ebook img

New Lower Bound for the Optimal Ball Packing Density in Hyperbolic 4-space PDF

0.21 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Lower Bound for the Optimal Ball Packing Density in Hyperbolic 4-space

New Lower Bound for the Optimal Ball Packing 4 1 Density of Hyperbolic 4-space 0 ∗ 2 g u A RobertThijsKozma(1)andJeno˝ Szirmai(2) 2 2 (1)DepartmentofMathematics ] SUNYStonyBrook G StonyBrook,NY11794-3651USA M Email:[email protected] . h t (2)BudapestUniversityofTechnologyandEconomics a m InstituteofMathematics,DepartmentofGeometry [ H-1521Budapest,Hungary Email:[email protected] 3 v 4 8/21/2014 8 0 6 . 1 Abstract 0 Inthispaperweconsiderballpackingsin4-dimensionalhyperbolicspace.We 4 showthatitispossibletoexceedtheconjectured4-dimensional realizablepack- 1 ingdensityupper bound duetoL.Fejes-To´th(Regular Figures, 1964). Wegive : v seven examples of horoball packing configurations that yieldhigher densitiesof Xi 0.71644896...,wherehoroballsarecenteredatidealverticesofcertainCoxeter simplices,andareinvariantundertheactionsoftheirrespectiveCoxetergroups. r a 1 Introduction LetX denotea space of constantcurvature,either the n-dimensionalsphereSn, Eu- clidean space En, or hyperbolic space Hn with n 2. In discrete geometry, it is ≥ commonlyaskedtofindthehighestpossiblepackingdensityinX bycongruentnon- overlappingballsofagivenradius[1],[6]. Euclideancasesarethebestexplored. For example,thedensestpossiblelatticepackingsareknownforE2throughE8. Inhigher dimensions,however,mostly onlyboundsare known. Furthermore,nosharpbounds ∗MathematicsSubjectClassification2010:52C17,52C22,52B15. Keywordsandphrases:Coxetergroup,hyperbolicgeometry,packing,simplextiling. 1 exist for irregular packings in En when n > 3. One major recent developmenthas been the settling of the long-standingKepler conjecture, part of Hilbert’s 18th prob- lem,byThomasHalesattheturnofthe21stcentury. Hales’computer-assistedproof waslargelybasedonaprogramsetforthbyL.FejesTo´thinthe1950’s[5]. ThedefinitionofpackingdensityiscriticalinhyperbolicspaceasshownbyBo¨ro¨czky [3]. Forotherstandardexamplesseealso[6],[19]. Themostwidelyacceptednotion ofpackingdensityconsidersthelocaldensitiesofballswithrespecttotheirDirichlet– Voronoicells(cf. [3]and[14]). InordertoconsiderhoroballpackingsinHn,weuse anextendednotionofsuchlocaldensity. Let B be a horoball in packing , and P Hn be an arbitrary point. Define B ∈ d(P,B) to be the perpendicular distance from point P to the horosphere S = ∂B, where d(P,B) is taken to be negative when P B. The Dirichlet–Voronoi cell ∈ (B, )ofahoroballB isdefinedastheconvexbody D B (B, )= P Hn d(P,B) d(P,B ), B . ′ ′ D B { ∈ | ≤ ∀ ∈B} BothB and areofinfinitevolume,sotheusualnotionoflocaldensityismodified asfollows.LDetQ ∂HndenotetheidealcenterofBatinfinity,andtakeitsboundary bdSeetttoehrbemeEintuhecelaiodcneoean-npv(oe∈nixn−tcoc1on)me-bCpaanlcl(trwifi)ict=hatcioceonnntoeefrQECuB∈clCniSd−e\1a(n{rQ)(n}.−∈T1hH)e-nnspQwaict∈eh.∂aLpHeetnxBaQCnnd−c1Bo(nrCns)−is⊂1ti(nrSg) of all hyperbolic geodesics passing throug(cid:0)h BCn−1(r(cid:1)) with limit point Q. The local densityδ (B, )ofB to isdefinedas n B D vol(B n(r)) δ ( ,B)= lim ∩C . n B r vol( n(r)) →∞ D∩C ThislimitisindependentofthechoiceofcenterC forBCn−1(r). Inthecaseofperiodicballorhoroballpackings,thelocaldensitydefinedabovecan beextendedtotheentirehyperbolicspace.Thislocaldensityisrelatedtothesimplicial densityfunction(definedbelow)thatwegeneralizedin[25]and[26]. Inthispaperwe willusesuchdefinitionofpackingdensity(cf. Section3). ThealternatemethodsuggestedbyBowenandRadin[2],[19]usesNevo’spoint- wise ergodictheorem to assure that the standard Euclidean limit notion of density is well-defined for Hn. First they define a metric on the space Σ of relatively-dense packingsbycompactobjects,basedonHausdorffdistance,correPspondingtouniform convergenceoncompactsubsetsofHn. Thentheystudythemeasuresinvariantunder isometries of Σ rather than individualpackings. There is a large class of packings P ofcompactobjectsinhyperbolicspaceforwhichsuchdensityiswell-defined. Using ergodicmethods,theyshowthatifthereisonlyoneoptimallydensepackingofEn or Hn,uptocongruence,bycongruentcopiesofbodiesfromsomefixedfinitecollection, then that packing must have a symmetry group with compact fundamental domain. Moreover,for almost any radius r [0, ) the optimal ball packing in Hn has low ∈ ∞ symmetry. ACoxetersimplexisann-dimensionalsimplexinX suchthatitsdihedralangles areeithersubmultiplesofπ,orzero.Thegroupgeneratedbyreflectionsonthesidesof 2 aCoxetersimplexiscalledaCoxetersimplexreflectiongroup.Suchreflectionsgivea discretegroupofisometriesofX withtheCoxetersimplexasitsfundamentaldomain; hencethegroupsgiveregulartessellationsofX. TheCoxetergroupsarefiniteforSn, andinfiniteforEnorHn. InHn weallowunboundedsimpliceswithidealverticesatinfinity∂Hn. Coxeter simplicesexistonlyfordimensionsn=2,3,...,9;furthermore,onlyafinitenumber exist in dimensions n 3. Johnson et al. [10] computed the volumes of all Cox- ≥ etersimplicesinhyperbolicn-space,seealsoKellerhals[13]. Suchsimplicesarethe mostelementarybuildingblocksof hyperbolicmanifolds,the volumeof whichis an importanttopologicalinvariant. Inthen-dimensionalspaceX ofconstantcurvature(n 2),definethesimplicial ≥ densityfunctiond (r)tobethedensityofn+1spheresofradiusrmutuallytouching n oneanotherwithrespecttothesimplexspannedbythecentersofthespheres.L.Fejes To´thandH.S.M.Coxeterconjecturedthatthepackingdensityofballsofradiusrin X cannot exceed d (r). Rogers [20] proved this conjecture in Euclidean space En. n The2-dimensionalsphericalcasewassettledbyL.FejesTo´th[8],andBo¨ro¨czky[3], whoprovedthefollowingextension: Theorem1.1(K. Bo¨ro¨czky). In an n-dimensionalspaceof constantcurvature, con- sider a packing of spheres of radius r. In the case of spherical space, assume that r < π. ThenthedensityofeachsphereinitsDirichlet–Voronoicellcannotexceedthe 4 densityofn+1spheresofradiusrmutuallytouchingoneanotherwithrespecttothe simplexspannedbytheircenters. Inhyperbolicspace,themonotonicityofd (r) wasprovedbyBo¨ro¨czkyandFlo- 3 rian [4]; Marshall [16] showed that for sufficiently large n, function d (r) is strictly n increasingin variabler. Kellerhals[14] showedd (r) < d (r), andthat in cases n n 1 − considered by Marshall the local density of each ball in its Dirichlet–Voronoicell is boundedabovebythesimplicialhoroballdensityd ( ). n Thisupperboundfordensityinhyperbolicspace∞H3 is0.85327613..., whichis notrealizedbypackingregularballs. However,itisattainedbyahoroballpackingof H3 wherethe idealcentersofhoroballslie onan absolutefigureofH3; forexample, they may lie at the vertices of the ideal regular simplex tiling with Coxeter-Schla¨fli symbol(3,3,6). In[15]weprovedthattheoptimalballpackingarrangementinH3mentionedabove isnotunique. Wegaveseveralnewexamplesofhoroballpackingarrangementsbased ontotallyasymptoticCoxetertilingsthatyieldtheBo¨ro¨czky–Florianupperbound[4]. Furthermore, in [25], [26] we foundthat by allowing horoballsof differenttypes ateachvertexofa totally asymptoticsimplexandgeneralizingthesimplicialdensity functiontoHn for(n 2),theBo¨ro¨czky-typedensityupperboundisnolongervalid ≥ forthefullyasymptoticsimplicesforn 3. Forexample,inH4 the locallyoptimal ≥ packingdensityis0.77038...,higherthantheBo¨ro¨czky-typedensityupperboundof 0.73046.... Howeverthese ballpackingconfigurationsare onlylocallyoptimaland cannotbeextendedtotheentiretyofthehyperbolicspacesHn. Furtheropenproblems andconjectureson4-dimensionalhyperbolicpackingsare discussed in [7]. A recent result of Jacquemet [9] gives a formula for the inradius of a hyperbolictruncated n- 3 simplexbasedonitsGrammatrix. The second-named author has several additional results on globally and locally optimal ball packings in Hn, Sn, and the eight Thurston geomerties arising from Thurston’sgeometrizationconjecture[21],[22],[23],[24],[27],[28]. Thesepacking densities are global or local, depending on whether the density obtained in a funda- mentaldomaincanorcannotbeextendedtotheentirespace. Inthispaperwecontinueourinvestigationsonballpackingsinhyperbolic4-space. Using horoball packings, allowing horoballs of different types, we find seven coun- terexamples(realizedbyallowinguptothreehoroballtypes)tooneofL.FejesTo´th’s conjecturesstatedintheconcludingsectionofhisbookRegularFigures: Finallywedrawattentiontothetessellations 5,3,3,3 of4-dimensional { } hyperbolicspace, the cell-inspheresand cell-circumspheresof whichare also expectedtoforma closestpackingandloosestcovering. Thecorre- spondingdensitiesare(5 √5)/4 = 0.690... and(4+6√5)/√125 = − 1.557... [8] 2 Higher Dimensional Hyperbolic Geometry In this paper we use the Cayley–Klein ball model, and a projective interpretation of hyperbolicgeometry.Thishastheadvantageofgreatlysimplifyingourcalculationsin higher dimensions as comparedto other models such as the Poincare´ model. In this section we give a brief review of the concepts used in this paper. For a generaldis- cussionandbackgroundinhyperbolicgeometryandtheprojectivemodelsofThurston geometriessee[17]and[18]. 2.1 The ProjectiveModel We use the projective model in Lorentzian (n + 1)-space E1,n of signature (1,n), i.e. E1,n is the real vector space Vn+1 equipped with the bilinear form of signature (1,n) x, y = x0y0+x1y1+ +xnyn (1) h i − ··· wherethenon-zerorealvectorsx=(x0,x1,...,xn) Vn+1andy=(y0,y1,...,yn) Vn+1 representpointsinprojectivespace n(R).∈Hn isrepresentedastheinterior ∈ P oftheabsolutequadraticform Q= [x] n x, x =0 =∂Hn (2) { ∈P |h i } in realprojectivespace n(Vn+1,V ). Allproperinteriorpointsx Hn satisfy n+1 P ∈ x, x <0. h Thie boundary points ∂Hn in n represent the absolute points at infinity of Hn. Pointsysatisfying y, y > 0liePoutside∂Hn andarereferredtoasouterpointsof Hn. Take P([x]) h n, ipoint [y] n is said to be conjugate to [x] relative to Q ∈ P ∈ P when x, y = 0. ThesetofallpointsconjugatetoP([x])formaprojective(polar) h i hyperplane pol(P)= [y] n x, y =0 . (3) { ∈P |h i } 4 HencethebilinearformQin(1)inducesabijectionorlinearpolarityVn+1 V n+1 → between the points of n and its hyperplanes. Point X[x] and hyperplane α[a] are P incidentif the value of the linear form a evaluatedon vectorx is zero, i.e. xa = 0 wherex Vn+1 0 ,and a V 0 .Similarly,linesin narecharacterized n+1 ∈ \{ } ∈ \{ } P by2-subspacesofVn+1 or(n 1)-spacesof V [17]. n+1 LetP Hn denoteapoly−hedronboundedbyafinitesetofhyperplanesHi with unitnorma⊂lvectorsbi V directedtowardstheinteriorofP: n+1 ∈ Hi = x Hd x, bi =0 with bi,bi =1. (4) { ∈ |h i } h i InthispaperP isassumedtobeanacute-angledpolyhedronwithproperoridealver- tices. TheGrammianmatrixG(P)=( bi,bj ) i,j 0,1,2...n isanindecom- i,j posablesymmetricmatrixofsignature(h1,n)wiithentri∈es{bi,bi =1}and bi,bj 0 h i h i≤ fori=jwhere 6 0 ifHi Hj, ⊥ bi,bj = −cosαij ifHi,Hj intersect alonganedgeofP at angleαij, h i  −1 if Hi,Hj areparallelinthehyperbolicsense, coshlij ifHi,Hj admitacommonperpendicularoflengthlij. This is visualize−d using the weighted graph or scheme of the polytope (P). The graph nodes correspond to the hyperplanesHi and are connected if Hi and Hj not P perpendicular (i = j). If they are connected we write the positive weight k where 6 α = π/k onthe edge, andunlabelededgesdenotean angleofπ/3. Forexamples, ij seetheCoxeterdiagramsinTable1. In this paperwe set the sectionalcurvatureof Hn, K = k2, to be k = 1. The − distancedoftwoproperpoints[x]and[y]iscalculatedbytheformula x, y coshd= −h i . (5) x, x y, y h ih i TheperpendicularfootY[y]ofpointXp[x]droppedontoplane[u]isgivenby x,u y=x h iu, (6) − u,u h i whereuisthepoleoftheplane[u]. 2.2 Horospheres andHoroballsinHn AhorosphereinHn(n 2)isahyperbolicn-spherewithinfiniteradiuscenteredatan idealpointon∂Hn. Equ≥ivalently,ahorosphereisan(n 1)-surfaceorthogonaltothe − setofparallelstraightlinespassingthroughapointoftheabsolutequadraticsurface. Ahoroballisahorospheretogetherwithitsinterior. Inordertoderivetheequationofahorosphere,weintroduceaprojectivecoordinate systemfor n withavectorbasisa (i = 0,1,2,...,n)sothattheCayley-Kleinball i P 5 model of Hn is centered at (1,0,0,...,0), and set an arbitrary point at infinity to lie at A = (1,0,...,0,1). The equation of a horosphere with center A passing 0 0 through point S = (1,0,...,0,s) is derived from the equation of the the absolute sphere x0x0+x1x1+x2x2+ +xnxn =0,andtheplanex0 xn =0tangent − ··· − totheabsolutesphereatA . Thegeneralequationofthehorosphereis 0 0=λ( x0x0+x1x1+x2x2+ +xnxn)+µ(x0 xn)2. (7) − ··· − PlugginginforS weobtain λ 1 s λ( 1+s2)+µ( 1+s)2 =0 and = − . − − µ 1+s Ifs= 1,theequationofahorosphereinprojectivecoordinatesis 6 ± n (s 1) x0x0+ (xi)2 (1+s)(x0 xn)2 =0, (8) − − !− − i=1 X andincartesiancoordinatessettingh = xi itbecomes i x0 2 n h2 4 h s+1 2 i=1 i + d− 2 =1. (9) 1 s (1 s)2 (cid:0)P− (cid:1) (cid:0) − (cid:1) Inann-dimensionalhyperbolicspaceanytwohoroballsarecongruentintheclas- sical sense: each have an infinite radius. However, it is often useful to distinguish between certain horoballsof a packing. We use the notion of horoball type with re- specttothepackingasintroducedin[26]. Twohoroballsofahoroballpackingaresaidtobeofthesametypeorequipacked if and only if their local packing densities with respect to a given cell (in our case a Coxetersimplex)areequal.Ifthisisnotthecase,thenwesaythetwohoroballsareof differenttype. Forexample,intheabovediscussionhoroballscenteredatA passing 0 throughS withdifferentvaluesforthefinalcoordinatesareofdifferenttyperelative toanappropriatecell. In order to compute volumes of horoball pieces, we use Ja´nos Bolyai’s classical formulasfromthemid19-thcentury: 1. ThehyperboliclengthL(x)ofahorosphericarcthatbelongstoachordsegment oflengthxis x L(x)=2sinh . (10) 2 (cid:16) (cid:17) 2. TheintrinsicgeometryofahorosphereisEuclidean,sothe(n 1)-dimensional − volume ofapolyhedronAonthesurfaceofthehorospherecanbecalculated as in EnA1. The volumeof the horoballpiece (A) determinedby A and the − H aggregateofaxesdrawnfromAtothecenterofthehoroballis 1 vol( (A))= . (11) H n 1A − 6 3 Horoball packings of Coxeter Simplices with Ideal Verticies Let beaCoxetertiling.Arigidmotionmappingonecellof ontoanothermapsthe T T entiretilingontoitself. Thesymmetrygroupofa CoxetertilingisitsCoxetergroup, denotedbyΓ . Anysimplexcellof actsasafundamentaldomain ofΓ ,where T T FT T the Coxeter group is generated by reflections on the (n 1)-dimensional facets of − . In this paperwe consider onlyasymptotic Coxter simplices, i.e. ones thathave aFtTleastoneidealvertex. InTable1welistthenineasymptoticCoxetersimplicesthat existinhyperbolic4-space,togetherwiththeirvolumes. Foracompletediscussionof hyperbolicCoxetersimplicesandtheirvolumesfordimensionsn 3,seeJohnsonet ≥ al. [10]. Wedefinethedensityofahoroballpacking ofaCoxetersimplextiling as BT T n vol( ) δ( )= i=1 Bi∩FT . (12) BT vol( ) P FT Here denotesthe simplicial fundamentaldomain of tiling , n is the number of FT T ideal vertices of , and are the horoballs centered at ideal vertices. We allow i horoballsofdiffeFreTnttypesBattheasymptoticverticesofthetiling. Ahoroballtypeis allowed if it yields a packing: no two horoballs may have an interior point in com- mon. In addition we require that no horoball extend beyond the facet opposite the vertexwhereit is centeredso thatthe packingremainsinvariantunderthe actionsof the Coxeter group of the tiling. If these conditions are satisfied, we can extend the packing density from the simplicial fundamental domain to the entire H4 using FT the Coxetergroup associated with a tiling. In the case of Coxeter simplex tilings, T Dirichlet–Voronoicells coincide with the Coxeter simplices. We denote the optimal horoballpackingdensityas δ ( )= sup δ( ). (13) opt T T packing BT B TheasymptoticCoxetersimplextilingsarerelatedthroughthesubgroupstructure oftheirCoxetersymmetrygroupsasshownin Figure1 [11], [12]. LetΓ andΓ be 1 2 thetwoCoxetersymmetrygroupsofCoxetertilings and ,respectively.Whenthe 1 2 T T indexofCoxetergroupΓ inΓ istwo,i.e. Γ :Γ =2,thenthetwoCoxetergroups 1 2 1 2 | | differ by one reflection, and the fundamental domain of Γ is obtained from that of 2 Γ bydomaindoubling,that is by merginga certain pair of neighboringdomainsby 1 removingacommonfacet.InthecaseofasymptoticCoxetersimplicesif Γ :Γ =2 1 2 | | and the numberof asymptoticverticesof the fundamentaldomainsof Γ and Γ are 1 2 equal, then the new fundamentaldomainis obtainedby removinga facet adjacentto anasymptoticvertex. Ifthenumberofasymptoticverticesincreasesbyone,thenthe cellsofΓ areobtainedbyremovingafacetoppositetotheasymptoticverticesofΓ 2 1 andmergingthecells. TherelationshipbetweenthevolumesofthecellsofΓ andΓ 1 2 when Γ :Γ =misgivenbyvol( )=m vol( ). Iftheindexofthegroupsis | 1 2| FT1 · FT2 two,thenapackingdensityδ( )forthebiggergroupcanbeextendedtothesmaller groupΓ . BT1 2 7 Coxeter Witt Simplex Packing Diagram Notation Symbol Volume Density SimplyAsymptotic 4 [4,32,1] S π2/1440 0.71644896 4 [3,3[4]] P π2/720 0.71644896 4 4 4 [3,4,3,4] R π2/864 0.60792710 4 4 [3,4,31,1] O π2/432 0.60792710 4 4 4 [(32,4,3,4)] FR π2/108 0.71644896 4 DoublyAsymptotic 4 d 4 [4, 3,4] N π2/288 0.71644896 4 4 4 [4,3[4]] BP π2/144 0.71644896 4 TriplyAsymptotic 4 [4,31,1,1] M π2/144 0.71644896 4 [3[3] []] DP π2/72 0.71644896 × 4 Table1: NotationandvolumesforthenineasymptoticCoxeterSimplicesinH4. Figure 1: Lattice of Subgroupsof cocompactCoxeter groupsin H4. The numberof starsinthesuperscript and indicatesthatthefundamentalsimplexofthegroup ∗∗ ∗∗∗ hastwoorthreeidealvertices. 8 3.1 Simply AsymptoticCases We compute the optimal horoballpacking density for the Coxeter simplex tiling S ; 4 the other simply asymptotic cases can be obtained using the same method. Case R 4 wascomputedbythesecond-namedauthorin[21]. Proposition3.1. TheoptimalhoroballpackingdensityforsimplyasymptoticCoxeter simplextiling isδ (S ) 0.71644896. TS4 opt 4 ≈ Proof. Let be the simplicial fundamentaldomain of Coxeter tiling . We set FS4 TS4 coordinates for its vertices A ,A ,...,A that satisfy the angle requirements. Our 0 1 4 choice of vertices, as well as forms for hyperplanes[u ] opposite to vertices A , are i i givenin Table2. Inordertomaximizethe packingdensity,we determinethe largest horoballtype (s)centeredatidealvertexA thatisadmissibleincell . Thisis B0 0 FS4 thehoroballwith type-parameters (intuitivelythe “radius”ofthe horoball)suchthat the horoball (s) is tangent to the plane of the hyperface[u ] boundingthe funda- 0 0 B mentalsimplexoppositeofA . TheperpendicularfootF [f ]ofvertexA onplane 0 0 0 0 [u ], 0 a ,u 2 1 f =a h 0 0iu = 1,0, , ,0 , (14) 0 0− u ,u 0 −5 5 h 0 0i (cid:18) (cid:19) isthepointoftangencyofhoroball (s)andhyperfaceu ofthethesimplexcell. 0 0 B Plugging in for F and solving equation(9), we find that the horoballwith type- 0 parameters = 1 istheoptimaltype. Theequationofhorosphere∂ = ∂ ( 1) −9 B0 B0 −9 centeredatA passingthroughF is 0 0 9 81 4 2 h2+h2+h2 + h =1. (15) 5 1 2 3 25 4− 9 (cid:18) (cid:19) (cid:0) (cid:1) A 1 A 2 A 3 A=H 2 2 A 1 A A =H H 3 4 4 H 1 H H 3 1 2 H 3 A 0 A 0 (a) (b) Figure2:Simplyasymptoticcase. (a)Horoball intersectingthesidesofthesimplex 0 B atH ,H ,andH . (b)HorospherictetrahedrononhyperfaceoppositeA . 1 2 3 0 9 The intersections H [h ] of horosphere ∂ and simplex edges are found by pa- i i 0 B rameterizingthesimplexedgesash (λ) = λa +a (i = 1,2,3,4),andcomputing i 0 i their intersections with ∂ . See Figure (2), and Table 2 for the intersection points. 0 B The volume of the horospherical tetrahedron determines the volume of the horoball piecebyequation(11). Inordertodeterminethedataofthehorospherictetrahedron, we compute the hyperbolic distances l by the formula (5) l = d(H ,H ) where ij ij i j d(hi,hj)=arccos(cid:18)√hh−i,hhhiii,hhhjji,hji(cid:19).Moreover,thehorosphericaldistancesLij can becalculatedbyformula(10). TheintrinsicgeometryofthehorosphereisEuclidean, so we use the Cayley-Menger determinant to find the volume of the horospheric A tetrahedronA, 0 1 1 1 1 1 0 L2 L2 L2 1 (cid:12) 12 13 14(cid:12) = (cid:12)1 L2 0 L2 L2 (cid:12) 0.0147314. (16) A 288(cid:12) 12 23 24(cid:12)≈ (cid:12)1 L2 L2 0 L2 (cid:12) (cid:12) 13 23 34(cid:12) (cid:12)1 L2 L2 L2 0 (cid:12) (cid:12) 14 24 34 (cid:12) (cid:12) (cid:12) Thevolumeoftheoptim(cid:12) alhoroballpieceinthefu(cid:12)ndamentalsimplexis (cid:12) (cid:12) 1 1 vol( )= 0.0147314 0.00491046. (17) B0∩FS4 n 1A≈ 3 · ≈ − HencebytheCoxetergroupΓ theoptimalhoroballpackingdensityoftheCox- S4 eterSimplextiling becomes TS4 δ (S )= vol(B0∩FS4) 0.00491046 0.71644896. (18) opt 4 vol( ) ≈ π2/1440 ≈ FS4 The same method is used to find the optimal packing density of the remaining simply asymptotic Coxeter simplex tilings. Results of the computationsare given in Table2. Wesummarizetheresults: Corollary 3.2. The optimal horoball packing density for simply asymptotic Coxeter simplextiling ,Γ S ,P ,FR isδ (Γ) 0.71644896. Γ 4 4 4 opt T ∈ ≈ n o d 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.