ebook img

New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole PDF

0.44 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole

New gravitational self-force analytical results for eccentric orbits around a Schwarzschild black hole Donato Bini1, Thibault Damour2, and Andrea Geralico1 1Istituto per le Applicazioni del Calcolo “M. Picone”, CNR, I-00185 Rome, Italy 2Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France (Dated: May 4, 2016) We raise the analytical knowledge of the eccentricity-expansion of the Detweiler-Barack-Sago redshift invariant in a Schwarzschild spacetime up to the 9.5th post-Newtonian order (included) for thee2 and e4 contributions, and up tothe4th post-Newtonian order for thehighereccentricity contributionsthroughe20. Weconvertthisinformationintoananalyticalknowledgeoftheeffective- one-body radial potentials d¯(u), ρ(u) and q(u) through the 9.5th post-Newtonian order. We find that our analytical results are compatible with current corresponding numerical self-force data. I. INTRODUCTION TABLEI.Presentanalytical knowledgeofδUen alongeccen- tric orbits in a Schwarzschild spacetime. 6 Afruitfulsynergybetweenvariousmethodsforapprox- 1 imatingthegeneralrelativistictwo-bodyproblemhasde- n δUen Refs. 0 2 velopedoverthelastyears,withacceleratedprogressover 0 22.5PN Kavanagh et al.[25] the last months. The concerned approximationmethods 2 9.5PN This paper y are: post-Newtonian (PN) theory, self-force (SF) the- a 4 9.5PN This paper M ory,andnumericalrelativity(NR).Thesynergybetween 6 4PN Hopperet al.[28] these approximation methods was greatly facilitated by 3 theconstructionoftheoreticalbridgesconnectingthevar- 8 4PN Hopperet al.[28] 10 4PN Hopperet al.[28] ious methods. Among these bridges, two have been par- ] ticularlyuseful: the effective-one-body(EOB)formalism 12 4PN This paper c [1–4],andthe firstlawofbinarymechanics[5–7]. Exam- 14 4PN This paper q - ples of synergiesbetween PN and SF facilitated by EOB 16 4PN This paper gr and/or the first law are Refs. [8–30]. 18 4PN This paper [ This paper is a follow-up of Ref. [27]. It concerns the 20 4PN This paper first self-force (1SF) conservative dynamics of the eccen- 2 tric orbits of a small mass m around a (non-spinning) v 1 8 largemassm2 (describedbyaSchwarzschildblackhole). 8 Our results complete the results of both Ref. [27] and of eccentricity powers of the alternative redshift function 9 the recent related Refs. [28, 29]. Before entering the de- δz1(p,e)= nδz1en(up)en, where z1 =1/U.] 2 tails ofournew resultswe summarizeinTable I howour To complete our results on the coefficients at or- 0 results go beyond present analytical knowledge in terms ders e2 anPd e4 of the redshift function δU(p,e) = 1. ofthedecompositionofthe(gauge-invariant)1SFcontri- δUen(u )en, we shall also transcribe below our n p 0 butionδU(p,e)totheDetweiler-Barack-Sago[31,32]av- 9.5PN-accurate results in terms of the corresponding 6 erageredshiftU(p,e)inpowersofthe eccentricitye,i.e., EPOB potentials d¯(u) and q(u) q (u). [We also give :1 δU(p,e)= nδUen(up)en. [Weuseinthepresentpaper the previously uncomputed 4PN≡valu4es of the higher-pr- iv tdheenosatemsethneoPtiantvioenrseassienmRi-elaf.tu[2s7r].ecItnumparotfictuhlearc,ounpsi≡de1re/dp powersanalogsoftheO(p4r)EOBpotentialq(u)≡q4(u).] X Finally, we shall also explicitly compute the 9.5PN- eccentric orbit. In addition, we denote M m +m , 1 2 accurate value of the gauge-invariant 1SF precession ar µ m1m2/(m1+m2)andν µ/M =m1m2≡/(m1+m2)2 function ρ(u) defined in Ref. [8] and related there to ≡ ≡ in our EOB considerations.] the 1SF EOB potentials a(u) and d¯(u). The precession Table I shows that our new results are of two differ- functionρ(u)isofparticularinterestbecauseitcanbedi- ent types. On the one hand, we improve the PN knowl- rectly extracted from SF numerical computations of the edge of the contributions to δU of order e2 and e4 to dynamics of slightly eccentric orbits [9] without making the 9.5PN level (previous analytical knowledge was the use of the eccentric first law. Therefore a comparison 6.5PN level for δUe2 [27] and the 4PN one for δUe4 betweenour9.5PNanalyticalcomputationofthepreces- [27, 33]). On the other hand, we combine the 4PN sion function ρ(u) (which combines SF theory with the results of [33] with the eccentric first law [7] to com- eccentric first law [7]) and of a purely dynamical SF nu- pute the 4PN-accurate values of δUen for the high val- mericalcomputation of the precessionof eccentric orbits ues of n: n = 12,14,16,18,20 (previous similar 4PN- (asin[9])wouldbeausefulcheckoftheassumptionsun- level knowledge concerned n = 6,8,10 [28]). [We also derlying the theoretical bridges (EOB and the first law) givebelowthe 4PNknowledgeofthe correspondinghigh used in connecting SF and PN results. 2 II. NOVEL ANALYTICAL RESULTS FOR δUe2 the 6.5PNlevel obtained in our previous work [27] up to AND δUe4 UP TO THE 9.5PN ORDER the 9.5PN level. Note that the conversion between PN orderandmeaningful powersofu , or equivalently1 u or p Our new, 9.5PN-accurate, results for δUe2 and δUe4 x, depends onthe consideredSForEOBfunction. More havebeenobtainedbyfollowingtheapproachofourpre- precisely, the nth PN order corresponds to: (1) a term viouspapers[18,27]. Letusonlyrecallthatourapproach un+1 ina(u)(andδU(u,e));(2)aterm unind¯(u)or combines standard Regge-Wheeler-Zerillifirst order per- ∝ρ(u); and(3) a term un−1 in q(u). Ther∝efore,our cur- ∝ turbationtheorywiththe Mano-Suzuki-Takasugi(MST) rent 9.5PN accuracy (obtained by using hypergeometric [34, 35] hypergeometric-expansion technique (here used expansionsuptothemultipolarorderl=7)corresponds up to the multipolar l = 7 solution included). The toerrorterms: Oln(u1p1)inδU(up,e);Oln(u10)ind¯(u)or main steps of this, by now, well established procedure ρ(u); and O (u9) in q(u), where O (uq) denotes some ln ln are sketched in Appendix A. O(uq(lnu)p) with a non specified natural integer p 1. ≥ We have raised the analytical knowledge of δUe2 from Our result for δUe2 reads 5 41 δUe2(u )=u +4u2+7u3+ π2 u4 p p p p −3 − 32 p (cid:18) (cid:19) 11141 29665 296 592 1458 3248 + + π2 ln(u ) γ ln(3)+ ln(2) u5 − 45 3072 − 15 p − 15 − 5 15 p (cid:18) (cid:19) 2238629 73145 8696 167696 17392 42282 + π2+ ln(u ) ln(2)+ γ+ ln(3) u6 − 1575 − 1536 105 p − 105 105 35 p (cid:18) (cid:19) 232618 πu13/2 − 1575 p 2750367763 9765625 41285072 5102288 673353 2551144 + ln(5)+ ln(2)+ γ ln(3)+ ln(u ) p 198450 − 4536 2835 2835 − 280 2835 (cid:18) 9735101 13433142863 + π4 π2 u7 262144 − 3538944 p (cid:19) 2687231 + πu15/2 4410 p 1040896 4163584 85422206699 936036 109568 + ln(u )2+ γ + ln(3) ln(2) ln(u ) p p 1575 1575 − 5457375 175 − 1575 (cid:20) (cid:18) (cid:19) 471677766820151 171448137814 301990638447 1228515625 170844413398 + ln(2) ln(3)+ ln(5) γ 1719073125 − 5457375 − 4312000 57024 − 5457375 1872072 219136 1872072 4163584 23854914937 + γln(3) ln(2)γ+ ln(2)ln(3)+ γ2 π4 175 − 1575 175 1575 − 503316480 936036 77824 8655872 80420758955297 + ln(3)2 ζ(3) ln(2)2 π2 u8 175 − 15 − 1575 − 2477260800 p (cid:21) 66757650913 + πu17/2 26195400 p 1 Thename we give tothe arguments inthe various EOB poten- but as the corresponding physical quantity u=GM/c2rEOB is tials considered hereis arbitrary, because weare expanding the corresponding functions (e.g. u → d¯(u)) in powers of their ar- numerically equal, moduloa O(ν) correction, both to up =1/p and to the frequency parameter usually denoted x, one some- gument. The traditional EOB notation for the argument is u, timescallstheargumentup orx. 3 2994904 11979616 618506181077 5165694 55690528 + ln(u )2+ γ+ ln(3)+ ln(2) ln(u ) p p − 1225 − 1225 99324225 − 175 2205 (cid:20) (cid:18) (cid:19) 2205806334400049687 46585620571706 2452189382919 3191857421875 ln(2)+ ln(3) ln(5) − 1720792198125 − 165540375 8008000 − 36324288 678223072849 1272610164394 10331388 111381056 ln(7)+ γ γln(3)+ ln(2)γ − 46332000 99324225 − 175 2205 10331388 11979616 389897083139633 ln(2)ln(3) γ2+ π4 − 175 − 1225 16106127360 5165694 1020736 1391778208 79965804866374541 ln(3)2+ ζ(3)+ ln(2)2 π2 u9 − 175 105 11025 − 554906419200 p (cid:21) 3936830890988503 100155852 2250424 120397684 665599064 + π+ πln(3) π3+ πln(u )+ πln(2) p − 59935075200 6125 − 675 23625 165375 (cid:18) 240795368 + πγ u19/2 23625 p (cid:19) 91608512384 2694566979 105972007312260412 76708984375 + ln(u )2+ ln(3)+ + ln(5) p − 9823275 53900 442489422375 1571724 (cid:20) (cid:18) 366434049536 2995825170944 86555681446617433123159 2694566979 γ ln(2) ln(u ) + ln(3)2 p − 9823275 − 9823275 − 949139810994375 53900 (cid:19) 213354316911514424 1656928811171577752 995870224363383 38345561821484375 + γ+ ln(2) ln(3) ln(5) 442489422375 442489422375 − 1079078000 − 56638646064 315073184 193778020814 113425393373 3608718872135173 + ζ(3)+ ln(7) π6 π2 2835 868725 − 100663296 − 5651824640 16005605256259137079 76708984375 366434049536 5991650341888 + π4+ ln(5)2 γ2 ln(2)γ 16492674416640 1571724 − 9823275 − 9823275 76708984375 239758989824 2694566979 76708984375 + ln(2)ln(5) ln(2)2+ γln(3)+ γln(5) 785862 − 218295 26950 785862 2694566979 + ln(2)ln(3) u10 26950 p (cid:21) 28108289357 369663722 56216578714 15720247936467024947 + πln(u )+ π3 πγ+ π p − 1157625 33075 − 1157625 114535928707200 (cid:18) 9003848366 839692089 + πln(2) πln(3) u21/2+O (u11). (1) 231525 − 8575 p ln p (cid:19) The numerical values of the coefficients in the latter expansion read δUe2(u )=u +4u2+7u3 14.31209731u4+( 345.3178497 19.73333333ln(u ))u5 p p p p− p − − p p +( 1575.580014+82.81904762ln(u ))u6 463.9942859u13/2 − p p− p +( 14960.48992+899.8744268ln(u ))u7+1914.327703u15/2 − p p p +( 119420.1688 8298.710150ln(u )+660.8863492ln(u )2)u8+8006.189854u17/2 − − p p p p +( 395945.586 14340.26852ln(u ) 2444.819592ln(u )2)u9 − − p − p p +( 226044.9538+16010.17903ln(u ))u19/2 − p p +(140039.6684ln(u ) 9325.658946ln(u )2 2966833.394)u10 p − p − p +( 76281.00237ln(u )+436383.4353)u21/2+O (u11). (2) − p p ln p Similarly, we have extended the analyticalknowledge of δUe4 from 4PN (as obtainedin our previous work [27]) up 4 to 9.5PN, namely 1 705 123 δUe4(u )= 2u2+ u3+ π2 u4 p − p 4 p 8 − 256 p (cid:18) (cid:19) 247931 89395 28431 292 64652 146 + π2+ ln(3)+ γ ln(2)+ ln(u ) u5 360 − 6144 10 3 − 15 3 p p (cid:18) (cid:19) 293423 25493859 601 1202 248378 9765625 275167 + ln(3) ln(u ) γ+ ln(2) ln(5)+ π2 u6 4200 − 2240 − 5 p − 5 7 − 1344 1024 p (cid:18) (cid:19) 430889 + πu13/2 3150 p 4815135047 194385796 2260629 3470703125 794596 397298 + ln(2) ln(3)+ ln(5) γ ln(u ) p − 396900 − 945 − 320 36288 − 945 − 945 (cid:18) 58818333 16293066631 π4+ π2 u7 − 1048576 4718592 p (cid:19) 13695499 + πu15/2 47040 p 497764 1991056 66544956203 11934459 195652496 + ln(u )2+ γ ln(3)+ ln(2) ln(u ) p p 1575 1575 − 3969000 − 175 1575 (cid:20) (cid:18) (cid:19) 2047686486671407 197388844553 359853720161877 4691575390625 + ln(2)+ ln(3) ln(5) 13752585000 − 269500 275968000 − 8515584 678223072849 66544956203 23868918 391304992 ln(7) γ γln(3)+ ln(2)γ − 6082560 − 1984500 − 175 1575 23868918 1991056 924796757543 ln(2)ln(3)+ γ2+ π4 − 175 1575 2013265920 11934459 37216 751271824 27703501682741 ln(3)2 ζ(3)+ ln(2)2+ π2 u8 − 175 − 15 1575 19818086400 p (cid:21) 1023562537 + πu17/2 1552320 p 10161819 + ln(u )2 p − 1225 (cid:20) 15523629993 46249898026747 14486589644 40647276 3173828125 + ln(3)+ ln(2) γ+ ln(5) ln(u ) p 39200 305613000 − 11025 − 1225 14112 (cid:18) (cid:19) 46285104644347 2067345910491191 17923252135149887 148748447195686881 + γ π4+ ln(2) ln(3) 152806500 − 85899345920 1986484500 − 25113088000 27786921439609375 421370306260043 1655592 4816187291152031551 ln(5)+ ln(7)+ ζ(3)+ − 16273281024 219648000 35 1529593065000 3173828125 6286441324 3173828125 40647276 + ln(5)2 ln(2)2+ γln(5) γ2 14112 − 1225 7056 − 1225 15523629993 1712225112134041 15523629993 28973179288 + ln(3)2 π2+ γln(3) ln(2)γ 39200 − 34681651200 19600 − 1025 3173828125 15523629993 + ln(2)ln(5)+ ln(2)ln(3) u9 7056 19600 p (cid:21) 137457732402576571 40118366 4292665162 2146332581 83149713482 + π π3+ πγ+ πln(u )+ πln(2) p − 610248038400 − 4725 165375 165375 165375 (cid:18) 1427220891 πln(3) u19/2 − 6125 p (cid:19) 5 2438262007 487959613018 4899895367447 114443682651 4876524014 + ln(u )2+ ln(2)+ + ln(3) γ p − 198450 72765 4584195 431200 − 99225 (cid:20) (cid:18) 40750244140625 20377781024735400904328 9826562433694 ln(5) ln(u ) + γ p − 12573792 − 201332687180625 4584195 (cid:19) 176771772306908307 40750244140625 4876524014 114443682651 ln(3) ln(5)2 γ2+ ln(3)2 − 276243968000 − 12573792 − 99225 431200 36307823919194 536631960411 114443682651 19871612 + ln(2)2+ ln(2)ln(3)+ γln(3)+ ζ(3) 1403325 215600 215600 63 131229423889414613 40750244140625 1167313947555 975919226036 ln(7) γln(5)+ π6+ ln(2)γ − 8895744000 − 6286896 268435456 72765 628897515069490765625 707217483022033957 40750244140625 + ln(5) π2 ln(2)ln(5) 14499493392384 − 1109812838400 − 6286896 10992948747002026551 476838331512979466 + π4 ln(2) u10 10995116277760 − 9833098275 p (cid:21) 16759623823 80294969715785936774437 6503164207213 100110344015981 + π3+ π πln(u ) πln(2) p 176400 45814371482880000 − 37044000 − 18522000 (cid:18) 2087606910177 6503164207213 206298828125 + πln(3) πγ+ πln(5) u21/2+O (u11). (3) 1372000 − 18522000 296352 p ln p (cid:19) The numerical form of this expansion reads δUe4(u )= 2.0u2+0.25u3+83.38296351u4+(737.1849552+48.66666667ln(u ))u5 p − p p p p p +(2980.049710 120.2ln(u ))u6+429.7389577u13/2 − p p p +(19588.97635 420.4211640ln(u ))u7+914.6615445u15/2 − p p p +(62630.23815 4853.06274ln(u )+316.0406349ln(u )2)u8+2071.490767u17/2 − p p p p +(18432.5611ln(u ) 8295.362449ln(u )2+837868.8305)u9 p − p p +( 633183.2616+40773.40995ln(u ))u19/2 − p p +(764293.4202ln(u ) 12286.53065ln(u )2+1154095.188)u10 p − p p +(4816799.276 551514.2235ln(u ))u21/2+O (u11). (4) − p p ln p Using the relations explicitly written down in [7] we converted the new information on δUe2 and δUe4 into a 6 correspondingly improved knowledge of the EOB potentials d¯(x) and q(x), namely 1184 6496 2916 23761 533 592 d¯(x)=6x2+52x3+ γ ln(2)+ ln(3) π2 + ln(x) x4 15 − 15 5 − 1536 − 45 15 (cid:18) (cid:19) 2840 120648 19683 63707 294464 1420 + γ+ ln(2) ln(3) π2+ ln(x) x5 − 7 35 − 7 − 512 175 − 7 (cid:18) (cid:19) 264932 + πx11/2 1575 64096 6381680 1765881 9765625 135909 229504763 + γ ln(2)+ ln(3)+ ln(5)+ π4+ π2 − 45 − 189 140 2268 262144 98304 (cid:18) 31721400523 32048 ln(x) x6 − 2116800 − 45 (cid:19) 21288791 πx13/2 − 17640 4187061434 876544 8108032 16216064 3744144 + γ ln(x)γ+ ln(2)ln(x)+ ln(2)γ ln(2)ln(3) 99225 − 315 1575 1575 − 175 (cid:18) 3744144 18024943666 282753093897 16384 3091796875 γln(3)+ ln(2)+ ln(3)+ ζ(3) ln(5) − 175 496125 2156000 3 − 66528 33089536 31596265477 3755930660113 876544 1872072 + ln(2)2+ π4+ π2 γ2 ln(3)2 1575 251658240 247726080 − 315 − 175 629856 1340870864165051 219136 1872072 2093530717 + ln(6) ln(x)2 ln(3)ln(x)+ ln(x) x7 55 − 5501034000 − 315 − 175 99225 (cid:19) 1173441809 πx15/2 − 3492720 281972594008247 232751488 31370368 62740736 + γ+ ln(x)γ ln(2)ln(x) ln(2)γ − 1986484500 11025 − 525 − 525 (cid:18) 174802536 174802536 107340333276983 25726492389393 + ln(2)ln(3)+ γln(3)+ ln(2) ln(3) 1225 1225 283783500 − 49049000 1096192 1556814453125 678223072849 624682112 16273379175661 ζ(3)+ ln(5)+ ln(7) ln(2)2+ π4 − 35 6054048 23166000 − 2205 1073741824 2692389474594437 232751488 87401268 2751525936 58187872 + π2+ γ2+ ln(3)2 ln(6)+ ln(x)2 92484403200 11025 1225 − 17875 11025 87401268 831440592970385544103 281464053976247 + ln(3)ln(x) ln(x) x8 1225 − 440522802720000 − 3972969000 (cid:19) 144712674728544827 186756088 239421488 3490768 373512176 + π πln(x)+ ln(2)π+ π3 πγ 1678182105600 − 33075 23625 945 − 33075 (cid:18) 200311704 πln(3) x17/2 − 6125 (cid:19) 145060456 4109882910365899 2205013489376 580241824 215213193 + ln(x)2+ + ln(2) γ ln(3) − 363825 − 19423404000 3274425 − 363825 − 770 (cid:20) (cid:18) 76708984375 8869707677468340294172589 4125670253137099 ln(5) ln(x)+ γ − 785862 188984282366880000 − 9711702000 (cid:19) 23620001432239865033 18387195312716343 1763600530764453125 215213193 ln(2)+ ln(3)+ ln(5) γln(3) − 2359943586000 4932928000 1812436674048 − 385 117281890332 7435264 43503165672743 13438960917574667 441262176956397691 + ln(6) ζ(3) ln(7)+ π2 π4 125125 − 105 − 92664000 406931374080 − 1030792151040 215213193 580241824 5132203667744 76708984375 150232915593 ln(3)2 γ2+ ln(2)2 ln(5)2 π6 − 770 − 363825 1964655 − 785862 − 33554432 76708984375 215213193 4410026978752 76708984375 γln(5) ln(2)ln(3)+ ln(2)γ ln(2)ln(5) x9 − 392931 − 385 3274425 − 392931 (cid:21) 10310051408772977303753 1836704419 232145783843 83839907743 + π π3+ πγ πln(2) − 22907185741440000 − 66150 2315250 − 771750 (cid:18) 39949476291 232145783843 + πln(3)+ πln(x) x19/2+O (x10) (5) ln 171500 4630500 (cid:19) 7 and 496256 33048 5308 q(x)=8x2+ ln(2) ln(3) x3 45 − 5 − 15 (cid:18) (cid:19) 10856 40979464 14203593 9765625 93031 1295219 5428 + γ ln(2)+ ln(3)+ ln(5) π2+ + ln(x) x4 105 − 315 280 504 − 1536 350 105 (cid:18) (cid:19) 88703 + πx9/2 1890 617716 308858 65887036 36073593 8787109375 81030481 + γ ln(x)+ ln(2) ln(3) ln(5)+ π2 − 315 − 315 63 − 112 − 27216 65536 (cid:18) 559872 7518451741 + ln(6) x5 7 − 1270080 (cid:19) 714117331 πx11/2 − 846720 138169844888 69084922444 3250526464 13728528 13728528 + γ+ ln(x) ln(2)γ+ ln(2)ln(3)+ γln(3) 1819125 1819125 − 4725 35 35 (cid:18) 527856862616 12960490645107 25344 27397616796875 678223072849 ln(2) ln(3)+ ζ(3)+ ln(5)+ ln(7) − 16372125 − 6899200 5 9580032 2280960 2065918336 109837713789 1463044337673 451968 6864264 579887424 ln(2)2 π4+ π2 γ2+ ln(3)2 ln(6) − 1575 − 83886080 91750400 − 175 35 − 385 451968 6864264 939101654498857 112992 1625263232 ln(x)γ+ ln(3)ln(x) ln(x)2 ln(2)ln(x) x6 − 175 35 − 3056130000 − 175 − 4725 (cid:19) 226615901761 + πx13/2 167650560 29186389360543 3173828125 3173828125 9440966259 + γ ln(2)ln(5) γln(5) ln(3)ln(x) − 36786750 − 2646 − 2646 − 4900 (cid:18) 322866894016 9440966259 9440966259 97783791533166503 + ln(2)γ ln(2)ln(3) γln(3) ln(2) 33075 − 2450 − 2450 − 2979726750 87139874452615209 2452928 2899973891640625 9257841833399257 + ln(3) ζ(3) ln(5) ln(7) 6278272000 − 35 − 452035584 − 1482624000 210393017888 19047555410493 3975430726567129 168910688 9440966259 + ln(2)2+ π4 π2+ γ2 ln(3)2 11025 10737418240 − 92484403200 3675 − 4900 2573147182608 3173828125 3173828125 161433447008 + ln(6) ln(5)2 ln(5)ln(x)+ ln(2)ln(x) 175175 − 5292 − 5292 33075 690294961714478265797 29186389360543 42227672 168910688 + ln(x)+ ln(x)2+ ln(x)γ x7 293681868480000 − 73573500 3675 3675 (cid:19) 8192870254937920639 15200768606 11631519958 4598822871 108705794 + π ln(2)π πγ+ πln(3)+ π3 30981823488000 − 11025 − 496125 6125 14175 (cid:18) 5815759979 πln(x) x15/2 − 496125 (cid:19) 131228022231920707 23800697662770506993 4958146688407013943 + γ+ ln(2) ln(3) 196661965500 65553988500 − 39463424000 (cid:20) 4492372832662738703125 2906254027437804 1519264 710656240002840019 ln(5) ln(6)+ ζ(3)+ ln(7) − 43498480177152 − 67442375 315 10674892800 472332484052074531 9617337404302759049 105898193359375 226550022075 + π2+ π4+ ln(5)2+ π6 678218956800 24739011624960 9430344 33554432 188687137328 7036471296 181114018983 4527732156900112 γ2 ln(6)2+ ln(3)2 ln(2)2 − 1091475 − 2695 15400 − 29469825 85388056818784 14072942592 105898193359375 14072942592 ln(2)γ ln(2)ln(6)+ γln(5) γln(6) − 1091475 − 2695 4715172 − 2695 181114018983 105898193359375 181114018983 7190610346934768219939609 + γln(3)+ ln(2)ln(5)+ ln(2)ln(3) 7700 4715172 7700 − 161986527743040000 7036471296 105898193359375 131815385968880707 188687137328 181114018983 + ln(6)+ ln(5)+ γ+ ln(3) − 2695 9430344 393323931000 − 1091475 15400 (cid:18) 42694028409392 47171784332 ln(2) ln(x) ln(x)2 x8 − 1091475 − 1091475 (cid:19) (cid:21) 8 309249455540719514934031 206298828125 431496991403 52009951116491 + π πln(5) π3+ πγ − 84580378122240000 − 111132 − 3175200 111132000 (cid:18) 88244053021571 21764539709991 52009951116491 + πln(2) πln(3)+ πln(x) x17/2+O (x9). (6) ln 4445280 − 2744000 222264000 (cid:19) Asmentionedabove,anotherusefuldynamicalfunctionistheprecessionfunctionρ(u)introducedin[8]andrelated there to the EOB potentials a(u) and d¯(u). Namely (denoting the argument of the function ρ as x) ρ(x)=ρE(x)+ρa(x)+ρd¯(x), (7) with 1 2x ρ (x)=4x 1 − , E − √1 3x (cid:18) − (cid:19) 1 ρ (x)=a(x)+xa′(x)+ x(1 2x)a′′(x), a 2 − ρd¯(x)=(1−6x)d¯(x). (8) We then find 397 123 5024 215729 2512 2916 1184 58265 ρ(x)=14x2+ π2 x3+ γ + ln(x)+ ln(3)+ ln(2)+ π2 x4 2 − 16 15 − 180 15 5 15 1536 (cid:18) (cid:19) (cid:18) (cid:19) 27824 6325051 1135765 202662 22672 11336 + ln(2) + π2 ln(3) γ ln(x) x5 35 − 800 1024 − 35 − 7 − 7 (cid:18) (cid:19) 199876 + πx11/2 315 4990303259 256727518799 435213 3606884 37648124 1803442 + π2 + ln(3)+ γ ln(2)+ ln(x) 589824 − 6350400 20 945 − 945 945 (cid:18) 7335303 9765625 π4+ ln(5) x6 − 32768 2268 (cid:19) 1429274 πx13/2 − 225 3725312 419921875 3744144 3744144 253952 + ln(2)2 ln(5) γln(3) ln(2)ln(3)+ ζ(3) − 1575 − 6048 − 175 − 175 15 (cid:18) 13586432 230019793907682883 1872072 20598784 12659060941523 ln(x)γ ln(3)ln(x) ln(2)γ+ π2 − 1575 − 440082720000 − 175 − 1575 1238630400 681396625634 229716339147 3396608 1823766172754 10299392 + γ+ ln(3) ln(x)2+ ln(2) ln(2)ln(x) 5457375 2156000 − 1575 5457375 − 1575 471044952937 340698312817 1872072 13586432 + π4+ ln(x) ln(3)2 γ2 x7 251658240 5457375 − 175 − 1575 (cid:19) 18719967989 + πx15/2 1455300 82814168955181 36686848 1920044921875 2269129471514627499419 + ln(2)+ ln(x)γ+ ln(5)+ − 132432300 441 4036032 176209121088000 (cid:18) 148969692 36686848 103653376 9171712 297939384 + ln(3)2+ γ2+ ln(2)γ+ ln(x)2+ γln(3) 1225 441 3675 441 1225 948480 297939384 678223072849 148969692 ζ(3)+ ln(2)ln(3)+ ln(7)+ ln(3)ln(x) − 7 1225 23166000 1225 51826688 6517218707007553 1442495323220011 + ln(2)ln(x) π2 ln(x) 3675 − 55490641920 − 3972969000 557542163367261 1444834607367211 2049476608 626168320805261 ln(3) γ ln(2)2 π4 x8 − 392392000 − 1986484500 − 11025 − 5368709120 (cid:19) 9 105699126344597143 4707645616 200311704 4004219056 2353822808 + π πγ πln(3) ln(2)π πln(x) 524431908000 − 165375 − 6125 − 165375 − 165375 (cid:18) 43996688 + π3 x17/2 4725 (cid:19) 42935456848 1995219783 20475902395612297 171741827392 2444046775616 + ln(x)2+ ln(3) γ+ ln(2) − 1091475 − 3850 − 262215954000 − 1091475 3274425 (cid:20) (cid:18) 76708984375 20657146063017097 10969454340865467 226626361596 ln(5) ln(x) γ+ ln(3)+ ln(6) − 785862 − 131107977000 2466464000 125125 (cid:19) 76708984375 171741827392 1995219783 6754948737728 ln(5)2 γ2 ln(3)2+ ln(2)2 − 785862 − 1091475 − 3850 1964655 1995219783 76708984375 3956569170916362731724487183 8519104 γln(3) γln(5)+ + ζ(3) − 1925 − 392931 18142491107220480000 315 29163592132507 76708984375 4888093551232 64674832921484375 ln(7) ln(2)ln(5)+ ln(2)γ ln(5) − 46332000 − 392931 3274425 − 906218337024 3466357618648439 128148402261 1995219783 6269062781928031361 + π2+ π6 ln(2)ln(3) π4 27128758272 16777216 − 1925 − 2748779069440 2702219779688690213 ln(2) x9 − 235994358600 (cid:21) 174754006268 2849519528 349508012536 + πln(x) π3+ πγ 1157625 − 33075 1157625 (cid:18) 16864298172 2195209992943672765961 51802382504 + πln(3) π+ πln(2) x19/2+O (x10). (9) ln 42875 − 1431699108840000 385875 (cid:19) III. ESTIMATING THE ORDER OF ation tells us that the large–N asymptotic values of the MAGNITUDE OF THE COEFFICIENTS OF PN Taylor expansion coefficients f is of order N EXPANSIONS f 3N. (10) N ∼ Beforecomparingthenumericalvaluesofthese9.5PN- One can, however, refine this exponential estimate by accuratefunctions to correspondingpublished numerical power-law corrections in N. Indeed, given a certain SF estimates [9, 29], it is useful to have at hand a rough function f(u) = f uN, its first derivative with re- estimateofthetheoreticalerrorassociatedwithsuchPN- N N spect to (wrt) u will be f′(u) = Nf uN−1, so that expandedfunctions. Weshalldothisviatwocomplemen- (f′) = (N +1)fP . In other wNords,Neach derivative tary approaches. Our first estimate will follow the spirit N N+1 P adds an asymptotic factor N to the growth of the f ’s. of Section IV in Ref. [21]. The idea there was to use N Forinstance,theexistenceinEOBtheoryofthelink(7), the existence of a power-law singularity at the lightring (8) between the precession function ρ(u) and the first [12] of the various SF or EOB potentials to estimate, for two derivatives of the primary EOB radial (1SF) poten- a given potential f(u) = f un+ǫN(u), both the n<N n f tial a(u) suggests that, asymptotically, order of magnitude of the PN expansion coefficients f , n andthatoftheNthPNremPainderǫNf (u)=Of(uN),from ρN N2aN, (11) the knowledge of its lightring singularity. The coarsest ∼ such estimate consists in saying that the radius of con- where a are the PN expansion coefficients of a(u) and N vergenceofa powerseries2, f uN, is determined by ρ those of ρ(u). [Here, we assume that the PN co- N N N the locationofthe singularityclosestto the originin the efficients d¯ of d¯(u) do not cancel the growth with N N P complex u plane. Assuming that the closest singularity entailed by the two derivatives in the first equation (8). is the lightring one at u = 1/3 determines the radius of Our numerical studies below will confirm this assump- convergence as being u = 1. This simple consider- tion.] | |conv 3 There is an alternative perspective on the additional power-law growth (of the type of the factor N2 in (11)). It consists in using more information about the singu- 2 Here,weformallyproceedasifthePNexpansioncontainedonly larity structure of the considered function f(u) near its integerpowers. Theexistenceoflogarithmiccorrections,starting closestsingularity. Indeed, if we knew, for instance, that at4PN[8,36],andofasub-series,startingat5.5PN[13,14,37], containinghalf-integerpowers,indicatesthat,fromatheoretical f(u) had a power-law singularity near u= 1 of the type 3 point of view, a more subtle treatment should be applied. See belowforthelogarithmiccorrections. fsing(u)=Kf(1 3u)−nf , (12) − 10 (K denoting a constant), we would expect3 the expan- tigate the effect of the logarithms. It is technically con- f sioncoefficients f of f(u) to be asymptoticallyapprox- venient to work with the rescaled independent variable N imated by the expansion coefficients of its singular piece u 3u (with respect to which the singularity is located 3 ≡ (12), namely at u =1), and expand a(u) a (u ) in powers of u 3 3 3 3 ≡ fNsing =Kf −Nnf 3N ≈CfNnf−13N, (13) a(u)= N (aN+a′Nln(u3)+a′N′(ln(u3))2+···)uN3 . (14) (cid:18) (cid:19) X b b b withCf =Kf/Γ(nf). Hereweseethatwhilethelocation Here,theaN arethesame(rescaled)coefficientsasabove of the singularity determines the exponentially growing (obtained by replacing lnu by ln13). The higher loga- wfaocutoldr 3bNe,dethteermsuibn-eldeabdyintghepopwoewre-lrawngroowftthhe∝siNngnufl−a1r criotlhummincscoobfeffiTacbielnetVsIai′Nn,Aa′Np′p,·e·n·diaxreBd.iWspelasyeeedthinatthteheotfihrestr f piece (12). Consistently with our r−emarks above, note logarithmic (rescalebd) cboefficients a′N are either compa- thatactingonf(u)bykderivativeschangesnf intonf+ rabletothe aN,orslightlysmallerinabsolutevalue (the k,andcorrespondinglyincreasesthepower-lawgrowthof signs, as well as the relative signs,bof aN and a′N fluctu- the fN’s by +k. ate). The hbigher logarithmic terms appear only at u8, Ref. [12]hasfoundthatthelightringsingularitystruc- and their coefficients a′N′,··· are founbd to bebgenerally ture of the basic 1SF EOB potential a(u) was asing(u)= smaller. We shall neglect them in the following. Going Kthae(n1e−xp3euc)t−analawrgiteh-NKbaeh≃av41ioarnad na =C N12.−1O/2n3eNwwouitlhd ba(auck)=to thNeaoNri(guin)uaNl P,bNwe-ecxapnantshieonnwcoreitffiectiheenitrscaoNm(bui)neodf N a C 1/(4Γ(1)) 0.14. We studied≃the evolution with N and u dependence as (neglecting higher logarithms) a ≃ 2 ≃ P N of the PN coefficients aN of a(u) by using the avail- a (u) (a +a′ ln(3u))3N; (15) able high-PN results of Refs. [14, 25]. We confirmed the N ≃ N N basic exponential growth aN ∼ 3N. Indeed, Table VI in with |aN| ∼ |a′N| ∼ 1.bThenb, in view of (8), we expect Appendix B displays, in its first column, the values of acorrespondingapproximateasymptotic behaviorofthe rthitehmresscraelpeldacPeNd bcoyelffin(ci1e)n;tsseaeNbe≡loawNf/o3rNth[weiltohgaarliltlhomgaic- PofNtheexbptyapnseionbcoefficientsofthe precessionfunctionρ(u) 3 dependence]. These rescaled coefficients are seen to re- b main (roughly) of order unity (in absolute magnitude), ρN(u)≃(ρN +ρ′Nln(3u))3N; (16) even up to N = 23 for which 323 = 0.941432 1011. × with ρ ρ′ N2. More precisely, we have 0.1 . aN . 1, when N varies | N|∼| N|∼ b b We tested this expectation on the 9.5PN-accurate ex- between 3 and 20, while, for N = 21,22,23, we have pansion of ρ(u) given above. An N2 scaling seems to be a 2.254,1.459,3.313,respectively. [We do notknow b b N b | |≈ in reasonable agreement with the currently known PN ifthefactthatthe lattervaluesareslightlylargerthan1 coefficients, and we found (using a (N 1)2 scaling and signals the beginning of a growth for very large N’s.] b − relying on the 8PN and 9PN nonlogarithmic coefficients We did not see any sign of the expected mild decay a C N−1/2. This might be due to the more com- to fix the overall coefficient) for the coefficients of ρ (see N a ≃ Table VII in Appendix B) plicated singularity structure (beyond the leading-order bpower-law) found in [12], or to the fact that the N−1/2 ρ′ . ρ 2.5(N 1)2. (17) behavior sets in only for very large N’s. [Note also that, | N| | N|∼ − after having factored the clear 3N growth, the rescaled A similar study of the PN expansion coefficients of the coefficientsaN behaverathererratically,anddonotshow function d¯(u) (bsee Tabble VIII in Appendix B) leads to any sign of converging towards a simple behavior.] If we a growth similar to the case of the function ρ(u), with were only inbterested in estimating the PN error for val- simply a slightly smaller overall coefficient, i.e. ues of u in the strong-field domain, and for values of ′ N around 10, we could simply use the simple estimate d¯ (u) (d¯ +d¯ ln(3u))3N; (18) a C 3N with C 1. However, as we are also N ≃ N N N a a ≃ | | ∼ interested in knowing what happens when u 0, we with b b ≪ should remember that the PN expansion coefficients run ′ logarithmically with u as u 0. We therefore kept the d¯ . d¯ 0.7(N 1)2. (19) → | N| | N|∼ − full available high PN information [14, 25] to also inves- Finally,thefactbthatthbeEOBpotentialq(u)isrelatedto theredshiftcoefficientδUe0(u) a(u)byfourderivatives ∼ [7] suggests, in view of the argument above, that 3 Thisexpectation is basedon the usual integral Cauchy formula giving the coefficients of the Laurent expansion of an analytic qN N4aN. (20) ∼ function. Bydeformingthecontourofintegrationsothatitgets near the (closest) singularity one sees that the Cauchy integral We tested this expectation on the 9.5PN-accurate ex- canbeapproximatedbyananalogousintegralinvolvingfsing(u). pansionofq(u)givenabove. AnN4 [or(N 1)4]scaling −

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.