New Development on Sense and Avoid Strategies for Unmanned Aerial Vehicles YuFu AThesis in TheDepartment of MechanicalandIndustrialEngineering PresentedinPartialFulfillmentoftheRequirements fortheDegreeof MasterofAppliedScience(MechanicalEngineering)at ConcordiaUniversity Montre´al,Que´bec,Canada February2016 ©YuFu,2016 CONCORDIA UNIVERSITY School of Graduate Studies Thisistocertifythatthethesisprepared By: YuFu Entitled: New Development on Sense and Avoid Strategies for Unmanned AerialVehicles andsubmittedinpartialfulfillmentoftherequirementsforthedegreeof MasterofAppliedScience(MechanicalEngineering) complies with the regulations of this University and meets the accepted standards with respecttooriginalityandquality. SignedbytheFinalExaminingCommittee: Chair Dr. Chun-YiSu ExternalExaminer Dr. ZhenhuaZhu Examiner Dr. SubhashRakheja Supervisor Dr. YouminZhang Approvedby MartinD.Pugh,Chair DepartmentofMechanicalandIndustrialEngineering 2016 AmirAsif,Dean FacultyofEngineeringandComputerScience Abstract New Development on Sense and Avoid Strategies for Unmanned Aerial Vehicles YuFu Unmanned Aerial Vehicles (UAVs) can carry out more complex civilian and military applications with less cost and more flexibility in comparison of manned aircraft. Mid-air collision thus becomes profoundly important considering the safe operation of air trans- portation systems, when UAVs are increasingly used more with various applications and share the same airspace with manned air vehicles. To ensure safe flights, UAVs have to configureSenseandAvoid(S&A)systemsperformingnecessarymaneuverstoavoidcolli- sions. AfteranalyzingthemannerofS&Asystem,avoidancestrategiesbasedonasubsetof possible collision scenarios are proposed in this thesis. 1) To avoid a face-to-face intruder, a feasible trajectory is generated by differential geometric guidance, where the constraints of UAV dynamics are considered. 2) The Biogeography Based Optimization (BBO) ap- proach is exploited to generate an optimal trajectory to avoid multiple intruders’ threats in the landing phase. 3) By formulating the collision avoidance problem within a Markov Decision Process (MDP) framework, a desired trajectory is produced to avoid multiple in- truders in the 2D plane. 4) MDP optimization method is extended to address the problem ofoptimal3Dconflictresolutioninvolvingmultipleaircraft. 5)Consideringthatthesafety of UAVsis directlyrelated tothe dynamicconstraints, thedifferential flatnesstechnique is developed to smoothen the optimal trajectory. 6) Energy based controller is designed such thattheUAViscapableoffollowingthegeneratedtrajectory. iii Acknowledgments Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Youmin Zhang, for professional supervision and his scientific assistance, constant help, advice, guidanceandgoodmoodthroughouttheyears. I would like to express my sincere thanks to Dr. Xiang Yu, for his enthusiasm for research and challenging projects. His continuous support and very helpful inputs eased the hardship that faced me throughout flight simulation and paper writing. I am grateful thatIhadtheopportunitytoworkwithandlearnsomuchfromhim. I would also like to acknowledge and thank Puthy Soupin, Phil Cole at the Marinvent Corporation, who were helpful in giving their experience and advice that were useful in achievingcooperatedproject. Ialsowishtothankallmembersoflabforgenerouslysharing theiryearsofexperience. Last but not least, I would like to thank my loving and caring family. My deepest gratitude goes to my beloved parents for their endless love, prayers and encouragement. It would not have been possible for me to reach where I am without their support, patience and care. I would also like to express my appreciation to my sister and friends who were alwayssupportingandencouragingmewiththeirbestwishes. iv Contents ListofFigures viii ListofTables x 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 OrganizationoftheThesis . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 LiteratureReview 5 2.1 SurveyonSensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 CooperativeSensors . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Non-CooperativeSensors . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 SurveyonCollisionDetectionApproaches . . . . . . . . . . . . . . . . . . 8 2.3 SurveyonCollisionAvoidanceApproaches . . . . . . . . . . . . . . . . . 10 2.3.1 Sampling-BasedCollisionAvoidanceApproaches . . . . . . . . . 11 2.3.2 DecoupledCollisionAvoidanceApproaches . . . . . . . . . . . . 13 2.3.3 NumericalOptimizationApproaches . . . . . . . . . . . . . . . . 14 2.3.4 ArtificialHeuristicApproaches . . . . . . . . . . . . . . . . . . . 16 2.3.5 OtherMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3 ProblemFormulation 20 3.1 UAVDynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 v 4 SenseandCollisionAvoidanceofUnmannedAerialVehiclesUsingDifferential GeometricGuidanceandFlatnessApproach 29 4.1 DifferentialGeometricGuidance(DGG)BasedCollisionResolution . . . . 29 4.2 PathPlanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.2.1 DifferentialFlatnessBasedApproach . . . . . . . . . . . . . . . . 31 4.2.2 TrajectoryPlanningunderUAVConstraints . . . . . . . . . . . . . 32 4.3 ExperimentalResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.1 ExperimentalPlatform . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.2 TestingScenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.3.3 ExperimentalResultsandEvaluations . . . . . . . . . . . . . . . . 35 4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5 SenseandCollisionAvoidanceofUnmannedAerialVehiclesUsingBiogeogra- phyBasedOptimizationApproach 40 5.1 CollisionAvoidanceAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1.1 Biogeography-BasedOptimization(BBO) . . . . . . . . . . . . . . 41 5.1.2 TheIntegrationofUAVDynamicsinthePlannedPath . . . . . . . 45 5.1.3 Implementaion of the Proposed BBO with Differential Flatness to AvoidCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 PathFollowingControllerDesign . . . . . . . . . . . . . . . . . . . . . . 50 5.2.1 ControllerDesign . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.3 SimulationandResultsAnalysis . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.1 SimulationScenarios . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.2 PerformanceAnalysis . . . . . . . . . . . . . . . . . . . . . . . . 55 5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6 Sense and Collision Avoidance of Unmanned Aerial Vehicles Using Markov DecisionProcessandFlatnessApproach 62 6.1 MDPBasedCollisionAvoidancein2DPlane . . . . . . . . . . . . . . . . 63 6.1.1 MarkovDecisionProcess . . . . . . . . . . . . . . . . . . . . . . 63 6.1.2 PolicyIteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.1.3 TheIntegrationofUAVDynamicsinthePlannedPath . . . . . . . 67 6.1.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.2 MDPBasedCollisionAvoidancein3DPlane . . . . . . . . . . . . . . . . 71 6.2.1 PathPlanningin3D . . . . . . . . . . . . . . . . . . . . . . . . . 71 vi 6.2.2 PathFollowingControllerDesign . . . . . . . . . . . . . . . . . . 74 6.2.3 SimulationStudies . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7 ConclusionsandFutureWork 83 7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.2 FutureWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.3 MyPublicationsRelatedtotheThesis . . . . . . . . . . . . . . . . . . . . 84 Bibliography 85 vii List of Figures Figure1.1 TheillustrativeschemeofS&AfunctionalityinaUAV. . . . . . . . 2 Figure2.1 Illustrationoftypicalsensingdevices. . . . . . . . . . . . . . . . . 8 Figure2.2 Collisiondetectionmethod. . . . . . . . . . . . . . . . . . . . . . . 9 Figure2.3 CategoriesofUAVcollisionavoidanceapproaches. . . . . . . . . . 11 Figure3.1 AmodelofforcesinUAVinertialframe. . . . . . . . . . . . . . . 24 Figure3.2 TherelativemotionofaUAVandanIntruder. . . . . . . . . . . . . 25 Figure3.3 Grid-basedtrajectoryrepresentation. . . . . . . . . . . . . . . . . . 28 Figure4.1 Geometryofcollisionresolution. . . . . . . . . . . . . . . . . . . . 30 Figure4.2 TheplatformforvalidatingS&Ascheme. . . . . . . . . . . . . . . 34 Figure4.3 OriginaltrajectorieswithoutS&A. . . . . . . . . . . . . . . . . . . 35 Figure4.4 ResultsinScenario1. . . . . . . . . . . . . . . . . . . . . . . . . . 36 Figure4.5 ResultsofScenario2. . . . . . . . . . . . . . . . . . . . . . . . . . 37 Figure4.6 ResultsofScenario3. . . . . . . . . . . . . . . . . . . . . . . . . . 38 Figure4.7 ResultsofScenario4. . . . . . . . . . . . . . . . . . . . . . . . . . 39 Figure5.1 Simplifiedmigrationmodelofhabitat. . . . . . . . . . . . . . . . . 42 Figure5.2 HabitatmodificationofBBO. . . . . . . . . . . . . . . . . . . . . . 43 Figure5.3 HabitatmutationofBBO. . . . . . . . . . . . . . . . . . . . . . . . 45 Figure5.4 Theprocedureoftheproposedapproach. . . . . . . . . . . . . . . . 49 Figure5.5 Thestructureoftheenergy-basedcontroller. . . . . . . . . . . . . . 51 Figure5.6 TheUAV-intruderscollisionavoidancescenario. . . . . . . . . . . . 55 Figure5.7 ActualtrajectoryofUAVincollisionavoidancescenario. . . . . . . 56 Figure5.8 UAVoutputresponsesinfollowingreferencepitchanglescenario. . 57 Figure 5.9 Elevator angle and throttle angle responses in following reference pitchanglescenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Figure5.10 UAVoutputresponsesinfollowingreferencealtitudescenario. . . . 58 Figure 5.11 Elevator angle and throttle angle responses in following reference altitudescenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 viii Figure5.12 PitchangleofUAVincollisionavoidancescenario. . . . . . . . . . 59 Figure5.13 Actualaltitudeandvelocityincollisionavoidancescenario. . . . . . 60 Figure 5.14 Actual elevator angle and throttle angle in collision avoidance sce- nario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Figure6.1 ThebasicactionofUAV. . . . . . . . . . . . . . . . . . . . . . . . 64 Figure6.2 Theassignmentofthetransitionprobability. . . . . . . . . . . . . . 65 Figure6.3 TheUAV-intruderscollisionavoidancescenario. . . . . . . . . . . 68 Figure6.4 TrajectoryoftheUAV. . . . . . . . . . . . . . . . . . . . . . . . . . 69 Figure6.5 xpositionerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure6.6 y positionerror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Figure6.7 Theaccumulativeerrorsinxandy positions. . . . . . . . . . . . . . 71 Figure6.8 ThebasicactionofUAVin3Dplane. . . . . . . . . . . . . . . . . . 73 Figure6.9 Theassignmentofthetransitionprobabilityin3Dplane. . . . . . . 74 Figure6.10 Thepathfollowingcontroller. . . . . . . . . . . . . . . . . . . . . . 75 Figure6.11 Thereferencesignalduringthelandingstage. . . . . . . . . . . . . 78 Figure6.12 The3DtrajectoryoftheUAVlanding. . . . . . . . . . . . . . . . . 80 Figure6.13 TheUAVpositioninformationwithrespecttothreedirections. . . . 80 Figure6.14 ThetrackingperformanceofEulerangles. . . . . . . . . . . . . . . 80 Figure6.15 TheresponsesoftheUAVactuators. . . . . . . . . . . . . . . . . . 81 Figure6.16 Thetrackingerrors. . . . . . . . . . . . . . . . . . . . . . . . . . . 81 ix List of Tables Table2.1 Thecharacteristicsofsensortechnologies . . . . . . . . . . . . . . . 8 Table4.1 Minimumrelativedistance . . . . . . . . . . . . . . . . . . . . . . . 36 Table5.1 Referencepitchangledescribtion . . . . . . . . . . . . . . . . . . . 54 Table5.2 Referencealtitudedescribtion . . . . . . . . . . . . . . . . . . . . . 54 Table5.3 Theinitialparametersforsimulation . . . . . . . . . . . . . . . . . . 54 Table6.1 TheoperatingoftheUAV . . . . . . . . . . . . . . . . . . . . . . . 76 Table6.2 ThedesignparametersoftheUAV . . . . . . . . . . . . . . . . . . . 77 x
Description: