MaterialsScienceandEngineeringR56(2007)1–129 www.elsevier.com/locate/mser New materials for micro-scale sensors and actuators An engineering review Stephen A. Wilsona,*, Renaud P.J. Jourdaina, Qi Zhanga, Robert A. Doreya, Chris R. Bowenb,1, Magnus Willanderc,2, Qamar Ul Wahabd,3, Magnus Willandere,4, Safaa M. Al-hillie,4, Omer Nure,4, Eckhard Quandtf,5, Christer Johanssong,6, Emmanouel Pagounish,7, Manfred Kohli,8, Jovan Matovicj,9, Bjo¨rn Samelk,10, Wouter van der Wijngaartk,10, Edwin W.H. Jagerl,11, Daniel Carlssonl,11, Zoran Djinovicj,12, Michael Wegenerp,13, Carmen Moldovanm,14, Rodica Iosubm, Estefania Abadn,15, Michael Wendlandto,16, Cristina Rusug,17, Katrin Perssong,17 aMicrosystemsandNanotechnologyGroup,MaterialsDepartment,CranfieldUniversity,Cranfield,BedfordshireMK430AL,UnitedKingdom bMaterialsResearchCentre,DepartmentofMechanicalEngineering,UniversityofBath,BathBA27AY,UnitedKingdom cPhysicalElectronics,DepartmentofScienceandTechnology,CampusNorrko¨ping,Linko¨pingUniversity,SE-60174Norrko¨ping,Sweden dDepartmentofPhysics,MeasurementTechnology,BiologyandChemistry,Linko¨pingUniveristy,SE-58183Linko¨ping,Sweden ePhysicalElectronicsandPhotonics,PhysicsDepartment,GothenburgUniversity,SE-41296Gothenburg,Sweden fInstituteforMaterialsScience,FacultyofEngineering,UniversityKiel,Kaiserstr.2,24143Kiel,Germany gImegoAB,ArvidHedvallsBacke4,SE-41133Go¨teborg,Sweden hHelsinkiUniversityofTechnology,LaboratoryofMaterialsScience,Vuorimiehentie2A,02015TKK,Finland iMicrosystems,ForschungszentrumKarlsruhe,IMT,Postfach3640,76021Karlsruhe,Germany jInstituteofSensorandActuatorSystems,ViennaUniversityofTechnology,Floragasse7/2,A-1040Vienna,Austria kMicrosystemTechnologyLab(MST),SchoolofElectricalEngineering(EE),RoyalInstituteofTechnology(KTH), Osquldasvag10,S-10044Stockholm,Sweden lMicromuscleAB,Teknikringen10,SE-58330Linko¨ping,Sweden mMicrostructuresforBio-MedicalApplicationsResearchLaboratory,NationalInstituteforResearchandDevelopmentinMicrotehnologies, IMT-Bucharest,31BErouIancuNicolaeStreet,077190Bucharest,Romania nMicroandNanotechnologyDepartment,Fundacio´nTekniker,AvenidaOtaola20,20600EIBAR(Guipuzcoa),Spain oMicroandNanosystems,DepartmentofMechanicalEngineering,ETHZurich,8092Zurich,Switzerland pFunctionalPolymerSystems,FraunhoferInstituteforAppliedPolymerResearch,Geiselbergstrasse69,14476Potsdam-Golm,Germany Received23February2007;receivedinrevisedform20March2007;accepted20March2007 Availableonline29June2007 * Correspondingauthor.Tel.:+441234750111x2505;fax:+441234751346. E-mailaddresses:s.a.wilson@cranfield.ac.uk(S.A.Wilson),[email protected](C.R.Bowen),[email protected](M.Willander), [email protected](Q.U.Wahab),[email protected](M.Willander),[email protected](S.M.Al-hilli), [email protected](O.Nur),[email protected](E.Quandt),[email protected](C.Johansson),[email protected].fi (E.Pagounis),[email protected](M.Kohl),[email protected](J.Matovic),[email protected](B.Samel), [email protected](W.vanderWijngaart),[email protected](E.W.H.Jager),[email protected] (D.Carlsson),[email protected](Z.Djinovic),[email protected],[email protected](M.Wegener), [email protected](C.Moldovan),[email protected](R.Iosub),[email protected](E.Abad),[email protected](M.Wendlandt), [email protected](C.Rusu),[email protected](K.Persson). 0927-796X/$–seefrontmatter#2007ElsevierB.V.Allrightsreserved. doi:10.1016/j.mser.2007.03.001 2 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 Abstract Thispaperprovidesadetailedoverviewofdevelopmentsintransducermaterialstechnologyrelatingtotheircurrentandfuture applications in micro-scale devices. Recent advances in piezoelectric, magnetostrictive and shape-memory alloy systems are discussedandemergingtransducermaterialssuchasmagneticnanoparticles,expandablemicro-spheresandconductivepolymers areintroduced.Materialsproperties,transducermechanismsandendapplicationsaredescribedandthepotentialforintegrationof the materials with ancillary systems components is viewed as an essential consideration. The review concludes with a short discussionofstructuralpolymersthatareextendingtherangeofmicro-fabricationtechniquesavailabletodesignersandproduction engineersbeyondthelimitations of silicon fabrication technology. #2007Elsevier B.V.All rightsreserved. Keywords: Piezoelectric;Magnetic;Shapememory;Polymer;Microstructure;Microtechnology Contents 1. Introduction ... .... .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... ... 5 2. Ferroelectricceramics .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... ... 6 2.1. Piezoelectric properties and potentialapplications offerroelectric thin films .... .... .... ..... .... ... 7 2.1.1. Thinfilmdeposition.... .... .... .... .... ..... .... .... .... .... .... ..... .... ... 8 2.1.2. Piezoelectric properties offerroelectric thin films..... .... .... .... .... .... ..... .... ... 8 2.1.3. Polingandreliability issues... .... .... .... ..... .... .... .... .... .... ..... .... ... 9 2.1.4. Summary—ferroelectric thin fims... .... .... ..... .... .... .... .... .... ..... .... .. 10 2.2. Thickfilmfabrication formicro-scale sensors .... .... ..... .... .... .... .... .... ..... .... .. 10 2.2.1. Thickfilmdepositiontechniques ... .... .... ..... .... .... .... .... .... ..... .... .. 10 2.2.2. Inks .. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 11 2.2.3. Transformation binders.. .... .... .... .... ..... .... .... .... .... .... ..... .... .. 12 2.2.4. Electricalproperties of PZTthick films... .... ..... .... .... .... .... .... ..... .... .. 12 2.2.5. Summary—ferroelectric thickfilms . .... .... ..... .... .... .... .... .... ..... .... .. 12 3. Piezoelectric semiconductors..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 13 3.1. GroupsIII–Vnitrides (GaN/AlN). .... .... .... .... ..... .... .... .... .... .... ..... .... .. 13 3.2. GroupsIII–Vmaterials.... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 15 3.3. ZnOmaterials . .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 15 3.4. Summary—piezoelectric semi-conductors ... .... .... ..... .... .... .... .... .... ..... .... .. 16 4. Zincoxidestructures forchemicalsensors ... .... .... .... ..... .... .... .... .... .... ..... .... .. 16 4.1. Synthesisand properties ofZnO nano-structures .. .... ..... .... .... .... .... .... ..... .... .. 17 4.2. Electrochemical potentialmethod. .... .... .... .... ..... .... .... .... .... .... ..... .... .. 18 4.3. Sitebindingmethod. ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 19 1Tel.:+441225383660;fax:+441225826098. 2Tel.:+4611363167. 3Tel.:+4613288936. 4Tel.:+46317722093/2097/3487;fax:+46317722092. 5Tel.:+494318806200;fax:+494318806203. 6Tel.:+46317501861;fax:+46317501801. 7Tel.:+358405048321;fax:+35894512677. 8Tel.:+49724782x2798;fax:+497247827798. 9Tel.:+4326222285921,fax:+4326222285917. 10Tel.:+4687906613;fax:+468100858. 11Tel.:+46133420053;fax:+46133420059. 12Tel.:+4326222285921;fax:+4326222285917. 13Tel.:+493315681209;fax:+493315683910. 14Tel.:+40214908212;fax:+402149082381. 15Tel.:+34943206744;fax:+34943202757. 16Tel:+416324705;fax:+416321462. 17Tel.:+46317501868;fax:+46317501801. S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 3 5. Siliconcarbide forchemical sensingdevices.... .... .... ..... .... .... .... .... .... ..... .... .... 21 5.1. SiC singlecrystal growth .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 22 5.2. Gassensorprinciples ... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 23 5.3. SiC gassensor development .. .... .... .... .... ..... .... .... .... .... .... ..... .... .... 23 5.4. Otherinnovative SiC basedchemical gassensors.... ..... .... .... .... .... .... ..... .... .... 24 5.5. Conclusions. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 25 6. Magnetostrictivethin films .... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 25 6.1. Giantmagnetostrictivethin films ... .... .... .... ..... .... .... .... .... .... ..... .... .... 25 6.2. Magnetostrictivethin filmactuators . .... .... .... ..... .... .... .... .... .... ..... .... .... 27 6.3. Magnetostrictivemagnetoresistive sensors. .... .... ..... .... .... .... .... .... ..... .... .... 27 6.4. Magnetostrictivemagnetoimpedance sensors ... .... ..... .... .... .... .... .... ..... .... .... 28 6.5. Magnetostrictiveinductivesensors .. .... .... .... ..... .... .... .... .... .... ..... .... .... 28 7. Magneticproperties of magneticnanoparticles .. .... .... ..... .... .... .... .... .... ..... .... .... 29 7.1. Single domains .. ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 29 7.2. Ne´elrelaxation... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 29 7.3. Brownian relaxation .... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 31 7.4. Biosensormethods usingmagnetic nanoparticles .... ..... .... .... .... .... .... ..... .... .... 31 7.5. Conclusions. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 32 8. Magneticshape memoryalloys. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 33 8.1. Production andchemical composition.... .... .... ..... .... .... .... .... .... ..... .... .... 34 8.2. Magneticand mechanical measurements.. .... .... ..... .... .... .... .... .... ..... .... .... 35 8.3. Magneticshape memoryactuators .. .... .... .... ..... .... .... .... .... .... ..... .... .... 40 8.4. Magneticshape memorysensors, thin filmsandcomposites . .... .... .... .... .... ..... .... .... 43 9. Shape memorythin filmsforsmartactuators ... .... .... ..... .... .... .... .... .... ..... .... .... 44 9.1. Microfluidic valves usingSMA thin films. .... .... ..... .... .... .... .... .... ..... .... .... 44 9.2. Roboticdevices usingSMA thinfilmcomposites.... ..... .... .... .... .... .... ..... .... .... 47 9.3. Microactuators offerromagnetic SMA thinfilmsfor informationtechnology.. .... .... ..... .... .... 49 9.4. Conclusions. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 51 10. Shape memorymaterials. ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 51 10.1. Shape memoryalloys ... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 51 10.2. Micro-scale applications ofSMA... .... .... .... ..... .... .... .... .... .... ..... .... .... 53 10.3. Shape memorypolymers. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 54 10.4. SMPapplications inMST.... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 55 10.5. Conclusion . .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 56 11. Expandable microsphere composites . .... .... .... .... ..... .... .... .... .... .... ..... .... .... 56 11.1. Direct mixingof themicrospheresin liquid.... .... ..... .... .... .... .... .... ..... .... .... 57 11.2. Surface immobilization ofthemicrospheres byincorporationinphotoresist .. .... .... ..... .... .... 58 11.3. Surface immobilization ofthemicrospheres throughself-assembly onachemically alteredsurface... .... 60 11.4. Incorporation ofthemicrospheres ina paste ... .... ..... .... .... .... .... .... ..... .... .... 61 11.5. Incorporation ofthemicrospheres as acomposite ina polymermatrix.. .... .... .... ..... .... .... 62 12. Electro-active polymermicroactuators .... .... .... .... ..... .... .... .... .... .... ..... .... .... 64 12.1. Conjugated polymer actuators . .... .... .... .... ..... .... .... .... .... .... ..... .... .... 65 12.2. Fabrication of PPy-microactuators .. .... .... .... ..... .... .... .... .... .... ..... .... .... 66 12.3. Operation and performance ... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 68 12.4. Applications and devices. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 68 12.4.1. Bending actuators.... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 68 12.4.2. Valves... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 71 13. Electrochromic andelectroluminescent polymers. .... .... ..... .... .... .... .... .... ..... .... .... 72 13.1. Electrochromic materials. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 73 13.2. Electrochromic devices.. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 74 13.3. Electroluminescent materials .. .... .... .... .... ..... .... .... .... .... .... ..... .... .... 75 13.4. Electroluminescent devices ... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 76 13.5. Conclusions. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .... 78 14. Ferroelectrets—cellular piezoelectric polymers .. .... .... ..... .... .... .... .... .... ..... .... .... 78 14.1. Foampreparation andoptimization.. .... .... .... ..... .... .... .... .... .... ..... .... .... 79 14.2. Voidchargingin cellularspace–charge electrets. .... ..... .... .... .... .... .... ..... .... .... 80 4 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 14.3. Piezoelectric properties.... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 81 14.4. Applications offerroelectrets.... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 82 14.5. Conclusionsandoutlook... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 82 15. Conductive polymers . .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 83 15.1. Mechanism ofpolymer conductivity—roleof doping ... ..... .... .... .... .... .... ..... .... .. 83 15.2. Conductive polymericmaterials—examples.. .... .... ..... .... .... .... .... .... ..... .... .. 85 15.2.1. Polypyrrole . ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 85 15.2.2. Polyaniline . ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 85 15.2.3. Polythiophene .... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 85 15.2.4. Polysiloxane ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 86 15.2.5. Polyphthalocyanine. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 86 15.2.6. Fullerene... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 87 15.3. Applications ofconductive polymersin sensorsandactuators... .... .... .... .... .... ..... .... .. 87 15.3.1. Sensors.... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 87 15.3.2. Chemical microsensors.. .... .... .... .... ..... .... .... .... .... .... ..... .... .. 88 15.3.3. Electronicnoses... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 89 15.3.4. FETtypedevices.. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 90 15.3.5. Biosensors.. ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 91 15.3.6. Actuators... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 91 15.4. Conclusions... .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 92 16. Polyimides .... .... .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 93 16.1. Properties ofpolyimides ... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 93 16.2. Processingof polyimides... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 93 16.2.1. Wetetch patterning. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 93 16.2.2. Dryetch patterning. .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 94 16.2.3. Photodefinable polyimides.... .... .... .... ..... .... .... .... .... .... ..... .... .. 94 16.2.4. Laser ablation .... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 95 16.3. Polyimideapplications .... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 95 16.3.1. Highdensity interconnection flexiblesubstrates. ..... .... .... .... .... .... ..... .... .. 95 16.3.2. MEMSdevices.... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 95 17. Structuralpolymers .. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 97 17.1. Selection ofstructuralpolymers formicro-scale devices. ..... .... .... .... .... .... ..... .... .. 98 17.1.1. Thermosets . ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... .. 98 17.1.2. Thermoplastics.... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 100 17.1.3. Elastomers.. ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 101 17.2. Applications ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 101 17.2.1. Micro-scale sensors .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 101 17.2.2. Micro-scale actuators ... .... .... .... .... ..... .... .... .... .... .... ..... .... . 102 18. Integrationand interconnection ... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 103 18.1. Wafer bonding. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 104 18.1.1. Adhesivebonding.. .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 104 18.1.2. Metallic bonding .. .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 105 18.1.3. Glass-fritbonding.. .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 105 18.1.4. Silicondirect bonding... .... .... .... .... ..... .... .... .... .... .... ..... .... . 105 18.1.5. Plasma-enhancedbonding.... .... .... .... ..... .... .... .... .... .... ..... .... . 106 18.1.6. Anodicbonding... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 106 18.2. Low temperature co-firedceramics andmicrosystems... ..... .... .... .... .... .... ..... .... . 107 18.2.1. MediumCTE LTCC.... .... .... .... .... ..... .... .... .... .... .... ..... .... . 108 18.2.2. Low CTELTCC... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 109 18.3. Characterisation methods formicrosystem bonding .... ..... .... .... .... .... .... ..... .... . 110 18.4. Conclusion ... .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 112 Acknowledgements .. .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 112 References .... .... .... ..... .... .... .... .... .... ..... .... .... .... .... .... ..... .... . 112 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 5 1. Introduction Amaterial can besaidtobe‘new’ or‘novel’ untilit findsitsway intomainstreamengineering technology.The distinguishing criterion is not whether the end-use is in consumer products, sophisticated, specialised or niche applications, butwhether materials performance is predictable and reliable. By implication, quality and processing must be well understood and commercial supplies readily available. For these reasons, the time-scale in which a materialremainsnewisrelateddirectlytothecommercialinterestthathasevolvedandconsequentlytothebusiness opportunities that the material has inspired in its conceptual form. A new material that promises to provide tangible improvements over the established norm will soon attract commercialinterestandits’potentialusewillcomeunderscrutiny.Thefirstquestionstoberaisedrelatetopossible integrationintoexistingsystemsorpossiblecreationofanewproductline.Iftechnologicalbarrierstointegration exist,betheseeitherrealorperceived,thencommercialinterestwillimmediatelycool.Fortheparticularcaseof micro-systemstechnology(MST),wherethecreationoffinescaleintegratedsystemsisakeymotivationalfactor, thepotentialcostsofproductdevelopmentcanoftenovershadowanyimprovementsinperformancethatmightbe gained.Thisispartlyaconsequenceoflocalintegrationwithmicroelectronicsandpackaginganditispartlydueto the capital equipment costs involved. In the main, however, it is due to the time and uncertainty involved in establishing a new fabrication route that meets predefined standards of quality and reliability. Hence, to gain acceptance in micro-technology the newmaterial must offer distinctperformance advantages and it must also be compatible with various ancillary systems components and packaging. In all cases, it is highly probable that production will entail a lengthy sequence of process steps and consequently the material will need to tolerate repeated thermal cycling as system fabrication proceeds. It is not uncommon for the materials covered in this review, namely transducer materials, to rely on some aspect of their micro-structural composition that is highly sensitive to processing conditions. As an example, effects of grain size or morphology are often critical and optimumperformancecanbeimpairedbyexcursionsoutsidealimitedtemperaturerange.Therefore,theprocesses involved in creating the materialmay only be one partof the equation and compatibility with secondary systems fabrication processes is equally essential. Full-integration of micro-electronic and micro-mechanical components on a single wafer has been achieved commercially using silicon processing technology. Some examples of products made in this way include micro- gyroscopesandmicro-mirrorarrays.Whilstthisintegrateddesignapproachappearstobecommerciallyattractive it has, however, proven to be relatively rare owing to the complexity of the design process and, consequently, high development costs. Furthermore, due to processing restrictions the mechanical components of these fully-integrated devices are often constructed simply from silicon and silicon oxide with selective metallization. An alternative approach, adopted much more commonly, is via a hybrid design where component parts are created separately for subsequent assembly into a complete system. For small or medium-scale batch production this is an attractive option, as it removes many of the restrictions imposed by the need for process compatibility. Furthermore, test procedures can be performed at the wafer-scale before final assembly to enhance quality and overall yield. It is in this context that new transducer materials have the best chance of success. Key considera- tions are the availability of material-specific replication technologies, device-specific geometric requirements (feature types, planar or 3D, aspect ratios), the required dimensional tolerances and accuracy, surface quality or integrity, volumetric production rate and material cost, which can often be of secondary importance in this context. Overall it can be said that the most significant barriers to progress are firstly the availability of production technologiesandsecondlytheavailabilityofknowledge.Thisarticlethereforeseekstoreviewrecentdevelopmentsin transducermaterialstechnologyandtoplacetheminthecontextoftheircurrentandfutureapplicationsinmicro-scale systemsfabrication.Inadditiontoexaminingrecentadvancesinpiezoelectric,magnetostrictiveandshapememory alloys systems, emerging transducer materials such as magnetic nanoparticles, expandable micro spheres and conductivepolymersarealsodiscussed.Theirunderlyingproperties,transducermechanismandendapplicationsare described, along with the processing technologies to form them in particulate, bulk or film geometry. Aspects of processing that may influence integration of the materials with their related components areviewed as an essential consideration. From a global perspective, there are of necessity some important omissions. It seems certain that materials incorporating carbon nanotube technology and nanocomposites will reach industrial maturity in the very nearfutureandthattheirimpactwillbesignificant.Thissubjectmatterhasbeenextensivelyreviewedelsewhereand 6 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 thematerialsarenotcoveredinthisreview.Rathertheintentionistohighlightarangeofmaterialsthatcouldbeused inconjunctionwithstandardmicro-fabricationtechniquestoextendtherangeofdevicesthatcanbemadebeyondthe limitations of silicon fabrication technology. 2. Ferroelectric ceramics18 Polycrystallineleadzirconatetitanate(PZT)ceramicsareofmajorimportanceinmicrotechnology,particularlyin the field of sensors and actuators, because of their superior piezoelectric and pyroelectric properties and their high dielectricconstants[1].Devicesthatincorporatethesematerialsastheiractivecomponentincludemicro-pumpsand valves, ultrasonic motors, thermal sensors, probes for medical imaging and non-destructive testing, accelerometers and quite recently a new range of electronic components that includes filters, memory devices and switches. New applications continue to emerge and a major research effort has been underway to address the manufacturing technologyrequiredtoincorporatethesematerialswithassociatedstructuralcomponentsandelectroniccircuitryat the wafer scale. Two distinct approaches are available which have very different process requirements and which consequentlyrequiredifferentfabricationtechniques.Thebottom-upapproachisbythinfilmdeposition,performed viaspincoatingofasol–gelprecursororsputtering.Thinfilmcompositionshavebeendevelopedthathavegreatly reducedprocessingtemperatures(600–7008C)incomparisontostandardbulkceramicsintering(1100–14008C)and this has led to commercialization by the major electronics corporations in the form of ferroelectric memories and electroniccomponents.Asinglelayeristypicallyaround0.1mmandfilmsarebuiltuptotherequiredthicknessby depositing several layers in succession. The processing issues that surround production of electromechanical devices on the micro-scale are arguably evenmorecomplex,however,duetotherangeofancillarysystemcomponentsthatareneeded.Theavailableforce thatcanbegeneratedbytheceramicisdirectlyrelatedtotheamountofelectro-activematerialthatisavailableand manypiezoelectricdeviceswithpotentialcommercialapplicationssuchasmicro-pumpsrequiremuchthickerfilms to be effective, typically in the size range 10–80mm. Thesevalues have been achieved by multi-layer deposition using composite thick film techniques and significant progress has been made, which makes these materials suitableforanumberofapplications.Thistechniqueisdetailedbelow.Inpracticeresidualtensilestressisacritical issue, inherent to the process, which becomes progressively more significant as film thickness increases. Tensile stressesresultfromsubstrateclampingasthematerialcrystallizesatelevatedtemperaturesoftenleadingtoreduced fracture toughness or cracking and somewhat lower electro-active coefficients. The alternative, top-down approach for micro-scale device fabrication is by assembly of net shape components, usuallybyadhesivebonding.Thisisroutinelyadoptedforone-offdevicefabricationintheresearchenvironment.On thewafer scale there are important questions of positional accuracy both laterally and in terms of parallelism with underlyingmaterials.Thisbecomesmoresignificantaslayerthicknessesarereducedbelow(cid:2)80mm.Thenatureof thebondisofcriticalimportancetodeviceperformanceandhencethesurfaceroughnessandparticularlytheflatness oftheceramiccomponentareverysignificant.Recently,ithasbeenshownthatbulkPZTceramicscanbethinnedin situ to thicknesses well below 50mm, using ultra-precision grinding, after bonding towafer-scale components [2]. Thistechniquehasseveraladvantages:(a)theelectro-activepropertiesoftheceramiccanbefullyexploited;(b)films canbemadeinthe20–50mmthicknessrange,whichisdifficulttoachievebyothermethods;(c)ceramicfilmscanbe engineeredintoresidualcompressiontooptimizedeviceperformance;(d)themachiningtechniquescanbeusedin sequencewithstandardmicro-fabricationprocesses,suchasphotolithography,withouttheneedforahightemperature excursion,thereby extendingdesign flexibility andthe range of devices that can be produced; (e) PZT filmsin this thicknessrangecanbecanbeactivatedwellbelow100V,thisishighlysignificantincommercialtermsastheyare thencompatiblewithcurrentCMOSdrivecircuitry.Recentresearchworkisthisareahasleadtomajorimprovements intechniqueandthemethodcanbeconsideredviableforflexible,batch-scaleassemblyandsystemsintegration.The key issues that are involved in producing exceptionally smooth, flat surfaces in PZT by means of ultra-precision grinding have been discussed by Arai et al. [3–5]. As noted,ferroelectric ceramics are ofwidespread technological importanceand forthisreason theyremainthe subjectofintenseresearchactivity.Materialsdevelopmenthasfocussedonthreeparticularareas.Oneofthesecanbe 18StephenA.Wilson,RenaudP.J.Jourdain,QiZhang,RobertA.Dorey S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 7 saidtobemarket-driventhroughstrongcommercialinterestinnewfuelinjectionsystemsformotorvehicles.Thisisa highpower,hightemperature,lowvoltageapplicationwhichissatisfiedbymulti-layerceramicstacks.Theceramic layersaretypicallylessthan50mminthicknessandtheyareco-firedwithmetallicinterlayerstoproduceaninter- digitatedstructure.Asthelayersarethinalowappliedvoltagecanbeusedtogenerateastrongelectricfieldinthe ceramic[4].Afurtherareaofbothcommercialandtechnologicalinterestisinhighfrequencymedicalultrasonicsfor imagingandultrasound-guidedtherapy.Thisalsotendstobeahighpowerapplicationwherethegoalistoreducethe energylosses thatresultfrom internal power dissipation. These can generatesignificantamounts ofheatleading to thermal instability and loss of performance [6–8]. Thesecondmajorareaofresearchispushedbynewtechnologythathasemergedintheformofferroelectricsingle crystalmaterials.Thistypeofmaterialhasrecentlybecomeavailableincommercialquantitiesandtheelectro-active propertiesexhibitedareamarkedextensionbeyondthoseofconventionalpolycrystallineceramics.Thecrystalsare relaxorferroelectric materialsandtheyaretypicallybasedontheleadmagnesiumniobate–leadtitanate(PMN-PT) solid solution, although many other compositions are also in research. Relaxors are characterised by a diffuse dielectric phase transition, that is to say their dielectric permittivity is both frequency and temperature dependent. Theirphysicalbehaviourisasyetnotfullyunderstoodbut,importantly,theyarefoundtoexhibitverylargedielectric permittivities and very high piezoelectric coefficients. In operation, their electro-mechanical behaviour is predominantly electrostrictive in nature resulting in exceptionally low hysteretic losses even at high frequencies. Whilstthesematerialshaveshownclearsuperiorityforsomeelectro-acousticapplications,theiradoptionforusein actuatorsisstillat averyearlystage.Theuppertemperaturelimit ofoperation can berelativelylowataround50– 808Candthis,togetherwithamarkedenvironmentalvariabilityofproperties,clearlyimposessomerestrictionson design.Nevertheless,thesematerialsdoshowveryinterestingnewcapabilitiesandtheyareanexcitingtechnological innovation [9–15]. The third main focus of research is driven by environmental concerns over the industrial use of compounds containinglead.Whilstitcanbearguedthatthetoxicityoflead-containingceramicsorglassesisverysignificantly reducedincomparisontothatofthebasemetal,thereispressuretoreduceitsconsumption.Thishasledtoaconcerted effortworld-widetoidentifyequivalentelectro-activematerialsthatarelead-free.To-date,despitesomesignificant investmentoftimeandresources,littleprogress hasbeen madeindevelopingmaterialsthatareabletooutperform standardPZTceramics.Severalinterestingcompositionshavebeenidentified,however,thathaveusefultransducer properties and work seems sure to continue [16–20]. 2.1. Piezoelectric properties and potential applications of ferroelectric thin films Thin films are generally considered to have thicknesses less than 1 micron. Interest in ferroelectric thin films has been considerable over the last 20 years, driven by the possibility of using them for non-volatile memory applications and new microelectromechanical systems (MEMS). Thin film piezoelectric materials also offer a numberofadvantagesinMEMSapplications,duetotherelativelylargedisplacementsthatcanbegenerated,the high energy densities, as well as high sensitivity sensors with wide dynamic ranges and low power requirements [21]. Piezoelectric MEMS devices contain at least two elements: a bulk silicon frame and a piezoelectric deflection element built onto it, which also has electrodes to apply or detect voltage potentials. The silicon substrate often providesonlythestructuralelement,definingthemechanicalproperties,whiletheaddedfunctionalmaterialsuchas piezoelectricthinfilmsprovideadirecttransformationbetweenadrivingsignaloraread-outsignalandasensororan actuator parameter. Asamplingofrecentdevelopmentsinpiezoelectrictransductiondevicesusingthinfilmsincludesleadzirconate titanate(PZT)basedultrasonicmicromotors[22–24],cantileveractuators,probesforatomicforcemicroscopy[25], micropumps [26], ultrasonic transducers for medical applications [27,28] and uncooled thermal imaging as pyroelectric arrays [29,30]. The aims of this section are as follows: (cid:3) To introduce the current fabrication techniques for piezoelectric thin films. (cid:3) To discuss the important piezoelectric coefficients and the key issues or factors influencing the piezoelectric properties of ferroelectric thin films. (cid:3) To discuss piezoelectric thin film poling and reliability issues. 8 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 2.1.1. Thin film deposition MostoftheexistingphysicalandchemicalcoatingtechniqueshavebeeninvestigatedforthedepositionofPZT. Thephysicalmethodsincludeionbeamsputtering[31],rfmagnetronsputtering[32,33],dcmagnetronsputtering[34] and pulsed laser deposition (PLD) [35–37]. Chemical methods include metal-organic chemical vapour deposition (MOCVD)[38–42]andchemicalsolutiondeposition(CSD)[43,44].TodaythereisacleartrendtoapplyMOCVDor CSDsincea particular advantagewith MOCVD is thatconformal coating of three-dimensionalobjects is possible. CSDisalowcosttechniqueforsmall-scaleproduction,asrequiredinthesensorindustry.SinceforCSDthefilmis initiallyamorphous,post-annealingtreatmentsarenecessarytocrystallizethefilm.Alltheothermethodsdescribed aboveallowinsitugrowth.AlthoughtheCSDtechniqueseemsverydifferentfromthevacuumdepositiontechniques like sputtering or PLD, there are nevertheless some common features: (cid:3) Thecrystallinityandtextureofthefilmarestronglydependentonthecrystalstructureofthesubstrate,forexample: lattice parameters and thermal expansion coefficients matching, surface defects, etc. (cid:3) Thequalityoftheinterfaceisdependentonthesubstratechemistry,forexample:reactivityofthesubstratesurface with the deposited phase constituents, diffusion coefficients, etc. (cid:3) Thelatticeenergyhastobebroughttothesystem,eitherthermallyorbyaphysicalway,sincetheinitialstateisa disordered one (gas or liquid phase, plasma, particle beam, etc.). (cid:3) Nucleationandgrowthoftheperovskiterequireaprecisestoichiometry,otherwisecompetingphaseswithfluorite (Pb Ti O ) and pyrochlore (PbTi O ) structures will nucleate [45]. 2+x 2(cid:4)x 7(cid:4)y 3 7 (cid:3) The growth is nucleation controlled [46,47]. 2.1.2. Piezoelectric properties of ferroelectric thin films Thepiezoelectricpropertiesofferroelectricmaterials,suchasPbZr Ti O ,arehighlydependentoncomposition 1(cid:4)x x 3 [21].Aschematicdiagramoftheleadzirconate(PZ)–leadtitanate(PT)phasediagramisshowninFig.1.PZThastwo main ferroelectric phases; rhombohedral for x<0.48 and tetragonal for x>0.48 under standard conditions. The rhombohedralphaseisdividedinto‘hightemperature’and‘lowtemperature’phaseswithcrystalsymmetriesR2mand R3c, respectively. The boundary between the tetragonal and rhombohedral phases is sharply defined and virtually independentoftemperatureandtheboundaryisknownasthemorphotropicphaseboundary(MPB).Theboundary wasdefinedbyJaffeetal.[48]tobeatacompositionof53%Zrand47%TiinPZTceramics,andisdefinedasthe point of equal coexistence for tetraganol/rhombohedral phases. In bulk ceramics, maxima in the piezoelectric coefficients are generally observed at the MPB. The same behaviour is often [49–55], but not universally [54–56], reported in thin films. InMEMStechnology,mostofthepiezoelectricthinfilmsarepolycrystallinematerials.Thepiezoelectriceffectis averagedoverallthegrains.Theoptimumpiezoelectricpropertiesofferroelectricmaterialscanonlybeobtainedfor Fig.1. PhasediagramofthePbZrO3–PbTiO system[48]. 3 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 9 polycrystalline materials after an appropriate ‘poling’ treatment. Poling is the term used to describe a preliminary procedurethatmustbecarriedout,wherebyastrongelectricfieldisusedtoswitchtheinitial,quasi-randominternal polarisationofthepoly-domainstructureintoameta-stablealignmentinthedirectionoftheappliedfield.Asaresult, there is a net polarisation and a net piezoelectric effect. This can simplify processing, since single crystals are not required for good electromechanical properties. Thepiezoelectricpropertiesoffilmsarealmostalwayssmallerthanthoseofcorrespondingbulkceramics.Thisis duetosubstrateclamping,whichreducestheamountofstrainwhichthefilmcanexhibitforagivenappliedelectric fieldorstress[56,57].Thefilmispartofacompositestructureconsistingofthepiezoelectricfilmandsiliconsubstrate. The film is effectively clamped in the film plane, but free to move in the out-of-plane direction. Therefore, the clamping effect is thickness dependent, and the piezoelectric coefficients, such as d , increase with increasing 33,f thicknessoverarangeoffilmthickness[21,58–62].Inthinfilmceramics,itisconventionaltoassigntheindex3tothe polingdirection,usuallyperpendiculartothefilmplane.Thedirectionsof1,2arethereforeintheplaneofthefilm.In apolycrystallinefilm,directions1and2areequivalentwhichimpliesthatthein-planestrains(d andd )duetoan 31 32 applied electric field though the film thickness (E ) are isotropic and d =d . 3 31 32 Therelativecoefficientsofpiezoelectricthinfilmsaretheeffectivevaluesofd ande ,whichareobtainedas 33,f 31,f follows from the bulk tensor properties [63,56]: d (cid:4)2sE d31 d ¼ 33 13 (1) 33;f ðsE þsE Þ 11 12 d e ¼ 31 (2) 31;f ðsE þsE Þ 11 12 The d coefficient can be directly measured as the strain per unit electric field through the film thickness 33,f (x /E ) provided that x =x =s =0, where x and x are in-plane strains, s off-plane stress, x is off-plane 3 3 1 2 3 1 2 3 3 strain and sE is a compliance of the thin film. This measurement has been achieved with a double-beam Mach- ij Zehnder interferometer [64] that measures the thickness change of a film clamped on a much thicker substrate (assuring x =x =0) at s =0. The measurement of the transverse piezoelectric coefficient e , has been 1 2 3 31f undertakenwithacantileverbendingmethod,collectingthechargesasafunctionofx andx atzeros andelectric 1 2 3 field [65]. Apart from mechanical clamping due to the inert substrate, there are several other factors which influence the piezoelectricresponseofferroelectricthinfilms,includingorientationofthefilm[50,66–68],grainsize[69],thelevel ofpolarizationandbreakdownfieldstrength[70,71].Theinfluenceofdefectsonthedomain-wallcontributionstothe piezoelectriceffectinthinfilmshasnotyetbeenstudiedindetail.Thus,itispresentlynotclearwhether,forexample, the effect of acceptor and donor dopants on the properties of PZT films would lead to the same effects as in bulk materials. Filmorientationcanhaveasubstantialeffectonpiezoelectriccoefficients.Piezoelectriccoefficientsareoptimized when the polarization axis, namely c-axis or (001), is perpendicular to the film surface. It has been recently demonstrated[58]thatthesol–gelderivedPZTthinfilmswithhigherc-axisorientationexhibitedlargerpiezoelectric coefficients. For random polycrystalline films, poling is often necessary to reorient the domains along the poling direction. InmanyofthestructuresappliedtoMEMStechnology,thepiezoelectricfilmispartofacompositestructure,i.e. thepiezoelectricfilmisclampedtoanotherelasticbody.Thecouplingcoefficientnotonlydependsonthematerial parameters, but film stresses also play a role and such film stresses introduced during processing at elevated temperature are unavoidable. The residual stress can be as high as 10–100MPa [72], which induces a pre-strain, orapre-curvaturetomicromechanicalstructures.Thisstresshastobetakenintoaccountinthedesignphaseofthe devices. 2.1.3. Poling and reliability issues Theeffectsofpolinginthinfilmsdifferfromthatinceramics,sincetheclampingeffectofthesubstratepinsthe motion of a-domains [56,73]. In bulk ceramics, the clamping is effectively zero, and domains are relatively free to moveinalignmentwiththepolingfield.Therearefewstudiestodatethatarespecificallyrelatedtothinfilmpolingfor 10 S.Wilsonetal./MaterialsScienceandEngineeringR56(2007)1–129 Fig.2. PZTactuatedcoupledcantileverbandpassfilters/parallelplatevariablecapacitoractuatedbyfourthinfilmPZTcantileverunimorphs. (ImagescourtesyofPaulKirby,CranfieldUniversity,UK). piezoelectricmeasurement,butitiswellknownthatthestraininducedbypolingcanbecloseenoughtothetensile strengthofthefilmwhichcaninducecrackingordelamination.Polingusuallytakesplaceatelevatedtemperatures (<1508C) and at high field (200–300kV/cm) as this increases domain wall mobility and enables better alignment along the field direction. Some examples of PZT thin film devices are shown in Fig. 2. A further important point of performance is stability during operation and with time. The effective measured piezoelectriccoefficientsdecaywithtimeafterpolinginaprocessknownaspiezoelectricageing,duringwhichthe domainsinthepoledsamplereverttoamorethermodynamicallystableconfiguration.Depolarization(fatigue)may occur and,ifintegrationof the film into the MEMS structure is notoptimised, delamination ofthe PZT film orthe electrodes may occur [74]. From an industrial point of view, the evaluation of ageing and fatigue is certainly an important task, however, only limited studies have been reported so far [75–77]. 2.1.4. Summary—ferroelectric thin fims FerroelectricthinfilmscontinuetorepresentanareaofdynamismandtechnicaladvanceinMEMS.Overthelast20 years, considerable progress has been made in optimizing the deposition conditions for thin films to improve the available piezoelectric activity although the growth of good quality PZT thin films still requires some effort. In processing such films, wet chemical methods continue to appear attractive for many applications. Recently, the attention has shifted from preparing novel ferroelectric films to the integration of such films in complex devices. The overall estimation of performance is best seen in device applications since the performance of the devices dependsnotonlyonthepropertiesofthematerials,such asfilmorientation, grainsize, thickness,etc.,butalsothe composite structure of the devices in many cases. Inthefuture,thematerialscommunityrequiresgreaterknowledgeof,andabilitytocontrol,themicrostructureof films,andmuchmoreeffectiveinteractionwithdevicetechnologiststobringcommercialsystemsintowidespreaduse. 2.2. Thick film fabrication for micro-scale sensors Thickfilmsaregenerallyconsideredtobethosewiththicknessesgreaterthan1mm,however,suchadefinitionis impreciseasmanythinfilmtechnologiescannowachievefilmthicknessesinexcessof1mm.Thickfilmsarerequired to increase the amount of functional material present in order to achieve higher displacements or increased power comparedtothinfilms,e.g.foracoustictransducersormicropumps(Fig.3).Forthepurposesofthisdiscussion,PZT thickfilmswillbeconsideredtobethosethatareformedusingapowdersuspensionbasedprocessingroute.These suspensions are typically made up of the desired ceramic powder (to impart the required functional properties), a carrier fluid and additives designed to improve the stability of the ink and processing of the ceramic material. For furtherinformationonissuesassociatedwiththickfilmprocessingandpatterningofthickfilmstructuresthereaderis directed towards an earlier review [78]. 2.2.1. Thick film deposition techniques Many different forming techniques can be used to deposit thick films due to the ability to tailor the fluidic characteristics(e.g.surfacetension,viscosity,shearbehaviour)ofthepowdersuspensions.Despitethedifferencein
Description: