ebook img

New examples of oriented matroids with disconnected realization spaces PDF

0.11 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New examples of oriented matroids with disconnected realization spaces

New examples of oriented matroids with 2 disconnected realization spaces 1 0 2 Yasuyuki Tsukamoto ∗ n a January 13, 2012 J 2 1 Abstract ] O We construct oriented matroids of rank 3 on 13 points whose realiza- C tion spaces are disconnected. They are defined on smaller points than . the known examples with this property. Moreover, we construct the one h on 13 points whose realization space is a connected and non-irreducible t a semialgebraic variety. m [ 1 Oriented Matroids and Matrices 1 v Throughout this section, we fix positive integers r and n. 0 Let X = (x ,...,x ) Rrn be a real (r,n) matrix of rank r, and E = 6 1 n ∈ 5 1,...,n be a set of labels of the columns of X. For such matrix X, a map { } 2 χ can be defined as X . 1 0 χX :Er →{−1,0,+1}, χX(i1,...,ir):=sgndet(xi1,...,xir). 2 1 The map χ is called the chirotope of X. The chirotope χ encodes the infor- X X : mation onthe combinatorialtype which is called the oriented matroid of X. In v i this case, the oriented matroid determined by χ is of rank r on E. X X We noteforsomepropertieswhichthe chirotopeχ ofamatrixX satisfies. X r a 1. χ is not identically zero. X 2. χ is alternating, i.e. χ (i ,...,i )=sgn(σ)χ (i ,...,i ) X X σ(1) σ(r) X 1 r for all i ,...,i E and all permutation σ. 1 r ∈ 3. For all i ,...,i ,j ,...,j E such that 1 r 1 r ∈ χX(jk,i2,...,ir)·χX(j1,...,jk−1,i1,jk+1,...,jr)≥0 for k =1,...,r, we have χ (i ,...,i ) χ (j ,...,j ) 0. X 1 r · X 1 r ≥ ∗Department of Mathematics, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan [email protected] 1 The third property follows from the identity det(x ,...,x ) det(y ,...,y ) 1 r 1 r · r = det(yk,x2,...,xr) det(y1,...,yk−1,x1,yk+1,...,yr), · Xk=1 for all x ,...,x ,y ,...,y Rr. 1 r 1 r ∈ Generally, an oriented matroid of rank r on E (n points) is defined by a mapχ:Er 1,0,+1 ,which satisfies the above three properties([1]). The →{− } map χ is also called the chirotope of an oriented matroid. We use the notation (E,χ) for an oriented matroid which is on the set E and is defined by the M chirotope χ. An oriented matroid (E,χ) is called realizable or constructible, if there M exists a matrix X such that χ = χ . Not all oriented matroids are realizable, X but we don’t consider non-realizable case in this paper. Definition1.1. Arealization ofanorientedmatroid = (E,χ)isamatrix M M X such that χ =χ or χ = χ. X X − ′ Two realizations X,X of is called linearly equivalent, if there exists a linear transformation A GLM(r,R) such that X′ = AX. Here we have the ∈ equation χ =sgn(detA) χ . X′ · X Definition 1.2. The realization space ( ) of an oriented matroid is the R M M setofalllinearly equivalentclasses of realizations of , inthequotienttopology induced from Rrn. M Our motivation is as follows: In 1956, Ringel asked whether the realization spaces ( )arenecessarilyconnected[4]. Itisknownthateveryorientedma- R M troid on less than 9 points has a contractible realization space. In 1988, Mn¨ev showed that ( ) can be homotopy equivalent to an arbitrary semialgebraic R M variety [2]. His result implies that they can have arbitrary complicated topo- logical types. In particular, there exist oriented matroids with disconnected realization spaces. Suvorov and Righter-Gebert constructed such examples of orientedmatroidsofrank3on14points,in1988andin1996respectively[5,3]. Howeveritisunknownwhichisthesmallestnumberofpointsonwhichoriented matroids can have disconnected realization spaces. See [1] for more historical comments. One of the main results of this paper is the following. Theorem 1.3. There exist oriented matroids of rank 3 on 13 points whose realization spaces are disconnected. Realization spaces of oriented matroids are semialgebraic varieties. So it makes sense whether a realization space is irreducible or not. As far as the author knows, no example of an oriented matroid with a connected and non- irreducible realization space has been explicitly given. 2 Theorem 1.4. There exists oriented matroid of rank 3 on 13 points whose realization space is connected and non-irreducible. Acknowledgment. I would like to thank Masahiko Yoshinaga for valuable discussions and comments. I also thank Yukiko Konishi for comments on the manuscript. 2 Construction of the examples Throughout this section, we set E = 1,...,13 . We will define three chirotopes χ−{,χ0 and χ}+. We will see that (E,χ−) M and (E,χ+) have disconnected realization spaces, and (E,χ0) has a con- M M nected and non-irreducible realization space. LetX(s,t,u)bea real(3,13)matrixwiththreeparameterss,t,u R given ∈ by X(s,t,u):=(x ,...,x ) 1 13 1 0 0 1 s s 0 1 1 st s+t u st+su − − = 0 1 0 1 0 1 t t u t t u+su − 0 0 1 1 1 1 1 1 0 1 su 1 u+su  − − s+t st s2u s(t u+su) − − − t t u+su . − 1 su 1 u+su − −  This is a consequence of the computation of the following construction se- quence. Bothoperations“ ”and“ ”canbecomputedintermsofthestandard crossproduct“ ”inR3. T∨hewhol∧econstructiondepends onlyonthe choiceof the three param×eters s,t,u R. ∈ x =t(1,0,0), x =t(0,1,0), x =t(0,0,1), x =t(1,1,1), 1 2 3 4 x =s x +x , 5 1 3 · x =(x x ) (x x ), 6 1 4 2 5 ∨ ∧ ∨ x =t x +x , 7 2 3 · x =(x x ) (x x ), 8 1 7 2 4 ∨ ∧ ∨ x =u x +x , 9 2 1 · x =(x x ) (x x ), 10 7 9 3 6 ∨ ∧ ∨ x =(x x ) (x x ), 11 4 5 8 9 ∨ ∧ ∨ x =(x x ) (x x ), 12 1 10 4 5 ∨ ∧ ∨ x =(x x ) (x x ). 13 3 6 1 11 ∨ ∧ ∨ 3 We setX =X 1,1,1 . The chirotopeχǫ is the alternatingmapsuchthat 0 2 2 3 (cid:0) (cid:1) ǫ if (i,j,k)=(9,12,13), χǫ(i,j,k)= (cid:26) χ (i,j,k) otherwise, X0 for all (i,j,k) E3(i<j <k), ∈ where ǫ ,0,+ . ∈{− } The oriented matroid which we will study is ǫ := (E,χǫ). M M Remark 2.1. We can replace X with X 1,1,u′ where u′ is chosen from 0 2 2 R 1,0,1,1,3,2,3 . We will study the c(cid:0)ase 0 <(cid:1)u′ < 1. If we choose u′ \{− 2 2 } 2 otherwise, we can get other oriented matroids with disconnected realization spaces. In the construction sequence, we need no assumption on the collinearity of x ,x ,x . Hence every realization of ǫ is linearly equivalent to a matrix 9 12 13 M X(s,t,u) for certain s,t,u, up to multiplication on each column with positive scalar. Moreover,we have the rational isomorphism ∗(χǫ) (0, )12 = ( ǫ), R × ∞ ∼R M where ∗(χǫ) := X(s,t,u) R3·13 χ = χǫ . Thus we have only to R { ∈ | X(s,t,u) } prove that the set ∗(χǫ) is disconnected (resp. non-irreducible) to show that R the realization space ( ǫ) is disconnected (resp. non-irreducible). R M The equation χ =χǫ means that X(s,t,u) sgndet(x ,x ,x )=χǫ(i,j,k), for all (i,j,k) E3. (1) i j k ∈ Wewrite someofthemwhichgivethe equationsontheparameterss,t,u. Note that for all (i,j,k) E3( i,j,k = 9,12,13 ),the sign is given by ∈ { }6 { } χǫ(i,j,k)=sgndet(x ,x ,x ) . i j k s=t=1/2,u=1/3 | From the equation sgndet(x ,x ,x ) = sgn(s) = sgn(1/2)= +1, we get s >0. 2 3 5 Similarly, we get det(x ,x ,x )=1 s>0, therefore 2 5 4 − 0<s<1. (2) From the equations det(x ,x ,x )=t>0,det(x ,x ,x )=1 t>0, we get 1 7 3 1 4 7 − 0<t<1. (3) Moreover,we have the inequalities det(x ,x ,x )=u>0, (4) 1 9 3 det(x ,x ,x )=1 t u>0, (5) 4 7 9 − − det(x ,x ,x )=t u>0, (6) 3 9 8 − det(x ,x ,x )=s t2 (1 s)u >0, (7) 5 13 7 − − det(x ,x ,x )=(1(cid:0) s) (1 t)2(cid:1) su >0. (8) 6 12 8 − − − (cid:0) (cid:1) 4 2 6 4 9 10 12 7 8 13 11 3 1 5 Figure 1: Column vectors of X . 0 From the equation det(x ,x ,x )=u(1 2s)(1 2t+tu su), we get 9 12 13 − − − sgn u(1 2s)(1 2t+tu su) =ǫ. (9) − − − (cid:0) (cid:1) Conversely,if we have Eqs. (2) - (9), then we get (1). We can interpret a (3,13) matrix as the set of vectors x ,...,x R3. 1 13 { } ⊂ After we normalize the last coordinate for x (i E 1,2,9 ), we can visualize i the matrix on the affine plane (x,y,1) R3 =∈R2\.{Figure}1 shows the affine { ∈ } ∼ image of X . See Figures 2, 3 for realizations of ǫ. 0 M Proof of Theorem 1.3. We prove that ∗(χ−) and ∗(χ+) are disconnected. R R From Eqs. (2) - (9), we obtain 0<s<1, 0<u<t<1 u, ∗(χ−)=(s,t,u) R3 (1 t)2 su>0, t2 (1 s−)u>0, , R ∼ ∈ −(1 2−s)(1 2t+t−u s−u)<0  − − −   0<s<1, 0<u<t<1 u, ∗(χ+)=(s,t,u) R3 (1 t)2 su>0, t2 (1 s−)u>0, . R ∼ ∈ −(1 2−s)(1 2t+t−u s−u)>0  − − − First, we show that ∗(χ−) is disconnected, more precisely, consisting of R two connected components, by proving the next proposition. Proposition 2.2. ∗(χ−)= (s,t,u) R3 0<s<1/2 ,0<u<min 1 t,(1−t)2, 2t−1 R ∼(cid:26) ∈ 1/2<t<1 (cid:26) − s t s (cid:27)(cid:27) − 1/2<s<1 t2 1 2t (s,t,u) R3 , 0<u<min t, , − . ∪(cid:26) ∈ 0<t<1/2 (cid:26) 1 s s t (cid:27)(cid:27) − − 5 2 2 4 4 6 6 9 9 10 12 7 8 13 11 10 12 7 8 11 13 5 1 5 1 3 3 Figure 2: Realization of −(on the left) and that of +(on the right). M M 2 2 4 4 6 6 9 9 10 12 7 8 10 12 13 11 7 8 13 11 5 1 5 1 3 3 Figure 3: Realizations of 0. M 6 Proof. There are two cases 1 2s>0, 1 2t+tu su<0, − − − (1 2s)(1 2t+tu su)<0  or − − − ⇔ 1 2s<0, 1 2t+tu su>0. − − − Note that  (2 u)(2t 1)= 2(1 2t+tu su)+u(1 2s), (10) − − − − − − t2 (1 s)u= (1 2t+tu su)+(1 t)(1 t u), (11) − − − − − − − − (1 t)2 su=(1 2t+tu su)+t(t u). (12) − − − − − ( ) For the case 1 2s>0 and 1 2t+tu su<0, the inequality 2t 1>0 ⊂ − − − − follows from Eq. (10). Since we have 0<s<1/2<t<1, we get 1 2t+tu su<0, − − (1 t)2 2t 1  (1 t)2 su>0, u<min 1 t, − , − . (13)  1 −t u−>0 ⇔ (cid:26) − s t−s (cid:27) − −  For the other case 1 2s < 0, similarly, we get 1 2t > 0 from Eq. (10). − − Since we have 0<t<1/2<s<1, we get 1 2t+tu su>0, − − t2 1 2t  t2 (1 s)u>0, u<min t, , − . (14)  t −u>−0 ⇔ (cid:26) 1−s s−t (cid:27) −  ( ) For the component 0<s<1/2<t<1, the inequalities 1 2t+tu su< ⊃ − − 0, (1 t)2 su>0, 1 t u>0followfrom(13). Thuswegett2 (1 s)u>0 − − − − − − from Eq. (11). The inequality u<t holds because t>1/2 and u<1 t. − For the other component 0 < t < 1/2 < s < 1, similarly, we get the in- equalities 1 2t+tu su > 0, t2 (1 s)u > 0, t u > 0 from (14), and − − − − − (1 t)2 su > 0 from Eq. (12). Last, we get u < 1 t from t < 1/2 and − − − u<t. For the set ∗(χ+), we have the following proposition. R Proposition 2.3. ∗(χ+)= (s,t,u) R3 0<s<1/2,0<u<1/2, (1 s)u<t< 1−su R ∼(cid:26) ∈ (cid:12) (1 u)2 (1 s)u>0, − 2 u (cid:27) (cid:12) − − − p − (s,t,u) R3(cid:12)(cid:12) 1/2<s<1,0<u<1/2, 1−su <t<1 √su . ∪(cid:26) ∈ (cid:12) (1 u)2 su>0, 2 u − (cid:27) (cid:12) − − − (cid:12) The proof is similar to(cid:12) that of Proposition 2.2 and omitted. Proof of Theorem 1.4. We show that ∗(χ0) consistsof twoirreducible compo- R nents whose intersection is not empty. From Eqs. (2) - (9), we get 0<s<1, 0<u<t<1 u, ∗(χ0)=(s,t,u) R3 (1 t)2 su>0, t2 (1 s−)u>0, . R ∼ ∈ −(1 2−s)(1 2t+t−u s−u)=0  − − −   7 Here we have the decomposition ∗(χ0)= (s,t,u) R3 0<t<1, 0<u<2t2, u<2(1 t)2, 1 2s=0 R ∼n ∈ (cid:12) − − o (s,t,u) R(cid:12)(cid:12)3 0<s<1, 0<u<1/2, (1−u)2−su>0, . ∪(cid:26) ∈ (1 u)2 (1 s)u>0, 1 2t+tu su=0 (cid:27) − − − − − The intersection of the two irreducible components is the set X 1,1,u 0<u< 1 = (s,t,u) R3 s=t= 1, 0<u< 1 . n (cid:0)2 2 (cid:1)(cid:12)(cid:12) 2o∼n ∈ (cid:12)(cid:12) 2 2o The proof is also s(cid:12)imilar to that of Proposition 2.(cid:12)2 and omitted. Figure3showstworealizationsof 0. Ontheleft,itshowstheaffineimage M ofX 1,3,1 ,ontheirreduciblecomponent1 2s=0. Ontheright,theimage 2 8 4 − of X(cid:0)3,11,2(cid:1) , so it is on the other component 1 2t+tu su=0. They can 4 24 7 − − be de(cid:0)formed (cid:1)continuously to each other via X 1,1,u (0<u< 1). 2 2 2 (cid:0) (cid:1) References [1] A. Bj¨orner, M. Las Vergnas, B. Sturmfels, N. White, G. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Cambridge University Press 1993. [2] N.E. Mn¨ev, The universality theorems on the classification problem of con- figuration varieties and convex polytopes varieties, in: Viro, O.Ya. (ed.): Topology and Geometry - Rohlin Seminar, Lecture Notes in Mathematics 1346, Springer, Heidelberg, 1988,527-544. [3] J. Richter-Gebert, Two interesting oriented matroids, Documenta Mathe- matica 1, 1996, 137-148. [4] G. Ringel, Teilungen der Ebene durch Geraden oder topologische Geraden, Math. Zeitschrift 64, 1956, 79-102. [5] P.Y.Suvorov,Isotopic but not rigidly isotopic plane system of straight lines, in: Viro, O.Ya. (ed.): Topology and Geometry - Rohlin Seminar, Lecture Notes in Mathematics 1346, Springer, Heidelberg, 1988, 545-556. 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.