Studies in Computational Intelligence 417 Editor-in-Chief Prof.JanuszKacprzyk SystemsResearchInstitute PolishAcademyofSciences ul.Newelska6 01-447Warsaw Poland E-mail:[email protected] Forfurthervolumes: http://www.springer.com/series/7092 Valentina Emilia Balas, János Fodor, and Annamária R. Várkonyi-Kóczy (Eds.) New Concepts and Applications in Soft Computing ABC Editors Prof.ValentinaEmiliaBalas Prof.AnnamáriaR.Várkonyi-Kóczy DepartmentofAutomationand DepartmentofMechatronicsand AppliedInformatics VehicleEngineering FacultyofEngineering ÓbudaUniversity “AurelVlaicu”UniversityofArad Budapest Arad Hungary Romania Prof.Dr.JánosFodor InstituteofIntelligentEngineeringSystems JohnvonNeumannFacultyofInformatics ÓbudaUniversity Budapest Hungary ISSN1860-949X e-ISSN1860-9503 ISBN978-3-642-28958-3 e-ISBN978-3-642-28959-0 DOI10.1007/978-3-642-28959-0 SpringerHeidelbergNewYorkDordrechtLondon LibraryofCongressControlNumber:2012935577 (cid:2)c Springer-VerlagBerlinHeidelberg2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartofthe materialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broad- casting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformationstorage andretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodologynowknown orhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnectionwithreviews orscholarly analysis ormaterial suppliedspecifically forthepurposeofbeingentered andexecuted ona computersystem,forexclusive usebythepurchaser ofthework.Duplication ofthis publication orparts thereofispermittedonlyundertheprovisionsoftheCopyrightLawofthePublisher’slocation,initscur- rentversion,andpermissionforusemustalways beobtained fromSpringer. Permissionsforusemaybe obtainedthroughRightsLinkattheCopyrightClearanceCenter.Violationsareliabletoprosecutionunder therespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Whiletheadviceandinformationinthisbookarebelievedtobetrueandaccurateatthedateofpublication, neither the authors northe editors nor the publisher can accept any legal responsibility for any errors or omissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,withrespecttothematerial containedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface The book New Concepts and Applications in Soft Computing includes recent theoretical foundationsand practical applications as extended works presented in the InternationalWorkshopSOFA2009,SOFA2010andadditionalpapers. SOFA(SOFtcomputingApplication)isawell-recognisedinternationalIEEEevent proposingtoeacheditionnewresearchontheinnovativeapplicationsofadvancessoft computingparadigms. TheideaofSoftComputingwasinitiatedin1981whenProfessorZadehpublished hisfirstpaperonsoftdataanalysisandconstantlyevolvedeversince.ProfessorZadeh definedSoftComputingasthefusionofthefieldsoffuzzylogic(FL),neuralnetwork theory (NN) and probabilistic reasoning (PR), with the latter subsuming belief net- works, evolutionarycomputingincludingDNA computing,chaos theory and parts of learning theory into one multidisciplinary system. As Zadeh said the essence of soft computing is that unlike the traditional, hard computing, soft computing is aimed at anaccommodationwiththepervasiveimprecisionoftherealworld.Thus,theguiding principleofsoftcomputingistoexploitthetoleranceforimprecision,uncertaintyand partialtruthtoachievetractability,robustness,lowsolutioncostandbetterrapportwith reality.Inthefinalanalysis,therolemodelforsoftcomputingisthehumanmind. The applications of Soft Computing helps solving nonlinear problems, in which mathematical models are not available and introduce the human knowledge such as cognition,recognition,understanding,learningandothersintothefieldsofcomputing. Furthermore,they open the way for constructingintelligent systems like autonomous self-tuningsystems,andautomateddesignedsystems. Thefactthatnaturallanguageisfuzzyisfullyacceptedandverywellknownthese days.However,itis notquiteexpectedthatan artificialformallanguagein whichthe vocabularyispurelynumericaltosharethevaguenessofthenaturallanguage.Suchan exampleisgivenherealongtheChapter1 byValentinaE. Balas, IuliaM. Motocand AlinaBarbulescuwhichpointoutthatbinaryiriscodesarenothingelsethanimprecise informationaboutsomerealiridesandtherefore,theirmatchingisfuzzy.Ontheother hand,practicingaTuringtestofirisrecognitionshowsthatahumanneedsonlytwoval- ues(0and1)toencodethemeaningofthetwodifferent,complementaryandmutually exclusiveconcepts(namely‘genuine’and‘imposter’comparisons)whereasastatistical VI Preface irisrecognitionsystemencodesthesimilaritybetweentwoiridesusingcertainmethods ofcomputingavaguesimilarityscorebelongingin[0,1]interval.Hence,theconcepts ‘genuine’and‘imposter’arecrispinhumanperception/understandingand,paradoxi- cally,theyarefuzzyintheartificialperceptionofanartificialsoftwareagentpracticing statisticalrecognition.Thefactthatintheartificialperceptionofsomeirisrecognition system the two conceptsare seen as beinginsufficiently distinct(the genuineand the imposterscoresdefinetwofuzzyintervalswhicharesimultaneouslydifferentinmean- ing and overlapping each other), and consequently not quite complementary and not quite mutually exclusive,is nota reason to believethat the iris recognitionand those two conceptsare indeed fuzzy in their nature. This fact provesonly how much room for improvement exists between two paradigms of iris recognition, namely between the presentstatistical / bimodaliris recognitionapproaches,on the one hand, and the naturalrecognitioncertifiedasbeingpossiblebytheTuringtest,ontheother.Toward such an improvement, Chapter 1 shows that combining Haar-Hilbert and Log-Gabor encodingincreasesirisrecognitionperformanceleadingtoalessambiguousbiometric decisionlandscapeinwhichtheoverlapbetweentheexperimentalintra-andinter-class scoredistributionsdiminishesorevenvanishes.Haar-Hilbert,Log-Gaborandcombined Haar-HilbertandLog-Gaborencodersaretested,bothforsingleanddualirisapproach. Theexperimentalresultsconfirmthatthebestperformanceisobtainedforthedualiris approach when the iris code is generated using the combined Haar-Hilbert and Log- Gabor encoder, and when the matching score fuses the information from both Haar- HilbertandLog-Gaborchannelsofthecombinedencoder. Chapter 2 by Alex Torma´si and Ja´nos Botzheim introduces a new on-line single- strokerecognitionmethodbasedonfuzzylogic.Eachofthecharactersaredefinedby onlyoneninedimensionalfuzzyrule.Inadditiontothelowresourcerequirement,the solutionisabletosatisfymanyoftheuser’scurrentdemandsinhandwritingrecogniz- ers,likespeedandlearning.Eightoftheninefeaturesareextractedusingafour-by-four grid.Forthelearningphasetheauthorsdesignedanewpunish/rewardbacterialevolu- tionaryalgorithmthattunesthecharacterparametersrepresentedbyfuzzysets. Chapter3byTudorBarbu,MihaelaCostinandAdrianCiobanuprovidesandcom- parestwocolor-basedimageretrievaltechniquesforRGBimagedatabases.Theirpro- posed CBIR systems use the query by example approach and a relevance feedback mechanism.The feature extractionprocess is performedby computinga globalcolor histogramforeachimage.Featurevectorsarefirstcomparedusingthehistograminter- sectiondifferencemetric.A distancebasedon Chi-squaredmeasureis also proposed. Arelevancefeedbackmechanismisusedintheretrievalprocessinbothretrievalcases. Chapter4byDraganG.Radojevic´showsthatReal-valuedimplication(R-implication) isaBooleanconsistentgeneralizationoftheclassicalbinaryimplication.R-implication plays importantroles in real-valued set (R-set) theory as a generalizationof classical set theory as well as in many applications such as morphologyin image processing, associationrulesindatamininganddecisionmakinggenerally. Inchapter5theauthorsToma-LeonidaDragomir,Flavius-MaximPetcu¸tandAdrian Korodi show that the maximum power point tracking strategies designed to control the solar panels are based on using as referencesthe coordinatesof maximumpower pointofthesolarpanelexternalcharacteristicI(V).Thetrackingproblemmakessense Preface VII due to the variability of the external characteristic with respect to panel temperature and total radiation absorbed by the panel. The chapter presents a solution to obtain the coordinate of the maximum power point from the variable that may be directly measured:airtemperature,normaldirectradiationanddiffusehorizontalradiation.As startingpointtodevelopthemodelofthesolarpanelandtoextractthemaximumpower point coordinates, a two diodes electrical circuit was considered. Finally, a generator block consisting in a look up model is designed. Because for practical cases only a smallnumberofexperimentalexternalcharacteristicsareavailable,thegeneratoruses a global interpolation method. The presentation is built on a case study that exploits experimentalcharacteristicstakenfromreferences. Chapter 6 by Hooman Tahayori and Alireza Sadeghian introduced the concept of ShadowedFuzzySetandsomeofitsrelatedoperations.ShadowedFuzzySetenables localizationoftheunderlyinguncertaintyoffuzzygradesintype-2fuzzysetsthrough exploitationofshadowedsets.Itprovidesacapableframeworkthatdespitepreserving the uncertainties of fuzzy grades in type-2 fuzzy sets, adheres the simplicity of the conceptandoperationsofintervaltype-2fuzzysets. In chapter 7 by Viorel Nicolau the variations of sound speed in air as a function of air properties are studied, along with their influence on the accuracy of ultrasonic sensing.Themostimportantaircharacteristicisairtemperature,whiletheairpressure andrelativehumidityaffectthesoundspeed,especiallyathightemperaturevalues.The influenceofCO2 concentrationonthesoundspeedisverysmall.Fuzzyrulesaregen- erated forsound speedvaluesused in outdoorapplications.Also, fuzzy estimation of soundspeedisstudied,usingexpertrulesgeneratedfromthesoundspeedmodel.Dif- ferentfuzzysystemsweretested,withvariousmembershipfunctionsandfuzzyrules. The selection was made based on the relative error and the mean square error of the fuzzyoutput,comparedwiththeoutputofsoundspeedmodel.Accurateestimationof soundspeedisobtained.Theoutputsurfaceandtherelativeerroroftheselectedfuzzy estimatorarealsopresented. Chapter 8 by Hsunhsun Chung discussed on some membership functions and ap- proximate reasoning conducted with these membership functions. The author also explains how to apply approximate reasoning to educational evaluation. For the pur- pose, the author evaluates a student’s work (drawing) by approximate reasoning and discussesthepracticaleffectivenessoftheanalysismethod. Chapter9byTudorBarbu,MihaelaCostin andAdrianCiobanuproposedanunsu- pervisedautomaticmoment-basedimagerecognitiontechnique.Thepracticalproblem hereisclassifyingtheimagesfromaset,usingthecontentsimilarity.Inthefeatureex- tractionstage,theauthorscomputeasetoffeaturevectorsusingdiscreteareamoments. Anautomaticunsupervisedfeaturevectorclassificationmethodisfurtherproposed.It usesahierarchicalagglomerativeclusteringalgorithm,theoptimalnumberofclusters beingdeterminedusingsomevalidationindexes.Someexperimentsperformedwiththe proposedapproacharealsodescribedinthisarticle. Chapter10byCorneliaGyo˝ro¨di,RobertGyo˝ro¨di,MihaiDersidan,GeorgePecherle andLiviaBandicidescribesanimprovedhebbianneuralnetworkthathasthecapability ofaddingnewneuronstoitandcanconnectneuronsusinganassociationrule.Sincethe mainprobleminneuralnetworkdesignistheactualconstructionoftheinter-neuronal VIII Preface relations,theauthorstrytosolvethisissueatleastpartiallybyallowingthenetworkto modifyitselfdependingonitsresponsetodifferentstimuli. Chapter11byAlinaMa˘da˘linaLonea,HuagloryTianfieldandDanielaElenaPopescu presentsthefundamentalsofCloudComputing.Afterwards,thetechnicalsecurityas- pectsinCloudComputingareclassifiedfromtwoperspectives:webapplicationssecu- rity issues and virtualization security issues. Both security issues include the threats implied with their mitigation techniques, which consolidates the request to provide anadequateIdentityandManagementarchitectureforCloudComputing.Further,this paper addresses the Identity and Access Management(IAM) security categoryof the CloudComputingfield,whichincludesthesecurityrequirements,thestandardsofin- terest and the current Identity and Access Management solutions. A trusted Identity and Access Managementarchitecture for cloud services assumes establishing the list ofthesecurityrequirementsandusingthesuitablestandards.Thepaperalsorelatesan evaluationoftheexistingIdentityAccessManagementsolutions. Chapter12byEugenIoanGergely,LauraCoroiuandHelgaMariaSilaghifocuseson anewtechniqueforanalyzingthedependabilityofPLCI/Omodules.Thistechniqueis basedonthemodeinwhichtheI/Omodulesfulfilltheirtasksandnotontheirstructure. SuchanapproachallowsaunifiedanalysisofI/Omodules,regardlessoftheirtype,for almosttheentireanalysiswork.TheparticularizationoftheI/Omoduletypebecomes necessaryonlyatthefinalstageoftheanalysis.Therearerealizedqualitative&quan- titative analyses of I/O modulesdependability.For this, and because reliability is not aneloquentparameterinanysituation,therearedefinedprobabilisticparametersboth foroneI/OpointandforI/Opointssystems.Inaddition,therearemadecomparisons betweensomeI/Opointconfigurations.Finally,thereareproposedseveralarchitectures consideredoptimalandtheprocessesforwhichtheymaybesuitable. We believe that research on soft computing will stimulate the interest among researchers and practitioners in this field. We hope that the reader will share our ex- citementandfindourvolumebothusefulandinspiring. Theeditorsaregratefultotheauthorsandreviewersfortheirgreatcontribution. We are also gratefullyto Prof. Janusz Kacprzyk(Editor-in-Chief,SpringerStudies inComputationalIntelligenceSeries)forgivingustheopportunitytopublishthebook asGuestEditors. Special thanks go to Dr. Thomas Ditzinger (Springer EngineeringInhouse Editor) forhispatienceandexcellentcollaborationduringtheelaborationofthisvolume. We acknowledge with our thanks the editorial team of Springer-Verlag for their supportduringthepreparationofthemanuscript ValentinaEmiliaBalas–Romania Ja´nosFodor–Hungary Annama´riaR.Va´rkonyi-Ko´czy–Hungary Contents CombinedHaar-HilbertandLog-GaborBasedIrisEncoders ............ 1 ValentinaE.Balas,IuliaM.Motoc,AlinaBarbulescu Single-StrokeCharacterRecognitionwithFuzzyMethod ................ 27 AlexTorma´si,Ja´nosBotzheim Color-BasedImageRetrievalApproachesUsingaRelevanceFeedback Scheme .......................................................... 47 TudorBarbu,MihaelaCostin,AdrianCiobanu Real-ValuedImplicationasGeneralizedBooleanPolynomial ............. 57 DraganG.Radojevic´ ReferenceValueGeneratorofMaximumPowerPointCoordinatesofthe PhotovoltaicPanelExternalCharacteristic ............................ 71 Toma-LeonidaDragomir,Flavius-MaximPetcu¸t,AdrianKorodi ShadowedFuzzySets:AFrameworkwithMoreFreedomDegreesfor HandlingUncertaintiesThanIntervalType-2FuzzySetsandLower ComputationalComplexityThanGeneralType-2FuzzySets............. 97 HoomanTahayori,AlirezaSadeghian Sound Speed EstimationUsing Fuzzy Logic Approachfor Outdoor UltrasonicApplications ............................................ 119 ViorelNicolau ApplicationofApproximateReasoningUsingTriangularandSine-curved MembershipFunctions............................................. 141 HsunhsunChung AnUnsupervisedContent-BasedImageRecognitionTechnique........... 157 TudorBarbu,MihaelaCostin,AdrianCiobanu X Contents AnImprovedHebbianNeuralNetworkwithDynamicNeuronalLifeand RelationsandItsConnectiontoaDecisionGroup ...................... 165 Cornelia Gyo˝ro¨di, Robert Gyo˝ro¨di,Mihai Dersidan, George Pecherle, LiviaBandici IdentityManagementforCloudComputing ........................... 175 AlinaMa˘da˘linaLonea,HuagloryTianfield,DanielaElenaPopescu DependabilityAnalysisofPLCI/OSystemsUsedinCriticalIndustrial Applications...................................................... 201 EugenIoanGergely,LauraCoroiu,HelgaMariaSilaghi AuthorIndex ........................................................ 219 Combined Haar-Hilbert and Log-Gabor Based Iris Encoders Valentina E. Balas1,*, Iulia M. Motoc2,**, and Alina Barbulescu3,*** 1 Faculty of Engineering, Aurel Vlaicu University of Arad, Arad, Romania [email protected] 2 Artificial Intelligence and Computational Logic Laboratory, Department of Mathematics and Computer Science, Spiru Haret University, Bucharest, Romania [email protected] 3 Faculty of Mathematics and Computers Science, Ovidius University of Constanta, Romania [email protected] Abstract. This chapter shows that combining Haar-Hilbert and Log-Gabor improves iris recognition performance leading to a less ambiguous biometric decision landscape in which the overlap between the experimental intra- and inter-class score distributions diminishes or even vanishes. Haar-Hilbert, Log- Gabor and combined Haar-Hilbert and Log-Gabor encoders are tested here both for single and dual iris approach. The experimental results confirm that the best performance is obtained for the dual iris approach when the iris code is generated using the combined Haar-Hilbert and Log-Gabor encoder, and when the matching score fuses the information from both Haar-Hilbert and Log-Gabor channels of the combined encoder. 1 Introduction In 1970s, Flom and Safir [11], two American ophthalmologists noticed that the iris texture differs from one person to another and later asked Daugman to develop a sys- tem for identifying persons using their iris. The system patented by Daugman in 1994 [4] and based on a 2-dimensional Gabor filter was the first fully functional iris recog- nition system. In the same period, Wildes et al [61] proposed a different iris recogni- tion system. Compared to 1990s, iris recognition is nowadays a relatively popular research topic, many new segmentation, encoding or matching methods being proposed in the last two decades as original solutions produced by well-established research teams from Bath University ([29], [47]), CASIA ([23]-[25], [54]-[57]), NIST ([13], [31]), Notre-Dame University ([1], [18], [22], [33]), Kent University ([46], [51], ) or by individual re- searchers around the world: L. Masek - [28], C. Tisee [59], S. Yang [62], S. Yoon [63], * IEEE Senior Member, Associate Professor. ** IEEE Student Member. *** Associate Professor. V.E. Balas et al. (Eds.): New Concepts and Applications in Soft Computing, SCI 417, pp. 1–26. springerlink.com © Springer-Verlag Berlin Heidelberg 2013