Journal of Fungi Review New Horizons in Antifungal Therapy KailaM.Pianalto1andJ.AndrewAlspaugh1,2,* 1 DepartmentofMolecularGeneticsandMicrobiology,DukeUniversitySchoolofMedicine,Durham, NC27710,USA;[email protected] 2 DepartmentofMedicine/InfectiousDiseases,DukeUniversitySchoolofMedicine,Durham,NC27710,USA * Correspondence:[email protected];Tel.:+1-919-684-0045 AcademicEditor:MaurizioDelPoeta Received:18July2016;Accepted:20September2016;Published:2October2016 Abstract:Recentinvestigationshaveyieldedbothprofoundinsightsintothemechanismsrequiredby pathogenicfungiforvirulencewithinthehumanhost,aswellasnovelpotentialtargetsforantifungal therapeutics. Someofthesestudieshaveresultedintheidentificationofnovelcompoundsthatact against these pathways and also demonstrate potent antifungal activity. However, considerable effort is required to move from pre-clinical compound testing to true clinical trials, a necessary step toward ultimately bringing new drugs to market. The rising incidence of invasive fungal infectionsmandatescontinuedeffortstoidentifynewstrategiesforantifungaltherapy. Moreover, theselife-threateninginfectionsoftenoccurinourmostvulnerablepatientpopulations. Inaddition tofindingcompletelynovelantifungalcompounds,thereisalsoarenewedefforttoredirectexisting drugsforuseasantifungalagents. Severalrecentscreenshaveidentifiedpotentantifungalactivity in compounds previously indicated for other uses in humans. Together, the combined efforts of academicinvestigatorsandthepharmaceuticalindustryisresultinginexcitingnewpossibilitiesfor thetreatmentofinvasivefungalinfections. Keywords: amphotericin; polyene; azole; echinocandin; flucytosine; aspergillosis; candidiasis; cryptococcosis;fungalinfection;mycosis 1. Introduction Fungalinfectionsareaworldwideglobalhealthproblem,affectingmillionsofpatientsperyear[1]. Ofthese,approximately1.5millionaredisseminatedorinvasivefungalinfections(IFIs),requiring advancedtreatmentandhospitalization[1]. Unfortunately,thishighnumberofinfectionsisassociated withhighmortalityrates,withsomefungalinfectionshavingmortalityratesnearing90%–95%[2,3]. A summary of some of the most common fungal diseases along with their rates of incidence and mortality can be seen in Table 2. Worldwide, most IFIs are caused by the Candida, Cryptococcus, Aspergillus and Pneumocystis species, although diseases caused by rarer fungi are becoming more common. Additionally,thethermally-dimorphic,orendemic,fungi,whichtendtobemoreprevalent inspecificgeographiczones,havehighratesofunreportedinfectionduetothefrequencyofsubclinical infection[4,5]. Table1.Estimatedyearlyincidencesofinvasivefungalinfections. EstimatedMortalityRates FungalDisease EstimatedCasesperYear (%ofInfected)1 Cryptococcosis >1,000,000[6] 20%–70%[6] Candidiasis >400,000[7] 10%–75%[8] Aspergillosis >200,000[9,10] 30%–95%[1,10–12] J.Fungi2016,2,26;doi:10.3390/jof2040026 www.mdpi.com/journal/jof J.Fungi2016,2,26 2of24 Table2.Estimatedyearlyincidencesofinvasivefungalinfections. EstimatedMortalityRates FungalDisease EstimatedCasesperYear (%ofInfected)1 PneumocystisPneumonia >400,000[1,13] 20%–80%[13–15] Mucormycosis(zygomycosis) >11,000[16] 30%–90%[16,17] Endemic/DimorphicFungi2 Blastomycosis ~3000[4] <2%–68%[1,18,19] Coccidioidomycosis ~20,000[20] <1%–70%[21] Histoplasmosis ~25,000[22] 28%–50%[5] Paracoccidioidomycosis ~4000[23] 5%–27%[23] Penicilliosis >8000[1] 2%–75%[24,25] 1Estimatedmortalityrateswillvarywidelydependingontheimmunecompetenceofthehostandgeographical region(adaptedfrom[1],withadditionalcitationslistedinthetable);2estimatedcasesinendemicregions. BlastomycosisandhistoplasmosisareendemicintheMidwesternU.S.andtheMississippiandOhioRiver Valleys,coccidioidomycosisintheSouthwesternU.S.,paracoccidioidomycosisinBrazilandpenicilliosisin SoutheastAsia. Generally, IFIs are infections of immunocompromised hosts. The standard definition of the immunocompromisedhostisexpandingfromthetraditionalsetofpatientswithAIDS,patientswith cancerwhoareundergoingimmunosuppressivechemotherapyortransplantpatientswhoseimmune systemsaresuppressedtopreventorganrejection[26]. IFIscanalsobeseenduringtreatmentwith newbiologically-activeagents,suchasTNF-αinhibitors,usedtotreatautoimmuneorinflammatory diseases. Theseinhibitorsdampeninflammationandhelptreatdiseasesymptoms,buttheycanalso leadtoopportunisticinfections[27]. Additionally,IFIsarealsoobservedinpatientswhoarehealthy andapparentlyimmunocompetent,butwhohaveunderlying,asymptomaticconditionsthatmight alterimmunefunctionandpredisposetowardinfection,suchasthepresenceofautoantibodiesagainst cytokines,suchasGM-CSF[28]. Due to the high global health burden associated with fungal disease, the treatment of these infectionsneedstobepotentandeffective.Indeed,manyofthecurrentlyavailableclassesofantifungal drugsarehighlyeffectiveintheappropriatecontexts. However,thesedrugs, aswithanytherapy, havelimitationsandcaveats. Forexample,thetoxicitiesassociatedwiththeuseofsomeantifungal agents can be prohibitive toward use or must be accepted in order to effectively treat the patient. Additionally,therearefewapprovedantifungalagentsinonlyfourdrugclassesforthetreatment ofIFIs. Furtherlimitingisthesmallnumberoftargetsthatthesedrugsactupon,owingtothehigh levelsofsimilaritybetweentheeukaryoticfungalpathogensandthehumanhosts. Forexample,ofthe four classes of antifungal drug approved for treatment of invasive fungal infections, two of these, polyenesandtheazoles,targetthesamecomponentofthefungalcellmembrane[29,30]. Thissmall numberofcellulartargetsincreasesopportunitiesforfungitodevelopresistancetooneormoreof theavailableantifungals. Furthermore,fewofthecurrentlyavailabledrugsareactuallyfungicidal. Finally,severalofthesedrugshavelimitationsingeographicavailability,particularlyinareaswith highratesoffungalinfections[31]. ThisleadstohighermortalityratesforIFIsduetotreatmentwith lesseffectiveantifungaldrugs. Moreover, the problem of antifungal resistance is on the rise: both that which has evolved in formerlysensitivespecies,aswellastheprevalenceofintrinsically-resistantspeciesoffungi. Todate, resistanceexiststoallofthecurrentlyavailableclassesofantifungalagent[32–36]. Candidaspecies have a high prevalence of azole resistance, largely attributed to the cytostatic nature of these drugs[37,38]. Similarly,AspergillusandCryptococcusstrainshaverecentlyalsodemonstratedazole resistance [35,39–41]. Only a few years ago, echinocandins were considered effective therapy for most clinically-relevant Candida isolates. However, with increased use of these antifungal agents, echinocandin resistance in Candida species has also become more prevalent [36]. Additionally, theintrinsicallydrug-resistantfungi,suchasScedosporiumspecies,continuetocauseabackground of infections in highly immunosuppressed patients, especially those who are heavily treated with J.Fungi2016,2,26 3of24 antifungals. Theseinfectionsareoftenassociatedwithpoorpatientoutcomes[42,43]. Duetothese limitations,thereisanurgentneedfornewantifungalagents. Researchgoalsfornovelantifungalagentshaveemphasizedafewmajorpoints. First,potencyis akeycharacteristicofanoveldrug. Newdrugsmustbeabletoeffectivelycontrolfungalgrowthinthe contextofthepatient,atcompoundlevelsthatarereadilyachievableatinfectionsites. Additionally, idealnovelantifungalagentsshouldpossesslittletonohosttoxicity. Selectivityisalsocrucial,asthe differencesbetweenthefungalpathogenandthehumanhostareevolutionarilymuchsmallerthan thosebetweenbacterialpathogensandhumans. Ideally,novelagentswouldbebroadspectrumand abletotreatmultiplespeciesoffungi. However,manyantifungalcompoundsthatareindevelopment havepotent,butveryspecialized,activity. 2. AntifungalAgentsApprovedforClinicalUsage Currently,therearefourmajorclassesofantifungaldrugsthatareindicatedforthetreatment ofinvasivefungalinfections. Whenusedasindicated,thesedrugscanbehighlyeffectiveattreating IFIs,withsignificantbeneficialeffectsonpatientmortality. Ashortsummaryofthesedrugsandtheir primaryindicationsandusagescanbefoundinTable3. Table3.Approvedantifungaldrugsforthetreatmentofinvasivefungalinfections. Drug Indication Polyenes Life-threateningfungalinfections,includingcryptococcalmeningitis, AmphotericinB aspergillosis,blastomycosisandmucormycosis Azoles Fluconazole InvasiveinfectionsduetosusceptibleCandidaspecies;cryptococcosis Blastomycosis,histoplasmosis,aspergillosisinpatientsrefractoryto Itraconazole AmphotericinB Invasiveaspergillosis;non-neutropeniccandidiasis;serious Voriconazole ScedosporiumorFusariuminfectionsrefractorytootheragents PreventionofinvasivefungalinfectionsinneutropenicorHSC1 Posaconazole transplantrecipients Invasiveyeastandmoldinfections,includingaspergillosis Isavuconazole andmucormycosis Echinocandins Caspofungin Candidemia;refractoryaspergillosis Micafungin Candidiasis Anidulafungin Candidiasis(adjunctivetherapywithvoriconazoleforaspergillosis) Anti-metabolites AdjunctivetherapyinCryptococcusneoformansmeningitisandCandida Flucytosine septicemiaandendocarditis(incombinationwithamphotericinB) 1HSC=hematopoieticstemcell. 2.1. Polyenes: AmphotericinBandItsderivatives AmphotericinBanditsnewerlipidformulationsarepolyeneantifungalsthattargetthefungal plasmamembrane. Recentmodelspositthatthesedrugsactas“sponges”thatbindtoandremove ergosterolfromtheplasmamembrane,reducingmembraneintegrity[30,44]. Duetoitsmechanism of action, amphotericin B is broad spectrum and indicated for the treatment of severe infections caused by Candida species, Cryptococcus species, Zygomycetes and as an alternative therapy for aspergillosis [45]. Amphotericin B is also used to treat many life-threatening IFIs due to other filamentous molds, aswellas the thermally-dimorphic fungi, such as Histoplasma, Coccidioides and Blastomyces. Amphotericin B is cytocidal for most fungi. As amphotericin B is not highly bioavailablewhenadministeredorally,onlyintravenous(IV)formulationsareusedclinically.However, amphotericinBcanhaveseveresideeffects,suchasnephrotoxicityduetooff-targetbindingofhost J.Fungi2016,2,26 4of24 membranes,limitingitsusagetopatientswithlife-threateninginfections[46]. Newerformulationsof thisdrug,suchasthelipid-associatedandliposomalformulations,demonstratemoreselectivefungal targetingandlesshosttoxicity[46]. 2.2. AzolesandTriazoles Antifungalagentsintheazoleclasstargetthefungalplasmamembranethroughinhibitionofthe biosynthesisofergosterol,afungalplasmamembranecomponentthatissimilartocholesterolfound in mammalian cell membranes. This occurs through the inhibition of the sterol 14α-demethylase (cytochrome P450 51 or CYP51), which catalyzes the final step in ergosterol biosynthesis [29]. The inhibition of this enzyme leads to defects in fungal plasma membrane integrity and cellular integrity. Themostcommonly-usedazolesfortreatingIFIscanbefunctionallydividedbetweenagents withprimaryactivityagainstyeast-likefungi(yeast-activeazoles),andthosewithexpandedactivity againstfungithatoftengrowasmolds(mold-activeazoles). Fluconazoleisthemostwidely-usedyeast-activeazole,anditisoftenveryeffectivefortreating infectionscausedbyCryptococcusandCandidaspecies.Importantly,fluconazoleresistancecanpresenta significantclinicalissueinsystemiccandidiasis:someCandidaspecies,suchasC.krusei,areintrinsically resistanttothisdrug,andotherCandidaisolatesareoftensusceptibletothisdrugathighconcentrations. Therefore,precisespeciesidentificationandtargetedantifungalsusceptibilitytestingforclinically-relevant isolatesareveryimportantcomponentsofthecareofpatientswithCandidaIFIs. The mold-active azoles include itraconazole, voriconazole, posaconazole and isavuconazole. InadditiontoretainingactivityagainstCandidaandCryptococcusyeasts,theseagentsalsoinhibitmany filamentousfungi. Itraconazolewasthefirstavailableazolewithsignificantactivityagainstmolds, suchasAspergillusfumigatus. However,issueswithbioavailabilityandtoxicitylimititscurrentusefor IFIs. Twoneweragents,voriconazoleandposaconazole,aremorewidelyusedfortheseinfections, especiallyinhighlyimmunocompromisedpatients. Voriconazolehasbecomethefirst-lineantifungal drugfortreatmentofinvasiveaspergillosisduetoAspergillusfumigatus. Comparativetrialsindicate thatvoriconazoleissuperiortomanyotherantifungalagentsforthisinfection[47]. Posaconazoleis indicatedforthepreventionofIFIs,especiallyinthesettingofprolongedneutropeniaafterhighdose cancerchemotherapy. Theuseofthesedrugshaslikelygreatlyimprovedoutcomesinpatientswith invasivemoldinfections. However,bothdrugshavethepotentialtointeractwithothermedications duetotheirinhibitionofhepaticcytochromeP-450-dependentmetabolism.Moreover,manyazolescan resultincardiacconductionchanges,andtheQTintervalshouldbemonitoredduringtherapy[48]. Isavuconazole(Cresemba®,AstellasPharmaceuticals,Tokyo,Japan)isthemostrecentlyapproved triazole antifungal drug. It differs from other approved azoles in several clinically-relevant ways. First, it has expanded invitro activity that includes the Mucorales molds (Zygomycetes), such as Rhizopus, Mucor and Cunninghamella species, and it may, therefore, be an effective component of the complex, medical-surgical treatment of mucormycosis [49]. Additionally, the intravenous (IV) formulationofisavuconazolelackscyclodextrin,asolubilizingagentusedwithothertriazolesthatis associatedwithnephrotoxicityinpatientswithrenalinsufficiency. Additionally,unlikeotherazole drugsisavuconazoledoesnotappeartoexacerbateQTprolongation,anditmayactuallyshortenthe QTintervalinsomepatients[50]. 2.3. Echinocandins Theechinocandinsrepresentthenewestclassofantifungals. Currently,threedrugsfromthisclass areapprovedforclinicalusage: caspofungin,micafunginandanidulafungin. Echinocandinsaffectcell wallbiosynthesisthroughthenoncompetitiveinhibitionofβ-1,3-glucansynthase[51,52]. Thisenzyme isinvolvedinthebiosynthesisofoneofthemostabundantfungalcellwallcomponents. Therefore, treatmentwithechinocandinsleadstodefectsinfungalcellintegrity. Thesedrugsareprimarilyused forthetreatmentofinvasivecandidiasisandasanalternativetherapyfortreatmentofaspergillosis[53]. Echinocandins have low host toxicity and few drug interactions. However, they have no activity againstCryptococcusspecies,andtheyaredecidedlypooragentsfortreatmentoftheendemicmycoses. J.Fungi2016,2,26 5of24 Additionally,theyarenotorallybioavailable,likelyduetotheirlargemolecularsize,andso,areonly availableinIVformulations. 2.4. 5-Fluorocytosine 5-Jfl. Fuunogri o20c1y6,t 2o, sx i ne (flucytosine) is a fluoridated pyrimidine analog, which inhibits5 Dof N23 A and RNAsynthesisbyincorporatingintothegrowingnucleicacidchain,preventingfurtherextension. 2.4. 5-Fluorocytosine Thisnucleicaciddamageeventuallyleadstocellulardefectsinproteinbiosynthesisandcelldivision. Thisantifu5n-gflauloarogceynttoshinase (bfeluecnytaotstirnibe)u itse ad flwuoitrhidcaytetdo sptyartiimceidffineec tasnaanlodg,h wighhichra itnehsiboiftsr eDsNisAta anncde RdNevAe loping duringsymntohnesoist hbeyr ainpcyo.rpTorhaetirnegf oinreto, tflhue cgyrtoowsiinnge niuscrleairce alycidu csheadina, spraevseinntginleg faugrethnetr feoxrtetnhseiontr. eTahtims ent of nucleic acid damage eventually leads to cellular defects in protein biosynthesis and cell division. This fungal infections. However, it has been shown in multiple clinical trials to be highly effective antifungal agent has been attributed with cytostatic effects and high rates of resistance developing in combination with amphotericin B for the treatment of cryptococcal meningitis [54,55]. Indeed, during monotherapy. Therefore, flucytosine is rarely used as a single agent for the treatment of fungal amphotericinBplusflucytosineisthefirst-linetreatmentforCryptococcuscentralnervoussystem(CNS) infections. However, it has been shown in multiple clinical trials to be highly effective in combination infectiwonitsh [a5m6p].hFotleurcicyinto Bs fionre thcea ntreaaltsmoebnet ouf scerydpitonccooccmalb minenaitniognitisw [5it4h,55o]t.h Inedreaendt, iafmunphgoatlesritcoint rBe paltuCs andida infectioflnuscy,ttohsoinueg ihs tthheis fiirssat-llienses trceoamtmmenotn foprr aCcrtyipcteo.coAccduvs ecresnetreaflf necetrsvofousr flsyuscteymto (sCinNeSi)n icnlfuecdtieonbso n[5e6]m. arrow toxicitFy,luecsyptoesciinael lcyanin altshoe bep uresesden inc ecoomfbriennaatiloinm wpitahi romtheenr at.nHtifouwngeavlse tro, torneaet oCfanthdiedat rinufleyctliiomnsi,t itnhogufgahc torsof this is a less common practice. Adverse effects for flucytosine include bone marrow toxicity, thisdrugisitslimitedavailabilityincountrieswiththehighestincidenceofcryptococcosis[31]. This, especially in the presence of renal impairment. However, one of the truly limiting factors of this drug unfortunately,limitstheeffectivenessofcryptococcalmeningitistherapyinthoseregionsoftheworld is its limited availability in countries with the highest incidence of cryptococcosis [31]. This, inwhichitismostprevalent,likelyincreasingratesofmortalityinthisdisease. unfortunately, limits the effectiveness of cryptococcal meningitis therapy in those regions of the world in which it is most prevalent, likely increasing rates of mortality in this disease. 3. AntifungalAgentsinDevelopmentwithNovelModesofAction 3. Antifungal Agents in Development with Novel Modes of Action Inadditiontothecurrentlyapprovedantifungalmedications,novelcompoundsareinvarious stages of cIlni naidcdailtiodne vtoe ltohep mcuerrnetntfloy rapthperovtreeda atmntiefnuntgoafl mIFeIdsi.caTtiohness,e nonveewl coamgepnotusndhsa avree ibne veanrioidues ntified in largseta-sgceas loef, culinnbiciaals deedveslcorpemenenstf foorr athnet itfrueantgmaelnat cotfi vIFitIys., Tahsewsee nllewas aignenttasr hgaevtee dbeiennv iedsetnigtiafiteido nins based large-scale, unbiased screens for antifungal activity, as well as in targeted investigations based on on detailed studies of fungal-specific cellular processes. In this review, we discuss selected novel detailed studies of fungal-specific cellular processes. In this review, we discuss selected novel antifungalcompoundsthathaveeitherbeguntobeassessedinclinicaltrialsorthatrepresentnovel antifungal compounds that have either begun to be assessed in clinical trials or that represent novel biologicaltargetswithinfungi.Thesenewcompoundsarediscussedbasedontheirknownorpredicted biological targets within fungi. These new compounds are discussed based on their known or molecuplraerditcatregde mt,oillleucustlarar tteadrgient, Fililguustrreat1e.d Ainl tFhioguurgeh 1m. Aalnthyoiungvhe smtiagnayt oinrvseasrtiegaatlosros satrued aylsion gsthudoywintgo better harneshsotwh etoh boesttteirm hmarunenses rtehsep hoonsts eimfmoruenfef ercestipvoenstree faotrm efefnecttiovfe ItFreIsa,tmweentw oifl lIFbIes, fwoceu wsiilnl gbeo fnoctuhseirnagp eutics targeteodn athgearianpsetutthices ftuarnggeateldp aagtahiongste tnh.e Afunbgriael fpsauthmogmeanr. yA obfritehf esuamntmifaurny goaf lthaeg eannttisfutnhgaatl wagilelnbtse tdhaist cussed will be discussed in this review, along with their activities based on minimum inhibitory in this review, along with their activities based on minimum inhibitory concentration (MIC) and concentration (MIC) and primary indications, can be found in Table 3. primaryindications,canbefoundinTable4. Figure1.Thisdiagramofafungalcellindicatesthesitesofactionforcurrentlyapprovedantifungal Figure 1. This diagram of a fungal cell indicates the sites of action for currently approved antifungal drugs(green)aswellasotheragentsinvariousstagesofdevelopment(blue). drugs (green) as well as other agents in various stages of development (blue). J.Fungi2016,2,26 6of24 Table4.Newantifungalagentsindevelopment. AntifungalCompound Indication(s)1 Activity(MIC) References Cryptococcusneoformans 4µg/mL AR-12 [57] Candidaalbicans 4µg/mL Cryptococcusneoformans 0.25–8µg/mL Cryptococcusgattii 0.5–2µg/mL Candidaglabrata 0.125–>32µg/mL BHBM [58] Blastomycesdermatitidis 0.5–1µg/mL Histoplasmacapsulatum 0.125–1µg/mL Pneumocystisjirovecii 0.072–0.912µg/mL2 Candidemia3,* ≤0.008–2µg/mL4 CD101 [59–61] Aspergillusspecies5 ≤0.008–0.03µg/mL4 Aspergillusspecies5 ≤0.008–0.25µg/mL Candidaspecies6 ≤0.002–0.25µg/mL E1210/1211 [62–65] Scedosporiumspecies 0.03–0.25µg/mL Fusariumspecies 0.015–0.25µg/mL F901318 Aspergillusspecies5 <0.03µg/mL [66] Candidaspecies7 0.01–5µg/mL IlicicolinH Aspergillusfumigatus 0.08µg/mL [67] Cryptococcusneoformans 0.2–1.56µg/mL NikkomycinZ Coccidioidomycosis* 0.125µg/mL [68] Cryptococcusneoformans <0.05µg/mL Candidaalbicans 3.1µg/mL Sampangine Candidaglabrata 3.1µg/mL [69] Candidakrusei 6.2µg/mL Aspergillusfumigatus 6.2µg/mL Invasivecandidiasis* 0.03–2µg/mL8 SCY-078 [70–73] Aspergillusspecies5 0.03–0.25µg/mL4 Sertraline Cryptococcusspecies* 2–6µg/mL4 [74] Candidaspecies9 0.00025–0.0078µg/mL Cryptococcusneoformans 0.0039–0.0625µg/mL T-2307 Aspergillusspecies5,10 0.0156–2µg/mL4 [75–77] Fusariumsolani 0.125µg/mL Mucorracemosus 2µg/mL Cryptococcusneoformans 64µg/mL Tamoxifen Candidaalbicans 32µg/mL [78] Candidaglabrata 8µg/mL Invasiveaspergillosis* 1–4µg/mL4,9 Candidaglabrata ≤2µg/mL VL-2397 [79] Candidakefyr ≤2µg/mL Cryptococcusneoformans ≤2µg/mL Cryptococcalmeningitis* <0.0001–0.25µg/mL4 VT-1129 [80–82] Candidaspecies11 <0.0001–1µg/mL VT-1598 Coccidioidomycosis NA12 NA 1 Indication for agents in clinical trials, denoted by *. For preclinical agents, organisms for which there is significant antifungal activity are listed. 2 IC50 = 50% inhibition. MIC not determined due to culture conditions. 3 IncludesCandidaalbicans,C.glabrata,C.tropicalis,C.krusei,C.parapsilosis,C.dubliniensisand C.orthopsilosisisolates. 4 RepresentsMIC90,orMICfor≥90%ofisolatestested,withoccasionalresistant isolates observed. 5 Includes Aspergillus fumigatus, A. terreus, A. flavus and A. niger isolates. 6 Includes Candidaalbicans,C.glabrata,C.tropicalis,C.parapsilosisandC.dubliniensisisolates.7IncludesCandidaalbicans, C. glabrata, C. guillermondii, C. krusei, C. lusitaniae and C. parapsilosis isolates. 8 Includes Candida albicans, C.glabrata,C.tropicalis,C.parapsilosisandC.kruseiisolates.9IncludesCandidaalbicans,C.dubliniensis,C.glabrata, C.guillermondii,C.krusei,C.parapsilosisandC.tropicalisisolates. 10IncludesAspergillusfumigatus,A.flavus, A.terreusandA.nidulansisolates.11IncludesCandidaalbicans,C.glabrataandC.kruseiisolates.12NA:MIC informationnotpubliclyavailable. J.Fungi2016,2,26 7of24 3.1. CellMembraneasAntifungalTarget 3.1.1. VT-1129,VT-1598andVT-1161(ViametPharmaceuticals) VT-1129,VT-1598andVT-1161arecompoundsinanovelclassofmetalloenzymeinhibitorsthat, liketheazolesandtriazoles,inhibittheenzymeresponsibleforthefinalstepofergosterolbiosynthesis: thefungalsterol14α-demethylase(CYP51). Thesecompoundswereidentifiedaspartofaneffortto decreaseoff-targetbindingofhumanCYPenzymes,includinghumanCYP51. Thishasbeenachieved byidentifyingmolecules,liketheViametcompounds,thataremorespecificforthefungalenzyme active site. Additionally, unlike the older generation azoles, whose high affinity for heme groups ledtooff-targetinhibitionofhumanCYPenzymes,theViametcompoundshaveloweraffinityfor heme[83]. ThesefeaturesallowVT-1129andVT-1161toselectivelyinhibitfungalCYP51overhuman CYP51. VT-1129isapproximately3000-foldmoreselectivefortheCryptococcusisoformsofCYP51over humanCYP51invitro,whileVT-1161isgreaterthan1000-foldmoreselectivefortheCandidaenzyme. Theoretically, thisincreasedfungalselectivitymaydecreasetheriskfortoxicityathigherdosesof drug[81,84]. These compounds, like many of the azoles, are available in oral and intravenous forms. VT-1129 inhibits the growth of many Cryptococcus isolates, including both C. neoformans and C.gattii[80,81,85].Additionally,inamousemodelofcryptococcalmeningitis,treatmentwithVT-1129 ledtodose-dependentclearanceofCryptococcusfromthebrain,performingbetterthanfluconazoleat similardrugconcentrations[86]. Therefore,VT-1129hasbeengrantedQualifiedInfectiousDisease Product (QIDP) designation, allowing expedited review for approval. VT-1129 is currently in phase1clinicaltrialsforthetreatmentofcryptococcalmeningitis. VT-1598 is in preclinical development for treatment of coccidioidomycosis. Additionally, as part of Viamet’s extended platform, VT-1161, which has been shown to be effective against fluconazole-resistantCandidaisolates,isinphase2bclinicaltrialsforthetreatmentofonychomycoses andrecurrentvulvovaginalcandidiasis[87]. 3.1.2. InhibitionofMembrane-AssociatedLipids N(cid:48)-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and 3-bromo-N(cid:48)-(3- bromo-4-hydroxybenzylidene)benzohydrazide(D0)representanewclassofantifungalcompounds, termed“hydrazycins”. Theseagentswereidentifiedinascreenofsyntheticcompoundsinhibiting sphingolipid biosynthesis in C. neoformans, a process demonstrated to be required for fungal growth invivo [58]. These compounds inhibit vesicle trafficking of precursor lipids, such as ceramides, to the cell surface, thereby inhibiting glucosylceramide biosynthesis and cell division. Additionally,thesecompoundsspecificallyinhibitfungal,butnothuman,glucosylceramidesynthesis, suggestingfungal-specificcellularinhibitionforthisnovelclassofcompounds. BHBM and D0 were identified in a screen for antifungal activity against C. neoformans at alkaline,butnotacidicpH[88]. BHBMshowedpromisinginvitroinhibitoryactivityagainstmultiple isolates of two Cryptococcus species (C. neoformans and C. gattii), as well as Histoplasma capsulatum, Blastomycesdermatitidis,PneumocystismurinumandPneumocystisjirovecii. Notably,thestrainstested includedfluconazole-resistantCryptococcusstrains. InvivoactivityforBHBMandD0wasassessedin murinemodelsofinfectionduetoCryptococcusneoformans,CandidaalbicansandPneumocystismurinum, resultinginsignificantincreasesinsurvivaltimescomparedtocontrols. Additionally,thesedrugs showedsynergywithbothfluconazoleandamphotericinB,suggestingpotentialforcombinatorial therapy. These hydrazycins were well tolerated in animal models of invasive fungal infection, thoughsomeinteractionwasobservedwiththeimmunosuppressivecorticosteroiddexamethasone, whichresultedinadecreasedcompoundhalf-lifeinvivo[58]. J.Fungi2016,2,26 8of24 3.2. CellWallSynthesisInhibitors 3.2.1. CD101(Biafungin)(CidaraTherapeutics) CD101,orbiafungin,isanovelechinocandinformulatedforbothintravenousandtopicaluse. It is similarly effective when compared to anidulafungin and caspofungin against Aspergillus and Candidaspeciesinvitro[59–61]. However,theadvantageofCD101overexistingechinocandindrugs lies in its pharmacokinetics. The half-life of this drug is 81 h invivo. In contrast, the half-life of anidulafungin, thelongest-actingechinocandintodate, isapproximately24h[89,90]. Thisallows biafungintopotentiallybeadministeredwithonce-weeklyintravenousdoses,ratherthandailydoses, betterfacilitatingpatientcareandcompliancewhilepotentiallydecreasingdrugadministrationcosts. Biafungin,likeotherechinocandins,demonstratesfewdruginteractionsandanexcellentsafetyprofile. Thisdrugiscurrentlyinphase2clinicaltrialsforthetreatmentofcandidemia. 3.2.2. SCY-078(Scynexis) SCY-078isanovelβ-1,3-glucansynthaseinhibitorthatisstructurallydistinctfromthecurrently availableechinocandinglucansynthaseinhibitors. Itisderivedfromenfumafungin,anovelnatural product. Thereby, SCY-078 is a first-in-class, orally-available β-1,3-glucan synthase inhibitor that has received QIDP designation. An intravenous formulation is also in development. SCY-078 showsinvitroactivityagainstisolatesofCandidaandAspergillusspeciesatMICorMEC(Minimum EffectiveConcentration)levelsbelow0.5µg/mL,includingseveralfluconazole-resistantstrains[70,72]. Additionally,SCY-078remainsactiveagainstcertainechinocandin-resistantstrainsofCandidaand Aspergillus [71,73]. When SCY-078 was tested invitro against non-Aspergillus molds, SCY-078 was the only β-1,3-glucan synthase inhibitor with activity against the notoriously pan-resistant mold Scedosporiumprolificans[91]. Inamurinemodelofinvasivecandidiasis,treatmentwithSCY-078led toadose-dependentdecreaseinfungalburdeninthekidneysacrossCandidaspecies[72]. Thisdrug iscurrentlyinphase2clinicaltrialsinitsoralformulationforthetreatmentofinvasivecandidiasis, whiletheIVformulationisinphase1clinicaldevelopment. 3.2.3. NikkomycinZ(UniversityofArizona) NikkomycinZisanolderdrugthathasresurfacedrecentlyduetoanincreasedinterestinanti-cell wallantifungaldrugs. NikkomycinZisacompetitiveinhibitorofchitinsynthases,actingtodecrease cellwallstability. Recently, itreceivedOrphanDrugStatusforitsdevelopmentasatreatmentfor coccidioidomycosis. Inthepast,thisdrugshowedpromiseagainstthethermally-dimorphicfungi, including Coccidioides immitis, Histoplasma capsulatum and Blastomyces dermatitidis [68]. However, the clinical development of this drug was terminated due to difficulties in production. The drug wasre-licensedtotheUniversityofArizona,allowingforthereinstitutionofclinicaldevelopment. NikkomycinZiscurrentlybeingtestedinphase1/2clinicaltrialsfortreatmentofcoccidioidomycosis. TherenewedinterestinNikkomycinZreflectsmomentumexploringthefungalcellwallasan antifungaltargetingeneral. Thisfungal-specificcellularfeaturemakesforanidealtargetforlesstoxic antifungaldrugdevelopment. 3.3. MitochondriaasanAntifungalTarget 3.3.1. T-2307(ToyamaChemicals,Tokyo,Japan) T-2307 is a novel arylamidine compound that inhibits fungal growth by interfering with fungalmetabolism. Thiscompoundspecificallycollapsesfungalmitochondrialmembranepotential, whichpreventsfungifromperformingcellularrespiration,thuscompromisingenergyproduction for essential cellular processes [92]. Furthermore, this anti-mitochondrial activity is specific to fungi,andthisdrugdoesnotcollapsemammalianmitochondrialmembranepotentialatveryhigh concentrations. Themechanismforthisselectivityhasbeenpositedtobeduetoselectiveuptakeof J.Fungi2016,2,26 9of24 thisdrugbythehigh-affinity,fungal-specificAgp2spermine/spermidinetransporter[93]. T-2307, likemanyavailableantifungaldrugs,hasafungistaticmechanismofaction. However,ithaspotent invitroactivityagainstCandidaspecies,Cryptococcusneoformans,AspergillusspeciesandFusariumsolani, includingechinocandin-resistantCandidaisolates[75–77]. TheinvitroactivityofT-2307iscomparable to the activity of voriconazole and micafungin for Aspergillus species and more effective at lower concentrationsofdrugthanfluconazole,voriconazoleandmicafunginagainstCandida,Cryptococcus andFusarium[75]. Additionally,inamurinemodelofsystemiccandidiasis,T-2307performedaswell asmicafunginoramphotericinB,butatlowerconcentrationsofcompound[75]. 3.3.2. IlicicolinH IlicicolinHactsonthemitochondriabyspecificallyinhibitingtheactivityofthecytochromebc1 complex. Thisinhibitionofenzymaticactivitydecreasesfungalmitochondrialrespiration,preventing thebiosynthesisofATP.Basedoninvitrodata,fungalcytochromebc1is50-foldmoresensitiveto ilicicolin H inhibition than the bovine enzyme and 1000-fold more sensitive than rat cytochrome bc1[94,95]. Unfortunately,insomecases,resistancetothisdrugdoesoccur[67]. Yet,thismolecule isapromisingstartingpointforfuturestructuralanalogswiththepotentialformorespecificityand potencyagainstmitochondrialprocesses. 3.4. OtherMechanisms/UnknownMechanisms 3.4.1. VL-2397(Vical,SanDiego,CA,USA) VL-2397representsanewclassofantifungalcompoundthathasreceivedQIDPdesignationfor developmentfortreatmentofaspergillosis. Althoughthemechanismoffungalcellinhibitionhas yettobedetermined,thiscompoundsexhibitssignificantinvitroactivityagainstAspergillusspecies, Cryptococcusneoformans,Candidaglabrata,CandidakefyrandTrichosporonasahii,aswellasmodestactivity againstFusariumsolani[79]. Additionally,VL-2397showsfungicidalactivityagainstAspergillusspecies. However,thiscompoundhasnoactivityagainstotherCandidaspecies,includingC.albicans,oranyof theMucoralesfungi[79]. Interestingly,theimportofthedrugintofungalcellsrequiresthesiderophore transporterSit1. Asmammaliancellslackthistransporter,thismechanismofentrycouldresultin specificityforthisdrugtowardfungalpathogens. VL-2397haspotentinvivoeffectsagainstazole-refractoryAspergillusfumigatusinamurinemodel ofinvasiveaspergillosis[96].Treatmentwiththisdrugresultedinasignificantimprovementinsurvival ininfectedmicecomparedwithapprovedantifungaldrugs,suchasamphotericinB,posaconazole and caspofungin alone. Additionally, it is effective in combination with posaconazole invivo, andposaconazoledoesnotantagonizeVL-2397activity[96]. VL-2397iscurrentlyinphase1clinical trialsforthetreatmentofinvasiveaspergillosis. Althoughitdemonstratesfairlynarrow-spectrum activity, VL-2397 shows promise as a novel agent for combinatorial therapy, especially against Aspergillusspecies. 3.4.2. AR-12(ArnoTherapeutics,Flemington,NJ,USA) AR-12wasinitiallydevelopedasananticanceragentin2006. Thisdrugisapotentinhibitorofthe phosphoinositide-dependentkinasePDK1inhumansandinducescell-deathpromotingendoplasmic reticulumstress,inhibitingproliferativecellgrowth[97]. However,AR-12(OSU-03012)wasidentified through a repurposing screen of protein kinase inhibitors looking for agents that induced fungal celllysis. Thisdrugwastherebydemonstratedtohavepotentantifungalactivity[57]. Ithassince beengrantedtheEuropeanOrphanDrugDesignationforthetreatmentofcryptococcosis. Thougha strongPDK1inhibitorinhumans,thisdrugdoesnotinhibittheC.neoformansPDK1[98]. However, based on haploinsufficiency profiling in S. cerevisiae and C. albicans (a microbial genetic technique usedtotestforpotentialmechanismsofantifungalaction),itissuggestedthatAR-12inhibitsfungal carbonmetabolism,specificallyacetyl-CoAsynthetase(ACS2)[98]. InhibitionofACS2leadstodefects J.Fungi2016,2,26 10of24 in several cellular processes, including histone acetylation, ribosome assembly and regulation of autophagy,inadditiontoitsrolesincarbonmetabolism[98]. AR-12showsactivityagainstC.albicans biofilms, important structures in mucosal and catheter-associated infections. It is in preclinical developmentasanorally-availableantifungalforthetreatmentofcryptococcosis. 3.4.3. F901318(F2GLtd.,Manchester,UK) F901318 is a member of the novel orotomide class of antifungal drug that is formulated for bothintravenousandoraldelivery. Itinhibitspyrimidinebiosynthesisbyblockingdihydroorotate dehydrogenaseactivity,preventingnucleotidebiosynthesis. F901318inhibitsthegrowthofAspergillus species invitro, with MEC levels below 0.5 µg/mL [66]. It is even effective against azole- and amphotericinB-resistantAspergillusstrains[66]. Inamurinemodelofinvasiveaspergillosis,F901318 treatmentledtoreducedgalactomannanlevelsinmice,whichhasbeenshowntobeassociatedwith betterclinicaloutcomesinpatients[99,100]. F901318iscurrentlyinphase1clinicaltrialsassessingthe safetyoftheIVformulation. Thusfar,ithasdemonstratedanexcellentsafetyprofileandwaswell toleratedattherapeutically-relevantdoses[101]. 3.4.4. E1210/1211 E1210 and E1211, which represent the active compound and its pro-drug, respectively, are inhibitors of fungal, but not human, glycophosphatidylinositol (GPI) anchor biosynthesis. This cellular process is required for the anchoring of proteins to both the fungal cell wall and cell membrane [64]. The anti-GPI activity of E1210 is achieved through inhibition of the fungal Gwt1 protein, whichcatalyzesanearlystepinthecreationoftheGPIanchor, whilethehumanenzyme appearsunaffected[64]. InC.albicans,treatmentwithE1210inhibitsgermtubeformation,aswellas biofilm formation and adherence to plastics [64]. E1210 has activity against Candida, Aspergillus, FusariumandevenScedosporiumspeciesinvitro,intheng/mLrangeforallstrainstested[62,65].E1210 alsoshowsactivityagainstazole-andechinocandin-resistantstrainsofCandida[102]. At1–2µg/mL, theactivityappearstobefungicidal[63]. In a murine model of disseminated candidiasis, orally-administered E1210 had a significant, beneficialsurvivaleffectinanimalsinfectedwithanazole-resistantstrainofC.albicans.Italsoincreased survivalinmousemodelsofdisseminatedcandidiasisandpulmonaryaspergillosis,althoughthis effectwasseenathigherconcentrationsthanthatrequiredforcaspofungin,liposomalamphotericin Borfluconazole/voriconazole. E1210alsoaidedclearanceversusanuntreatedcontrolinamurine modelofdisseminatedfusariosis[103]. 3.4.5. Sampangine Sampangine is a copyrine alkaloid natural product which inhibits heme biosynthesis invivo [69,104,105]. Because of this activity, treatment with this compound leads to defects in all heme-requiringpathways,includingcellularrespirationandergosterolbiosynthesis[69]. Thisnatural product has very low MIC values for Cryptococcus neoformans (0.05 µg/mL), and it demonstrates inhibitoryactivityatconcentrationsof3–6µg/mLforCandidaandAspergillusspecies[69]. Synthesisof thisandotheralkaloidshasbeenindevelopmentinthesearchfornovelantifungalsandantimicrobials, asspecifichemebiosynthesisinhibitioncouldproveapotenttargetforantifungaldevelopment[106]. Indeed,someanalogsthathavebeencreatedhavepotentinvitroactivityagainstC.neoformansand A.fumigatus[107]. 3.5. OldDrugs,NewTricks Asdemonstratedabove,severalavenuesofresearchhaveidentifiednovelcompoundsorclasses of compounds that havesignificant antifungal effects, with thepotential to develop toward novel therapeuticstobeappliedinaclinicalsetting. However,giventheconsiderableresourcesrequiredto developcompletelynovelantimicrobialdrugs,manyinvestigatorshavepursuedaparallelstrategyto
Description: