ebook img

New Handbook of Mathematical Psychology: Volume 1, Foundations and Methodology PDF

624 Pages·2017·8.219 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Handbook of Mathematical Psychology: Volume 1, Foundations and Methodology

NewHandbookofMathematicalPsychology The field of mathematical psychology began in the 1950s and includes bothpsychologicaltheorizinginwhichmathematicsplaysakeyrole,and applied mathematics motivated by substantive problems in psychology. CentraltoitssuccesswasthepublicationofthefirstHandbookofMath- ematicalPsychologyinthe1960s.Thepsychologicalscienceshavesince expandedtoincludenewareasofresearch,andsignificantadvanceshave been madein both traditional psychological domains and in the applica- tionsofthecomputationalsciencestopsychology.Upholdingtherigorof the original Handbook, the New Handbook of Mathematical Psychology reflects the current state of the field by exploring the mathematical and computational foundations of new developments over the last half cen- tury.Thefirstvolumefocusesonselectmathematicalideas,theories,and modeling approaches to form a foundational treatment of mathematical psychology. william h. batchelder is Professor of Cognitive Sciences at the UniversityofCaliforniaIrvine. hans colonius is Professor of Psychology at Oldenburg University, Germany. ehtibar n. dzhafarov is Professor of Psychological Sciences at PurdueUniversity. jay myung isProfessorofPsychologyatOhioStateUniversity. New Handbook of Mathematical Psychology Volume 1. Foundations and Methodology Editedby William H. Batchelder Hans Colonius Ehtibar N. Dzhafarov Jay Myung UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107029088 ©CambridgeUniversityPress2017 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2017 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-02908-8Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Listofcontributors pagevii Preface william h. batchelder, hans colonius, ehtibar n. dzhafarov, and jay myung ix 1 Selectedconceptsfromprobability hans colonius 1 2 Probability,randomvariables,andselectivity ehtibar n. dzhafarov and janne kujala 85 3 Functionalequations che tat ng 151 4 Networkanalysis john p. boyd and william h. batchelder 194 5 Knowledgespacesandlearningspaces jean-paul doignon and jean-claude falmagne 274 6 Evolutionarygametheory j. mckenzie alexander 322 7 Choice,preference,andutility:probabilisticanddeterministic representations a. a. j. marley and michel regenwetter 374 8 Discretestatemodelsofcognition william h. batchelder 454 9 Bayesianhierarchicalmodelsofcognition jeffrey n. rouder, richard d. morey, and michael s. pratte 504 10 Modelevaluationandselection jay myung, daniel r. cavagnaro, and mark a. pitt 552 Index 599 v Contributors j. mckenzie alexander, LondonSchoolofEconomics(UK) william h. batchelder, UniversityofCaliforniaatIrvine(USA) john p. boyd, Institute for Mathematical Behavioral Sciences, University of CaliforniaatIrvine(USA) daniel r. cavagnaro, MihayloCollegeofBusinessandEconomics,Califor- niaStateUniversityatFullerton(USA) hans colonius, OldenburgUniversity(Germany) jean-paul doignon, Département de Mathématique, Université Libre de Bruxelles(Belgium) ehtibar n. dzhafarov, PurdueUniversity(USA) jean-claude falmagne, Department of Cognitive Sciences, University of CaliforniaatIrvine(USA) janne v. kujala, UniversityofJyväskylä(Finland) anthony a. j. marley, Department of Psychology, University of Victoria (Canada) richard d. morey, UniversityofGroningen(TheNetherlands) jay myung, OhioStateUniversity(USA) che tat ng, DepartmentofPureMathematics,UniversityofWaterloo(Canada) mark a. pitt, DepartmentofPsychology,OhioStateUniversity(USA) michael s. pratte, DepartmentofPsychology,VanderbiltUniversity(USA) michel regenwetter, Department of Psychology, University of Illinois at Urbana-Champaign(USA) jeffrey n. rouder, Department of Psychological Sciences, University of Missouri(USA) vii Preface Aboutmathematicalpsychology Therearethreefuzzyandinterrelatedunderstandingsofwhatmathemat- icalpsychologyis:partofmathematics,partofpsychology,andanalyticmethod- ology. We call them “fuzzy” because we do not offer a rigorous way of defining them.Asarule,aworkinmathematicalpsychology,includingthechaptersofthis handbook, can always be argued to conform to more than one if not all three of these understandings (hence our calling them “interrelated”). Therefore, it seems safer to think of them as three constituents of mathematical psychology that may bedifferentlyexpressedinanygivenlineofwork. 1.Partofmathematics Mathematicalpsychologycanbeunderstoodasacollectionofmathematicaldevel- opmentsinspiredandmotivatedbyproblemsinpsychology(oratleastthosetra- ditionallyrelatedtopsychology).Agoodexampleforthisisthealgebraictheory ofsemiordersproposedbyR.DuncanLuce(1956).Inalgebraandunidimensional topology there are many structures that can be called orders. The simplest one is thetotal,orlinearorder (S,(cid:2)),characterizedbythefollowingproperties:forany a,b,c∈S, (O1) a(cid:2)borb(cid:2)a; (O2) ifa(cid:2)bandb(cid:2)cthena(cid:2)c; (O3) ifa(cid:2)bandb(cid:2)athena=b. The ordering relation here has the intuitive meaning of “not greater than.” One can,ofcourse,thinkofmanyotherkindsoforder.Forinstance,ifwereplacethe property(O1)with (O4) a(cid:2)a, we obtain a weaker (less restrictive) structure, called a partial order. If we add to the properties (O1–O3) the requirement that every nonempty subset X of S possessesanelementa suchthata (cid:2)aforanya∈X,thenweobtainastronger X X (more restrictive) structure called a well-order. Clearly, one needs motivation for ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.