ebook img

New AMPL Interfaces for Enhanced Development and Deployment of Optimization Models PDF

69 Pages·2014·1.83 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New AMPL Interfaces for Enhanced Development and Deployment of Optimization Models

New AMPL Interfaces for Enhanced Optimization Model Development and Deployment Robert Fourer AMPL Optimization Inc. www.ampl.com — +1 773-336-AMPL INFORMS Conference on Business Analytics & Operations Research Boston, 30 March – 1 April 2014 Track 11, Monday 1:50-2:40, Software Tutorials Robert Fourer, New AMPL Interfaces for Development & Deployment 1 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Outline Deploying models  Scripting  Internal modeling/programming language  AMPL API (Application Programming Interfaces)  External programming language support  General-purplse languages: C++, Java, .NET, Python  Analytics languages: MATLAB, R Developing models  More natural formulations  Logical conditions  Quadratic constraints  AMPL IDE (Integrated Development Environment)  Unified editor & command processor  Built on the Eclipse platform Robert Fourer, New AMPL Interfaces for Development & Deployment 3 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Introductory Example Multicommodity transportation . . .  Products available at factories  Products needed at stores  Plan shipments at lowest cost . . . with practical restrictions  Cost has fixed and variable parts  Shipments cannot be too small  Factories cannot serve too many stores Robert Fourer, New AMPL Interfaces for Development & Deployment 4 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Given (cid:1841) Set of origins (factories) (cid:1830) Set of destinations (stores) (cid:1842) Set of products and (cid:1853) Amount available, for each (cid:1861) ∈ (cid:1841) and (cid:1868) ∈ (cid:1842) (cid:3036)(cid:3043) (cid:1854) Amount required, for each (cid:1862) ∈ (cid:1830) and (cid:1868) ∈ (cid:1842) (cid:3037)(cid:3043) (cid:1864) Limit on total shipments, for each (cid:1861) ∈ (cid:1841) and (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1855) Shipping cost per unit, for each (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:1861)(cid:1862)(cid:1868) (cid:1856) Fixed cost for shipping any amount from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) (cid:1871) Minimum total size of any shipment (cid:1866) Maximum number of destinations served by any origin Robert Fourer, New AMPL Interfaces for Development & Deployment 5 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Determine (cid:1850) Amount of each (cid:1868) ∈ (cid:1842) to be shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862)(cid:1868) (cid:1851) 1 if any product is shipped from (cid:1861) ∈ (cid:1841) to (cid:1862) ∈ (cid:1830) (cid:1861)(cid:1862) 0 otherwise to minimize ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Total variable cost plus total fixed cost Robert Fourer, New AMPL Interfaces for Development & Deployment 6 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1853) for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Total shipments of product (cid:1868) out of origin (cid:1861) must not exceed availability ∑ (cid:1850) (cid:3404) (cid:1854) for all (cid:1862) ∈ (cid:1830), (cid:1868) ∈ (cid:1842) (cid:3036)∈(cid:3016) (cid:3036)(cid:3037)(cid:3043) (cid:3037)(cid:3043) Total shipments of product (cid:1868) into destination (cid:1862) must satisfy requirements Robert Fourer, New AMPL Interfaces for Development & Deployment 7 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation Mathematical Formulation Subject to ∑ (cid:1850) (cid:3409) (cid:1864) (cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total may not exceed the limit, and (cid:1851) must be 1 (cid:3036)(cid:3037) ∑ (cid:1850) (cid:3410) (cid:1871)(cid:1851) for all (cid:1861) ∈ (cid:1841), (cid:1862) ∈ (cid:1830) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037) When there are shipments from origin (cid:1861) to destination (cid:1862), the total amount of shipments must be at least (cid:1871) ∑ (cid:1851) (cid:3409) (cid:1866) for all (cid:1861) ∈ (cid:1841) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) Number of destinations served by origin (cid:1861) must be as most (cid:1866) Robert Fourer, New AMPL Interfaces for Development & Deployment 8 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic data set ORIG; # origins set DEST; # destinations set PROD; # products param supply {ORIG,PROD} >= 0; # availabilities at origins param demand {DEST,PROD} >= 0; # requirements at destinations param limit {ORIG,DEST} >= 0; # capacities of links param vcost {ORIG,DEST,PROD} >= 0; # variable shipment cost param fcost {ORIG,DEST} > 0; # fixed usage cost param minload >= 0; # minimum shipment size param maxserve integer > 0; # maximum destinations served Robert Fourer, New AMPL Interfaces for Development & Deployment 9 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic model: variables and objective var Trans {ORIG,DEST,PROD} >= 0; # actual units to be shipped var Use {ORIG, DEST} binary; # 1 if link used, 0 otherwise minimize Total_Cost: sum {i in ORIG, j in DEST, p in PROD} vcost[i,j,p] * Trans[i,j,p] + sum {i in ORIG, j in DEST} fcost[i,j] * Use[i,j]; ∑ ∑ ∑ (cid:1855) (cid:1850) (cid:3397) ∑ ∑ (cid:1856) (cid:1851) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3043)∈(cid:3017) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3037)(cid:3043) (cid:3036)∈(cid:3016) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037) (cid:3036)(cid:3037) Robert Fourer, New AMPL Interfaces for Development & Deployment 10 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials Multicommodity Transportation AMPL Formulation Symbolic model: constraint subject to Supply {i in ORIG, p in PROD}: sum {j in DEST} Trans[i,j,p] <= supply[i,p]; ∑ (cid:1850) (cid:3409) (cid:1853) , for all (cid:1861) ∈ (cid:1841), (cid:1868) ∈ (cid:1842) (cid:3037)∈(cid:3005) (cid:3036)(cid:3037)(cid:3043) (cid:3036)(cid:3043) Robert Fourer, New AMPL Interfaces for Development & Deployment 11 INFORMS Analytics Boston —30 March-1 April 2014 —Track 11 Software Tutorials

Description:
Enhanced Optimization Model. Development and AMPL API (Application Programming Interfaces) General-purplse languages: C++, Java, .NET
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.