ebook img

New inversion, convolution and Titchmarsh's theorems for the half-Hartley transform PDF

0.09 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New inversion, convolution and Titchmarsh's theorems for the half-Hartley transform

NEW INVERSION, CONVOLUTION AND TITCHMARSH’S THEOREMS FOR THE HALF-HARTLEY TRANSFORM S.YAKUBOVICH 4 1 0 2 r ABSTRACT. The generalizedParseval equality for the Mellin transformis employedto provethe in- a M versiontheoreminL2 withtherespectiveinverseoperatorrelatedtotheHartleytransformonthenon- negativehalf-axis(thehalf-Hartleytransform). Moreover,involvingtheconvolutionmethod,whichis 0 basedonthedoubleMellin-Barnesintegrals,thecorrespondingconvolutionandTitchmarsh’stheorems 1 forthehalf-Hartleytransformareestablished. Asanapplication,weconsidersolvabilityconditionsfor ahomogeneousintegralequationofthesecondkindinvolvingtheHartleykernel. ] A C . 1. INTRODUCTION AND AUXILIARY RESULTS h t a Thefamiliarreciprocal pairoftheHartley transforms m 1 ¥ [ (H f)(x)= [cos(xt)+sin(xt)]f(t)dt, x R, (1.1) √2p ¥ ∈ 2 Z− v 1 ¥ 3 f(x)= [cos(xt)+sin(xt)](H f)(t)dt (1.2) 4 √2p ¥ 1 Z− is well-known [1] in connection with various applications in mathematical physics. Mapping and 3 . inversion properties of these transforms in L as well as their multidimensional analogs were inves- 1 2 0 tigated, for instance, in [2], [3], [4]. These operators were treated as the so-called bilateral Watson 4 transform. Recently, theauthorfound thepaper[5] (seealso [6], [7]), where theattemptto invertthe 1 : HartleytransformwiththeintegrationoverR+ v Xi 2 ¥ (H f)(x)= [cos(xt)+sin(xt)]f(t)dt, x R , (1.3) ar + rp Z0 ∈ + was undertaken. However,theinversionformulaobtainedby theauthors is dependingon theFourier transformoftheimageand,indeed,needstobeimproved. Herewewillachievethismaingoal,prov- ing theinversiontheorem fortransformation(1.3) in L (R ). Moreover, wewill construct and study 2 + properties of the convolution operator, related to the half-Hartley transform by general convolution method developed by the author in 1990, and which is based on the double Mellin-Barnes integrals [8], [9], [4]. Namely,wewill provetheconvolutiontheoremand Titchmarsh’stheorem aboutthe ab- senceofdivisorsintheconvolutionproduct. Finally,weapplythehalf-Hartleytransform(1.3)tofind 2000MathematicsSubjectClassification. 44A15,44A35,45E05,45E10. Keywordsandphrases. Hartleytransform,convolutionmethod,Mellintransform,Titchmarshtheorem,homogeneous integralequation. 1 2 S.YAKUBOVICH solvability conditions and the form of solutions for a homogeneous integral equation of the second kind. WenoteinthissectionthatournaturalapproachwillinvolvetheL -theoryoftheMellintransform 2 [10] ¥ 1 (M f)(s)= f (s)= f(t)ts 1dt, s s = s C,s= +it , (1.4) ∗ − 0 ∈ { ∈ 2 } Z where the integral is convergent in the mean square sense with respect to the norm in L (s ). Recip- 2 rocally,theinversionformulatakes place 1 f(x)= f (s)x sds, x>0 (1.5) 2p i s ∗ − Z with the convergence of the integral in the mean square sense with respect to the norm in L (R ). 2 + Furthermore, forany f , f L (R ) thegeneralized Parsevalidentityholds 1 2 2 + ∈ ¥ 1 f (xt) f (t)dt = f (s)f (1 s)x sds, x>0 (1.6) 0 1 2 2p i s 1∗ 2∗ − − Z Z withParseval’sequalityofsquares ofL -norms 2 ¥ ¥ 2 1 1 f(x) 2dx= f +it dt . (1.7) 0 | | 2p ¥ ∗ 2 Z Z− (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) 2. INVERSION (cid:12)THEOREM (cid:12) (cid:12) (cid:12) We begin with the following inversion theorem for the half-Hartley transform (1.3). Precisely, it has Theorem1. Thehalf-Hartleytransform(1.3)extendstoaboundedinvertiblemapH :L (R ) + 2 + L (R )and foralmostall x R thefollowingreciprocalformulashold → 2 + + ∈ 2 d ¥ f(t) (H f)(x)= [1+sin(xt) cos(xt)] dt, x R , (2.1) + rp dxZ0 − t ∈ + 2 ¥ f(x)= [sin(xt)S(xt)+cos(xt)C(xt)](H f)(t)dt, (2.2) p + r Z0 where S(x), C(x)areFresnelsin-andcosine-integrals,respectively, 2 √x 2 √x S(x)= sin(t2)dt, C(x)= cos(t2)dt p p r Z0 r Z0 and integral (2.2) converges with respect to the norm in L (R ). Finally, the norm inequalities take 2 + place √2 f H f 2 f . (2.3) || ||L2(R+) ≤|| + ||L2(R+) ≤ || ||L2(R+) Proof. Let f belong to the spaceC(2)(R ) of continuously differentiable functions of compact sup- c + port,whichisdenseinL (R ). Thenintegratingbypartsin(1.4),wefindthats2f (s)isboundedon 2 + ∗ s and therefore f (s) L (s ) L (s ). Hence mindingtheknownformulas[10] ∗ 2 1 ∈ ∩ ¥ sint G (s) p s ts 1dt = cos , s s , (2.4) − 0 t 1 s 2 ∈ Z − (cid:16) (cid:17) THEHALF-HARTLEYTRANSFORM 3 ¥ 1 cost G (s) p s − ts 1dt = sin , s s , (2.5) − 0 t 1 s 2 ∈ wecall thegeneralized ParseZvalequality(1.6)to der−ivefor(cid:16)allx(cid:17)>0 2 ¥ f(t) [1+sin(xt) cos(xt)] dt rp Z0 − t 2 1 p s p s x1 s = G (s) sin +cos f (1 s) − ds. (2.6) p 2p i s 2 2 ∗ − 1 s It is easily seen the porssibilitytZo differehntia(cid:16)te th(cid:17)rough w(cid:16)ith r(cid:17)esipect to x in−equality (2.6). Thus com- biningwith(1.3),wederive(2.1)togetherwiththeequality 2 1 p s p s (H f)(x)= G (s) sin +cos f (1 s)x sds, (2.7) + p 2p i s 2 2 ∗ − − r Z h (cid:16) (cid:17) (cid:16) (cid:17)i which is valid for any f C(2)(R ). Furthermore, from (1.7) one immediately obtains the norm c + ∈ estimates 1/2 2 1 ¥ pt 1 1 2 H f = cosh2 G +it f +it dt || + ||L2(R+) √p 2p ¥ 2 2 ∗ 2 ! Z− (cid:16) (cid:17)(cid:12)(cid:12) (cid:18) (cid:19) (cid:18) (cid:19)(cid:12)(cid:12) (cid:12) 1/2 (cid:12) 1 ¥ cosh2(pt /2) (cid:12) 1 2 (cid:12) =2 f +it dt 2p ¥ cosh(pt ) ∗ 2 ! Z− (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) (cid:12) (cid:12) 1/2 1 ¥ cosh2(pt /2) (cid:12)1 2 (cid:12) =2 f +it dt 2 f 2p ¥ 2cosh2(pt /2) 1 ∗ 2 ! ≤ || ||L2(R+) Z− − (cid:12) (cid:18) (cid:19)(cid:12) (cid:12) (cid:12) and plainly (cid:12) (cid:12) (cid:12) (cid:12) H f √2 f . || + ||L2(R+) ≥ || ||L2(R+) Thus we proved (2.3) for any f C(2)(R ). Further, since C(2)(R ) is dense in L (R ), there c + c + 2 + is a unique extension of H as a∈n invertible continuous map H : L (R ) L (R ). Now, let + + 2 + 2 + → f L (R ). Thereisasequence f , f C(2)(R )suchthat f f 0, n ¥ . Denoting ∈ 2 + { n} n∈ c + || n− ||L2(R+)→ → by 2 1 p s p s h (x)= G (s) sin +cos f (1 s)x sds, (2.8) n p 2p i s 2 2 n∗ − − r Z we observeby virtue of (2.3) that h is ahCau(cid:16)chy s(cid:17)equenc(cid:16)e and(cid:17)iit has a limitin L (R ), which we n 2 + { } willcall h. Hence, integratingthroughin (2.8), wehave x 2 x 1 p s p s h (y)dy= G (s) sin +cos f (1 s)y sds dy. (2.9) Z0 n rp Z0 (cid:18) 2p iZs 2 2 n∗ − − (cid:19) h (cid:16) (cid:17) (cid:16) (cid:17)i In themeantime,by theSchwarz inequality x [h (y) h(y)]dy √x h h 0, n ¥ 0 n − ≤ || n− ||L2(R+) → → Z 4 S.YAKUBOVICH and intheright-handsideof(2.9)onecan changetheorderofintegrationby Fubini’stheorem. Then passing to the limit when n ¥ under integral signs in the obtained equality due to the Lebesgue → dominatedconvergencetheorem,wefind x 2 1 p s p s x1 s h(y)dy= G (s) sin +cos f (1 s) − ds. (2.10) Z0 rp 2p iZs h (cid:16) 2 (cid:17) (cid:16) 2 (cid:17)i ∗ − 1−s Differentiatingby xin (2.10),wecomeoutwiththeequalityforalmostallx>0 2 1 d p s p s x1 s h(x) (H f)(x)= G (s) sin +cos f (1 s) − ds, (2.11) ≡ + p 2p idx s 2 2 ∗ − 1 s r Z h (cid:16) (cid:17) (cid:16) (cid:17)i − which coincides with (2.7) for any f C(2)(R ). Consequently, appealing to (2.4), (2.5), (1.6) and c + ∈ (2.6), wecompletetheproofofrepresentation(2.1). Finally, we establish the inversion formula (2.2). To do this, we denote by h (s) the Mellin trans- ∗ form ofh(t)(1.4)in L andwritereciprocally to(2.11)foralmostall x>0 2 p 1 d p s p s 1 x1 s f(x)= G 1(1 s) sin +cos − h (1 s) − ds. 2 2p idx s − − 2 2 ∗ − 1 s r Z h (cid:16) (cid:17) (cid:16) (cid:17)i − Meanwhile with the supplement formula for gamma-functions and elementary trigonometric manip- ulationsit becomes 1 1 d sin(p s)[sin(p s/2)+cos(p s/2)] x1 s f(x)= G (s) h (1 s) − ds √2p 2p idx s 1+sin(p s) ∗ − 1 s Z − 1 1 1 d sin(p s/2)+cos(p s/2) x1 s = (H h)(x) G (s) h (1 s) − ds 2 + −√2p 2p idx s 1+sin(p s) ∗ − 1 s Z − 1 1 1 G (s) = (H h)(x) h (1 s)x sds, 2 + −√2p 2p i s sin(p s/2)+cos(p s/2) ∗ − − Z 1 1 1 s 1 3 s = (H h)(x) G (s)G + G h (1 s)x sds, 2 + −2p √p 2p i s 2 4 4−2 ∗ − − Z (cid:18) (cid:19) (cid:18) (cid:19) wherethedifferentiationundertheintegralsignisallowedviatheabsoluteanduniformconvergence. But thegeneralized Parsevalidentity(1.6)yields 1 1 ¥ f(x)= (H h)(x) k(xt)h(t)dt, (2.12) 2 + −2p √p 0 Z where 1 s 1 3 s k(x)= G (s)G + G x sds, x>0. 2p i s 2 4 4−2 − Z (cid:18) (cid:19) (cid:18) (cid:19) Hence employingagain (1.6)and using relations(8.4.2.5), (8.4.3.1)in[11], Vol. 3, thelatterintegral can bewrittenin theform ¥ e x/t dt ¥ e xt√t − − k(x)=2 =2 dt 0 1+t2 √t 0 1+t2 Z Z and itiscalculated viarelation(2.3.7.10)in [11], Vol. 1,namely, k(x)=p √2[sinx+cosx] 23/2p [sinxS(x)+cosxC(x)], − THEHALF-HARTLEYTRANSFORM 5 where S(x), C(x) are Fresnel sin- and cosine- integrals (see above). Hence, substitutingthe value of k(x) in (2.12) and making use (2.1), we come out with the inversion formula (2.2) and and complete theproofofTheorem 1. (cid:3) Remark 1. Taking into account the value of the integral (2.5.5.1) in [11], Vol. 1 and relation (7.14.2.75)in[11], Vol. 3, wehave 2 1 x cost [sin(x)S(x)+cos(x)C(x)]= dt p p √x t r Z0 − 1 = ei(x p /4)erf eip /4√x +e i(x+p /4)erfi eip /4√x , 2√p − − h (cid:16) (cid:17) (cid:16) (cid:17)i where erf(z) and erfi(z) are the error function and the error function of imaginary argument, respec- tively, 2 z 2 z erf(z)= e t2dt, erfi(z)= et2dt. √p − √p 0 0 Z Z Therefore, inversionformula(2.2)can bewrittenas 1 ¥ f(x)= ei(xt p /4)erf eip /4√xt +e i(xt+p /4)erfi eip /4√xt (H f)(t)dt. 2√p − − + 0 Z h (cid:16) (cid:17) (cid:16) (cid:17)i 3. CONVOLUTION OPERATOR FOR THE HALF-HARTLEY TRANSFORM In this section we will construct and study mapping properties of the convolution, related to the transformation(1.3). Followingthegeneral convolutionmethoddeveloped forintegral transforms of theMellinconvolutiontype(cf. [8], [9], [4])wehave Definition 1. Let f,g be functions from R into C and f , g be their Mellin transforms (1.4). + ∗ ∗ Then thefunction f g beingdefined on R bythedoubleMellin-Barnesintegral + ∗ 1 G (s)G (w) sin(p (s+w)/2)+cos(p (s w)/2) (f g)(x)= − ∗ (2p i)2 s s G (s+w 1/2) sin(p (s+w)/2) Z Z − f (1 s)g (1 w)xs+w 3/2dsdw (3.1) ∗ ∗ − × − − iscalledtheconvolutionof f andgrelatedtothehalf-Hartleytransform(1.3)(providedthatitexists). Theconvolutiontheorem forthehalf-Hartley transformcan bestatedas Theorem 2. Let f , g betheMellintransformsof f,g,respectively, satisfyingconditionssf (s), ∗ ∗ ∗ sg (s) L (s ). Thentheconvolution(3.1) f gexistsandbelongstoL (R )withthenormestimate ∗ 2 2 + ∈ ∗ 2 ¥ 1/2 ||f ∗g||L2(R+) ≤4 p ¥ |(1/2+iq )g∗(1/2+iq )|2dq r (cid:18)Z− (cid:19) ¥ 1/2 (1/2+it )f (1/2+it ) 2dt dq . (3.2) ∗ × ¥ | | (cid:18)Z− (cid:19) Moreover, itsMellintransform(M (f g))(1 s)isequalto ∗ − √2 (M(f g))(1 s)= G (s w+1/2)cos(p (s w)/2)G (w) ∗ − 2p iG (s)sin(p (s+1/2)/2) s − − Z 6 S.YAKUBOVICH sin(p (w+1/2)/2)f (1/2 s+w)g (1 w)dw, s s . (3.3) ∗ ∗ × − − ∈ Besides,thefactorizationequalityholds xp (H (f g))(x)= (H f)(x)(H g)(x), x>0 (3.4) + + + ∗ 2 r aswell as thegeneralizedParsevaltypeidentity ¥ (f g)(x)= [sin(xt)S(xt)+cos(xt)C(xt)]√t (H f)(t)(H g)(t)dt, (3.5) + + ∗ 0 Z where integral(3.5)converges in theL -sense. 2 Proof. In fact, for s=1/2+it ,w=1/2+iq , (t ,q ) R weobtain ∈ G (s)G (w) sin(p (s+w)/2)+cos(p (s w)/2) G (1/2+it )G (1/2+iq ) − =2 G (s+w 1/2) sin(p (s+w)/2) G (1/2+i(t +q )) (cid:12) − (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) cosh(pt /2)cosh(pq /2) cosh1/2(p (t +(cid:12)q ))co(cid:12)sh(pt /2)cosh(pq /2) (cid:12) (cid:12) =2√p (cid:12) (cid:12) (cid:12) × cosh(p (t +q )/2) cosh1/2(pt )cosh1/2(pq )cosh(p (t +q )/2) cosh(pt /2)cosh(pq /2) 2√2p 4√2p . (3.6) ≤ cosh1/2(pt )cosh1/2(pq ) ≤ Meanwhile, plainly via conditions sf (s),sg (s) L (s ) we have f (s), g (w) L (s ). Therefore ∗ ∗ 2 ∗ ∗ 1 ∈ ∈ by Fubini’s theorem the double integral (3.1) is equal to the corresponding iterated integrals. Then making in (3.1) the simple substitution z = s+w 1/2, using elementary trigonometric formulas, − (1.5), (1.7) and the above estimate, we easily come out with (3.3) and the estimate (3.2). Namely, it has 1 ¥ 1/2 ||f ∗g||L2(R+) = 2p ¥ |(M(f ∗g))(1/2+it )|2dt (cid:18) Z− (cid:19) 2 ¥ ¥ 1/2 4 ¥ dq 1/2 g (1/2+iq ) f (1/2+i(t q ) 2dt dq ≤ p ¥ | ∗ | ¥ | ∗ − | ≤ p ¥ q 2+1/4 Z− (cid:18)Z− (cid:19) (cid:18)Z− (cid:19) ¥ 1/2 ¥ 1/2 (1/2+iq )g (1/2+iq ) 2dq (1/2+it )f (1/2+it ) 2dt dq ∗ ∗ × ¥ | | ¥ | | (cid:18)Z− (cid:19) (cid:18)Z− (cid:19) 2 ¥ 1/2 ¥ 1/2 =4 (1/2+iq )g (1/2+iq ) 2dq (1/2+it )f (1/2+it ) 2dt dq , p ∗ ∗ ¥ | | ¥ | | r (cid:18)Z− (cid:19) (cid:18)Z− (cid:19) wheretheSchwarz andgeneralized Minkowskiinequalitiesareemployed. Thefactorization equality (3.4)comesimmediatelyfrom (3.3)and(1.6)because 2 1 (H (f g))(x)= (M(f g))(1 z)G (z)sin(p (z+1/2)/2)x zdz + ∗ √p 2p i s ∗ − − Z 2 2 = G (z w+1/2)cos(p (z w)/2)G (w)sin(p (w+1/2)/2) p (2p i)2 s s − − r Z Z f (1/2 z+w)g (1 w)x zdwdz ∗ ∗ − × − − THEHALF-HARTLEYTRANSFORM 7 2 2√x = G (s)cos(p ((s 1/2)/2)G (w)sin(p (w+1/2)/2) p (2p i)2 s s − r Z Z xp f (1 s)g (1 w)x s wdwdz= (H f)(x)(H g)(x). ∗ ∗ − − + + × − − 2 r Finally,thegeneralized Parsevalidentity(3.5)isadirect consequenceoftheinversionformula(2.2). (cid:3) This section ends with an analog of the Titchmarsh theorem about the absence of divisors of zero inconvolution(3.1). Wehave Theorem3. Let f , g satisfyconditionsep s f (s), ep sg (s) L (s ). Thenif(f g)(x)=0, x> ∗ ∗ | | ∗ | | ∗ 1 0, theneither f(x)=0 org(x)=0on R . ∈ ∗ + Proof. In fact, theintegral 1 G (s)G (w) sin(p (s+w)/2)+cos(p (s w)/2) F(z)= − (2p i)2 s s G (s+w 1/2) sin(p (s+w)/2) Z Z − f (1 s)g (1 w)zs+w 3/2dsdw ∗ ∗ − × − − represents an analytic function in the domain D = z C : argz < p , since under condition of the theorem it converges uniformly for any z C {: ∈z a|> 0,| argz} < p . Precisely, we have (s=1/2+it , w=1/2+iq , zs+w 3/2 = z 1/∈2e(t +q )|arg|z≥)via(3.6)| | − − | | G (s)G (w) sin(p (s+w)/2)+cos(p (s w)/2) − s s G (s+w 1/2) sin(p (s+w)/2) Z Z (cid:12) − (cid:12) (cid:12) f (1 s)g (1 w)zs+w 3/2dsdw (cid:12) ∗ ∗ − × − − 4 2p ¥ ¥ ep [t +q ] f (1/2+it )g (1/2+(cid:12)(cid:12)(cid:12)iq ) dt dq <¥ . | | | | ∗ ∗ ≤ a ¥ ¥ | | r Z− Z− Moreover, (3.1) yields that F(x) = (f g)(x). Thus by virtue the uniqueness theorem for analytic ∗ functions F(z)=(f g)(z),z D. Moreover, equality (3.4) holds for z D, where the main branch ∗ ∈ ∈ ofthesquareroot ischosen. Hencecalling(2.7), wededuce 1 p s p s (H f)(z) G (s) sin +cos f (1 s)z sds | + |≤ p √2p s 2 2 ∗ − − Z (cid:12) h (cid:16) (cid:17) (cid:16) (cid:17)i (cid:12) 1 ¥ cosh(pt /2) f (1/2+(cid:12)(cid:12) it ) ep t dt 1 2 ¥ f (1/2+it ) ep (cid:12)(cid:12)t dt <¥ , ≤ p √a ¥ cosh1/2(pt )| ∗ | | | ≤ p a ¥ | ∗ | | | Z− r Z− whichmeansthat(H f)(z)isanalyticinD. Therefore, if(f g)(x)=0, x>0,thenviatheunique- + ∗ nesstheorem (f g)(z) 0, z D and (3.4)yields ∗ ≡ ∈ (H f)(z)(H g)(z)=0, z D. + + ∈ Since the left-hand side of the latter equality is the product of analytic functions in D, it means that either(H f)(z) 0,or(H g)(z) 0inD. Finally,weobservethatunderconditionsofthetheorem + + f,g L (R )and≡fromoperational≡propertiesoftheinverseMellintransform(1.5)itfollowsthat f,g 2 + ∈ 8 S.YAKUBOVICH are infinite times differentiable functions. Thus appealing to Theorem 1 and inversion formula (2.2) wefind thateither f =0 org=0 onR . (cid:3) + 4. A HOMOGENEOUS INTEGRAL EQUATION INVOLVING THE HALF-HARTLEY TRANSFORM HerewewillestablishsolvabilityconditionsinL (R ),concerningthefollowingintegralequation 2 + ofthesecondkind ¥ 2 [cos(xt)+sin(xt)]f(t)dt =l f(x), x R , l C. (4.1) p + r Z0 ∈ ∈ Themainresultofthesectionis Theorem 4. Let l <√2. In order to an arbitraryfunction f L (R ) be a solution of integral 2 + | | ∈ equation(4.1)itis necessaryto havetheform oftheintegralinthemeansquaresense 1 p 1 p s p s f(x)= l + sec +csc j (s)x sds, x>0 (4.2) 2p i s 2 G (1 s) 2 2 − Z (cid:20) r − h (cid:16) (cid:17) (cid:16) (cid:17)i(cid:21) in terms of some function j (s), satisfying condition j (s)=j (1 s), s s , i.e. j (1/2+it ) is even with respect tot R. Besides,its Mellin’stransform − ∈ ∈ p 1 p s p s f (s)= l + sec +csc j (s), s s (4.3) ∗ 2 G (1 s) 2 2 ∈ (cid:20) r − h (cid:16) (cid:17) (cid:16) (cid:17)i(cid:21) aswell as j belongto L (s )andthefollowingL -normestimateshold 2 2 1 (2+|l |)−1||f∗||L2(s ) ≤||j ||L2(s ) ≤ √2−|l | − ||f∗||L2(s ). (4.4) The condition j (s)=j (1 s), j L (s ) and theform(cid:16)of solutio(cid:17)ns(4.2)are also sufficient for any 2 y astheinverseMellintra−nsformo∈fj , satisfyingtheintegralequation 2 ¥ y (t) (l 2 2)y (x) dt =0, x R , (4.5) − −p 0 x+t ∈ + Z where integral(4.5)converges absolutely. Proof. Let f beasolutionofequation(4.1). Thenviaformulas(2.1)and (2.6)wederivetheequality x 2 1 p s p s x1 s l f(y)dy= G (s) sin +cos f (1 s) − ds. (4.6) Z0 rp 2p iZs h (cid:16) 2 (cid:17) (cid:16) 2 (cid:17)i ∗ − 1−s In themeantime,itsleft-hand sideis equalto (see(1.6)) x l x1 s l f(y)dy= f (s) − ds. (4.7) 0 2p i s ∗ 1 s Z Z − Hence, comparing right-hand sides of (4.6), (4.7) and since both integrand are from L (s ) they are 1 equal byvirtueofTh. 32in [10]. Hence 2 p s p s l f (s)= G (s) sin +cos f (1 s), s s . (4.8) ∗ p 2 2 ∗ − ∈ r h (cid:16) (cid:17) (cid:16) (cid:17)i THEHALF-HARTLEYTRANSFORM 9 But 1 s s . Therefore, changings on 1 sin (4.8),it becomes − ∈ − 2 p s p s l f (1 s)= G (1 s) sin +cos f (s). (4.9) ∗ − p − 2 2 ∗ r h (cid:16) (cid:17) (cid:16) (cid:17)i Subtracting (4.9) from (4.8) and then using the supplement and duplication formulas for gamma - functions,weobtain 1 1 l [f (s) f (1 s)]=√2p + ∗ − ∗ − G (s/2)G (1 s/2) G ((1 s)/2)G ((1+s)/2) (cid:20) − − (cid:21) G ((1+s)/2) G (s/2) [G (s)f (1 s) G (1 s)f (s)]=2s 1/2f (1 s) + × ∗ − − − ∗ − ∗ − G (1 s/2) G ((1 s)/2) (cid:20) − − (cid:21) G ((1 s)/2) G (1 s/2) 21/2 sf (s) − + − . − − ∗ G (s/2) G ((1+s)/2) (cid:20) (cid:21) Hence G ((1 s)/2) G (1 s/2) f (s) l +21/2 s − + − ∗ − G (s/2) G ((1+s)/2) (cid:20) (cid:20) (cid:21)(cid:21) G ((1+s)/2) G (s/2) = f (1 s) l +2s 1/2 + , s s , (4.10) ∗ − − G (1 s/2) G ((1 s)/2) ∈ (cid:20) (cid:20) − − (cid:21)(cid:21) or, since p 1 p s p s 2cosh(pt /2) √2 sec +csc = 2, s=1/2+it , t R, (4.11) ≤ 2 G (s) 2 2 cosh1/2(pt ) ≤ ∈ r (cid:12) (cid:12) (cid:12) h (cid:16) (cid:17) (cid:16) (cid:17)i(cid:12) (4.10)undercon(cid:12)dition l <√2 yields (cid:12) (cid:12) (cid:12) | | p 1 p s p s −1 f (s) l + sec +csc ∗ 2 G (1 s) 2 2 (cid:20) r − h (cid:16) (cid:17) (cid:16) (cid:17)i(cid:21) p 1 p s p s −1 = f (1 s) l + sec +csc =j (s), s s . (4.12) ∗ − 2 G (s) 2 2 ∈ (cid:20) r (cid:21) h (cid:16) (cid:17) (cid:16) (cid:17)i Thus we find that j (s) = j (1 s), i.e is even with respect to t R, where s = 1/2+it . So, we − ∈ established (4.3) and reciprocally in L the representation (4.2). Meanwhile estimates (4.11) yield 2 (4.4). Now, let us assume for some j L (s ) in (4.3) the condition j (s) = j (1 s), s s . Then 2 ∈ − ∈ substitutingthevalueof f (s)in (4.3)intoequation(4.8),weobtain ∗ p 1 p s p s 2 p s p s l l + sec +csc j (s)= G (s) sin +cos 2 G (1 s) 2 2 p 2 2 (cid:20) r − h (cid:16) (cid:17) (cid:16) (cid:17)i(cid:21) r h (cid:16) (cid:17) (cid:16) (cid:17)i p 1 p s p s l + sec +csc j (s), s s , × 2 G (s) 2 2 ∈ (cid:20) r (cid:21) h (cid:16) (cid:17) (cid:16) (cid:17)i 10 S.YAKUBOVICH oraftersimplecalculationsitdrivesto theequation 2 (l 2 2)j (s) j (s)=0, s s . (4.13) − −sin(p s) ∈ Taking the inverse Mellin transform (1.5) of both sides of the latter equality, we employ the general- ized Parsevalequality(1.6)andrelation (8.4.2.5)in[11], Vol. 3 to find 2 ¥ y (t) (l 2 2)y (x) dt =0, x>0. − −p 0 x+t Z Thus f(x) by formula (4.2) is a solution of integral equation (4.1) for all j (s) under condition j (s) = j (1 s) such that its inverse Mellin transform satisfies integral equation (4.5). The abso- − luteconvergenceofthecorrespondingintegralfollowsfromtheSchwarz inequality. (cid:3) Corollary1. Let l ( √2,√2). Then theonlytrivialsolutionsatisfiesintegralequation(4.1). ∈ − Proof. In fact, since l 2 2 2/sin(p s)<0, s s , we have from (4.13) j (s) 0 on s . Therefore − − ∈ ≡ from (4.3) it follows f (s) 0 and the inverse Mellin transform implies f = 0, i.e. the solution of ∗ (4.1)istrivial. ≡ (cid:3) Acknowledgments Thepresentinvestigationwassupported,inpart,bythe”CentrodeMatema´tica”oftheUniversityof Porto. REFERENCES [1] R.N.Bracewell,TheHartleytransform,OxfordUniversityPress.LondonandNewYork(1986). [2] VuKimTuanandS.Yakubovich,Acriterionfortheunitarityofatwo-sidedintegraltransformation,UkrainianMath. J.,44(1992),N5,697-699(inRussian). [3] Nguyen Thanh Hai, S.Yakubovich and J. Wimp, Multidimensional Watson transforms, Internat. J. Math. Statist. Sci.,1(1992),N1,105-119. [4] S. Yakubovichand Yu. Luchko, The Hypergeometric Approach to IntegralTransforms and Convolutions.Mathe- maticsanditsApplications,287.KluwerAcademicPublishersGroup,Dordrecht(1994). [5] R.D.Gianotti,A.E.RodrguezandF.Vericat,Ontheinversionformulaofthehalf-Hartleytransform,J.Math.Phys. 37(1996),N9,4690-4692. [6] S.L.Paveri-FontanaandP.F.Zweifel,Thehalf-Hartleyandhalf-Hilberttransforms,J.Math.Phys.35(1994),N5, 2648-2656. [7] S.L. Paveri-Fontana and P.F. Zweifel, Erratum: The half-Hartley and half-Hilbert transform [J. Math. Phys. 35 (1994),N5,2648-2656],J.Math.Phys.35(1994),6226. [8] S.Yakubovich,Aconstructivemethodforconstructingintegralconvolutions,Dokl.Akad.NaukBSSR,34(1990),N 7,588-591(inRussian). [9] NguyenThanhHaiandS. Yakubovich,The DoubleMellin-BarnesTypeIntegralsandTheirApplicationsto Con- volutionTheory.SeriesonSovietandEastEuropeanMathematics, 6.WorldScientific PublishingCo., Inc., River Edge,NJ(1992). [10] E.C.Titchmarsh,AnIntroductiontotheTheoryofFourierIntegrals,ClarendonPress,Oxford(1937). [11] A.P.Prudnikov,Yu.A.BrychkovandO.I.Marichev,IntegralsandSeries: Vol.1: ElementaryFunctions,Gordon andBreach,NewYork(1986);Vol.3:MoreSpecialFunctions,GordonandBreach,NewYork(1990).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.