3.2 MulticanonicalSamplingandOtherGeneralized-ensembleTechniques 283 13.4 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 13.4.1 HelixFormationandFolding . . . . . . . . . . . . . . . . . . . . . . 288 13.4.2 StructurePredictionsofSmallProteins . . . . . . . . . . . . . . . . 290 13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 Index 297 List of Contributors •Jean-ChristianAnglèsd’Auriac, Ch.6 •UlrichH.E.Hansmann, Ch.13 CentredeRecherchessurlesTresBassesTem- DepartmentofPhysics peratures MichiganTechnologicalUniversity BP166,F-38042Grenoble,France Houghton MI49931-1295,USA e-mail:[email protected] e-mail:[email protected] •StefanBoettcher, Ch.11 •AlexanderK.Hartmann, Ch.1,12 InstitutfürTheoretischePhysik StefanBoettcher UniversitätGöttingen PhysicsDepartment Tammanstraße1 EmoryUniversity D-37077Göttingen,Germany Atlanta,GA30322;USA e-mail: e-mail:[email protected] [email protected] www.physics.emory.edu/faculty/boettcher •MichaelJünger, Ch.4 •SimonaCocco, Ch.8 InstitutfürInformatik UniversitätzuKöln Laboratoire de Dynamique des Fluides Com- Pohligstraße1 plexes D-50969Köln,Germany 3ruedel’Université e-mail:[email protected] 67000Strasbourg,France e-mail:[email protected] •WernerKrauth, Ch.2 CNRS-LaboratoiredePhysiqueStatistique •LiatEin-Dor, Ch.8 EcoleNormaleSupérieure 24,rueLhomond DepartmentofPhysicsofComplexSystems F-75231ParisCedex05,France WezmannInstitute e-mail:[email protected] Rehovot76100,Israel •FraukeLiers, Ch.4 and InstitutfürInformatik UniversitätzuKöln LaboratoiredePhysiqueThéoriquedel’ENS Pohligstraße1 24rueLhomond D-50969Köln,Germany 75005Paris,France e-mail:[email protected] NewOptimizationAlgorithmsinPhysics.EditedbyAlexanderK.Hartmann,HeikoRieger Copyright(cid:1)c 2004Wiley-VCHVerlagGmbH&Co.KGaA ISBN:3-527-40406-6 XII ListofContributors •OlivierC.Martin, Ch.3 •GerhardReinelt, Ch.4 LPTMS,UniversitéParis-Sud InstitutfürInformatik OrsayCedex91405,France Ruprecht-Karls-UniversitätHeidelberg ImNeuenheimerFeld368 e-mail:[email protected] D-69120Heidelberg,Germany e-mail: •A.AlanMiddleton, Ch.5 [email protected] DepartmentofPhysics •HeikoRieger, Ch.1 SyracuseUniversity TheoretischePhysik Syracuse,NY,USA UniversitätdesSaarlandes e-mail:[email protected] D-66041Saarbrücken,Germany e-mail:[email protected] •RemiMonasson, Ch.8 •GiovanniRinaldi, Ch.4 LaboratoiredePhysiqueThéoriquedel’ENS IstitutodiAnalisideiSistemiedInformatica 24rueLhomond ‘AntonioRuberti’-CNR 75005Paris,France VialeManzoni,30 e-mail:[email protected] 00185Roma,Italy e-mail:[email protected] and •MartinWeigt, Ch.7 LaboratoiredePhysiqueThéorique InstitutfürTheoretischePhysik 3ruedel’Université UniversitätGöttingen 67000Strasbourg,France Tammanstraße1 D-37077Göttingen,Germany e-mail:[email protected] •KárolyF.Pál, Ch.10 •RiccardoZecchina, Ch.9 DepartmentofTheoreticalPhysics InstituteofNuclearResearchofthe International Centre for Theoretical Physics HungarianAcademyofSciences (ICTP) Bemtér18/c StradaCostiera,11 P.O.Box586 H-4026Debrecen,Hungary I-34100 Trieste,Italy e-mail:[email protected] e-mail:[email protected] 1 Introduction AlexanderK.HartmannandHeikoRieger Optimization problems occur very frequently in physics. Some of them are easy to handle withconventionalmethodsalsousedinotherareassuchaseconomyoroperationsresearch. Butassoonasahugenumberofdegreesoffreedomareinvolved,asistypicallythecasein statisticalphysics,condensedmatter,astrophysicsandbiophysics,conventionalmethodsfail to find the optimum in a reasonable time and new methods have to be invented. This book containsarepresentativecollectionofnewoptimizationalgorithmsthathavebeendevisedby physicistsfromvariousfields,sometimesbasedonmethodsdevelopedbycomputerscientists and mathematicians. However, it is not a mere collection of algorithms but tries to demon- strates their scope and efficiency by describing typical situations in physics where they are useful. Theindividualarticlesofthiscollectionsareself-containedandshouldbeunderstandable forscientistsroutinelyusingnumericaltools. Amorebasicandpedagogicalintroductioninto optimizationalgorithmsisourbookonOptimizationAlgorithmsinPhysics,whichcanserve asanappendixforthenewcomertothisfieldofcomputationalphysicsorforundergraduate students. The reason why we found it necessaryto compose another book in this field with agreaterfocusisthefactthattheapplicationofoptimizationmethodsisoneofthestrongest growingfieldsinphysics. Themainreasonsforthesecurrentdevelopmentsarethefollowing keyfactors: First of all great progress has been made in the developmentof new combinatorial opti- mization methods in computer science. Using these sophisticated approaches, much larger systemsizesofthecorrespondingphysicalsystemscanbetreated. Formanymodelsthesys- temssizeswhichwereaccessiblebefore,weretoosmalltoobtainreliableandsignificantdata. However,thisisnowpossible. Inthiswaycomputersciencehashelpedphysics. Butknowledgetransferalsoworkstheotherwayround.Physicsprovidesstillnewinsights andmethodsoftreatingoptimizationproblems,suchastheearlierinventionofthesimulated annealingtechnique. Recentalgorithmicdevelopmentsinphysicsare,e.g.,theextremalopti- mizationmethodorthehystericoptimizationapproach,bothcoveredinthisbook. Moreover, phase transitions were recently found in “classical” optimization problems within theoretical computer science, during the study of suitably parameterized ensembles. Thesephasetransitionsveryoftencoincidewithpeaksoftherunningtimeorwithchangesof thetypical-casecomplexityfrompolynomialtoexponential. Aswellasthegainfromtaking the physical viewpoint, by mapping the optimization problems to physical systems and ap- plyingmethodsfromstatisticalphysics,itispossibletoobtainmanyresults,whichhavenot beenfoundwithtraditionalmathematicaltechniques. Thisistruealsofortheanalysisofthe typical-casecomplexityof(random)algorithms. NewOptimizationAlgorithmsinPhysics.EditedbyAlexanderK.Hartmann,HeikoRieger Copyright(cid:1)c 2004Wiley-VCHVerlagGmbH&Co.KGaA ISBN:3-527-40406-6

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.