ebook img

New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus PDF

370 Pages·2022·15.248 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus

New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus Edited by Asifa Tassaddiq and Muhammad Yaseen Printed Edition of the Special Issue Published in Fractal Fract www.mdpi.com/journal/fractalfract New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus Editors AsifaTassaddiq MuhammadYaseen MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin Editors AsifaTassaddiq MuhammadYaseen CollegeofComputerand UniversityofSargodha InformationSciences Pakistan MajmaahUniversity SaudiArabia EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal FractalandFractional(ISSN2504-3110) (availableat: https://www.mdpi.com/journal/fractalfract/ specialissues/pureandappliedmath). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber, PageRange. ISBN978-3-0365-4905-7(Hbk) ISBN978-3-0365-4906-4(PDF) ©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AsifaTassaddiqandMuhammadYaseen EditorialforSpecialIssue“NewAdvancementsinPureandAppliedMathematicsviaFractals andFractionalCalculus” Reprintedfrom:FractalFract.2022,6,284,doi:10.3390/fractalfract6060284 . . . . . . . . . . . . . 1 AsifaTassaddiqandRekhaSrivastava NewResultsInvolvingRiemannZetaFunctionUsingItsDistributionalRepresentation Reprintedfrom:FractalFract.2022,6,254,doi:10.3390/fractalfract6050254 . . . . . . . . . . . . . 5 SaimaRashid,ZakiaHammouch,HassenAydi,AbdulazizGarbaAhmadand AbdullahM.Alsharif NovelComputationsoftheTime-FractionalFisher’sModelviaGeneralizedFractionalIntegral OperatorsbyMeansoftheElzakiTransform Reprintedfrom:FractalFract.2021,5,94,doi:10.3390/fractalfract5030094 . . . . . . . . . . . . . . 21 SaimaRashid,RehanaAshraf,AhmetOcakAkdemir,ManarA.Alqudah, ThabetAbdeljawadandMohamedS.Mohamed AnalyticFuzzyFormulationofaTime-FractionalFornberg–WhithamModelwithPowerand Mittag–LefflerKernels Reprintedfrom:FractalFract.2021,5,113,doi:10.3390/fractalfract5030113 . . . . . . . . . . . . . 51 BriceydaB.DelgadoandJorgeE.Macı´as-D´ıaz OntheGeneralSolutionsofSomeNon-HomogeneousDiv-CurlSystemswith Riemann–LiouvilleandCaputoFractionalDerivatives Reprintedfrom:FractalFract.2021,5,117,doi:10.3390/fractalfract5030117 . . . . . . . . . . . . . 83 MuhammadSamraiz,MuhammadUmer,ArtionKashuri,ThabetAbdeljawad,SajidIqbal andNabilMlaiki OnWeighted(k,s)-Riemann-LiouvilleFractionalOperatorsandSolutionofFractionalKinetic Equation Reprintedfrom:FractalFract.2021,5,118,doi:10.3390/fractalfract5030118 . . . . . . . . . . . . . 101 HamadjamAbboubakar,RaissaKomRegonneandKottakkaranSooppyNisar Fractional Dynamics of Typhoid Fever Transmission Models with Mass Vaccination Perspectives Reprintedfrom:FractalFract.2021,5,149,doi:10.3390/fractalfract5040149 . . . . . . . . . . . . . 119 AsifaTassaddiq, SaniaQureshi, AmanullahSoomro, EvrenHincal, DumitruBaleanuand AsifAliShaikh ANewThree-StepRoot-FindingNumericalMethodandItsFractalGlobalBehavior Reprintedfrom:FractalFract.2021,5,204,doi:10.3390/fractalfract5040204 . . . . . . . . . . . . . 151 MuhammadYaseen,SadiaMumtaz,RenyGeorgeandAzharHussain Existence Results for the Solution of the Hybrid Caputo–Hadamard Fractional Differential ProblemsUsingDhage’sApproach Reprintedfrom:FractalFract.2022,6,17,doi:10.3390/fractalfract6010017 . . . . . . . . . . . . . . 177 AsifaTassaddiq,MuhammadSajjadShabbir,QamarDinandHumeraNaaz Discretization,Bifurcation,andControlforaClassofPredator-PreyInteractions Reprintedfrom:FractalFract.2022,6,31,doi:10.3390/fractalfract6010031 . . . . . . . . . . . . . . 195 v MuhammadYaseen,QamarUnNisaArif,RenyGeorgeandSanaKhan Comparative Numerical Study of Spline-Based Numerical Techniques for Time Fractional CattaneoEquationintheSenseofCaputo–Fabrizio Reprintedfrom:FractalFract.2022,6,50,doi:10.3390/fractalfract6020050 . . . . . . . . . . . . . . 217 MuhammadSamraiz,ZahidaPerveen,GauharRahman,MuhammadAdilKhanand KottakkaranSooppyNisar Hermite-HadamardFractionalInequalitiesforDifferentiableFunctions Reprintedfrom:FractalFract.2022,6,60,doi:10.3390/fractalfract6020060 . . . . . . . . . . . . . . 239 ZulfiqarAhmadNoor,ImranTalib,ThabetAbdeljawadandManarA.Alqudah Numerical Study of Caputo Fractional-Order Differential Equations by Developing New OperationalMatricesofVieta–LucasPolynomials Reprintedfrom:FractalFract.2022,6,79,doi:10.3390/fractalfract6020079 . . . . . . . . . . . . . . 257 HumairaYasmin NumericalAnalysisofTime-FractionalWhitham-Broer-KaupEquationswith Exponential-DecayKernel Reprintedfrom:FractalFract.2022,6,142,doi:10.3390/fractalfract6030142 . . . . . . . . . . . . . 277 ChoukriDerbazi,ZidaneBaitiche,MohammedS.Abdo,KamalShah,BahaaeldinAbdalla andThabetAbdeljawad Extremal Solutions of Generalized Caputo-Type Fractional-OrderBoundary Value Problems UsingMonotoneIterativeMethod Reprintedfrom:FractalFract.2022,6,146,doi:10.3390/fractalfract6030146 . . . . . . . . . . . . . 295 KamsingNonlaopon,MuhammadUzairAwan,MuhammadZakriaJaved,Hu¨seyinBudak andMuhammadAslamNoor Someq-FractionalEstimatesofTrapezoidlikeInequalitiesInvolvingRaina’sFunction Reprintedfrom:FractalFract.2022,6,185,doi:10.3390/fractalfract6040185 . . . . . . . . . . . . . 309 TabindaNahidandJunesangChoi CertainHybridMatrixPolynomialsRelatedtotheLaguerre-ShefferFamily Reprintedfrom:FractalFract.2022,6,211,doi:10.3390/fractalfract6040211 . . . . . . . . . . . . . 329 RanaSafdarAli,AimanMukheimer,ThabetAbdeljawad,ShahidMubeen,SabilaAli, GauharRahmanandKottakkaranSooppyNisar SomeNewHarmonicallyConvexFunctionTypeGeneralizedFractionalIntegralInequalities Reprintedfrom:FractalFract.2021,5,54,doi:10.3390/fractalfract5020054 . . . . . . . . . . . . . . 349 vi fractal and fractional Editorial Editorial for Special Issue “New Advancements in Pure and Applied Mathematics via Fractals and Fractional Calculus” AsifaTassaddiq1,*andMuhammadYaseen2 1 DepartmentofBasicSciencesandHumanities,CollegeofComputerandInformationSciences, MajmaahUniversity,AlMajmaah11952,SaudiArabia 2 DepartmentofMathematics,UniversityofSargodha,Sargodha40100,Pakistan;[email protected] * Correspondence:[email protected] Fractionalcalculushasreshapedscienceandtechnologysinceitsfirstappearancein aletterreceivedtoGottfriedWilhelmLeibnizfromGuil-laumedel’Hôpitalintheyear 1695.Theexistenceoffractionalbehaviorinnaturecannotbedenied.Anyphenomenon withapulse,rhythm,orpatternhasthepotentialtobeafractal.ThegoalofthisSpecial Issueistoexplorenewdevelopmentsinbothpureandappliedmathematicsasaresult offractionalbehavior. ThisassertionissupportedbythepapersinthisSpecialIssue. Thevarietyoftopicscoveredheredemonstratestheimportanceoffractionalcalculusin variousfieldsandprovidesadequatecoveragetoappealtotheinterestsofeachreader.This SpecialIssueofFractalandFractionalwaspostedinearly2021withthegoalofexploringthe variousconnectionsbetweenfractionalcalculusanditsapplicationsinpureandapplied mathematics. Initially, a deadline was set and has been extended to 5 April 2022, in considerationoftheauthor’sinterest.Intotal,wereceived74submissions.Followinga thoroughpeer-reviewprocess,seventeenofthemwereeventuallypublishedand,keeping withtheoriginalconceptofthisSpecialIssue,havenowbeencompiledintothisbook.The followingaredetailsofthepaperspublishedinourSpecialIssue: Citation:Tassaddiq,A.;Yaseen,M. Alietal.[1]developedanewversionofgeneralizedfractionalHadamardandFejér– EditorialforSpecialIssue“New Hadamard-typeintegralinequalitiesthatcanbeusedtoinvestigatethestabilityandcontrol AdvancementsinPureandApplied ofcorrespondingfractionaldynamicequations. MathematicsviaFractalsand Fisher’sequationisaprecisemathematicalresultderivedfrompopulationdynamics FractionalCalculus”.FractalFract. andgenetics,specificallychemistry.Rashidetal.[2]usedahybridtechniqueinconjunction 2022,6,284. https://doi.org/ withanewiterativetransformmethodtosolvethenonlinearfractionalFishermodel. 10.3390/fractalfract6060284 Furthermore,whiletheproposedprocedureishighlyrobust,explicit,andviablefornon- Received:19May2022 linearfractionalPDEs,ithasthepotentialtobeconsistentlyappliedtoothermultifaceted Accepted:24May2022 physicalprocesses. Published:25May2022 Itisworthnotingthattheproposedfuzzinessapproachistovalidatethesuperiority anddependabilityofconfiguringnumericalsolutionstononlinearfuzzyfractionalpartial Publisher’sNote:MDPIstaysneutral withregardtojurisdictionalclaimsin differentialequationsarisinginphysicalandcomplexstructures. Asaresult,in[3],the publishedmapsandinstitutionalaffil- authorsevaluateasemi-analyticalmethodinconjunctionwithanewhybridfuzzyintegral iations. transformandtheAdomiandecompositionmethodusingthefuzzinessconceptknownas theElzakiAdomiandecompositionmethod(EADM). In[4],theauthorsanalyzedthesolutionsofanonlineardiv-curlsystemwithfractional derivativesoftheRiemann–LiouvilleorCaputotypes. Tothatend,thefractional-order Copyright: © 2022 by the authors. vectoroperatorsofdivergence,curl,andgradientwereidentifiedascomponentsofthe Licensee MDPI, Basel, Switzerland. quaternionicfractionalDiracoperator.Generalsolutionstosomenon-homogeneousdiv- Thisarticleisanopenaccessarticle curlsystemswerederivedthatconsiderthepresenceoffractional-orderderivativesofthe distributed under the terms and Riemann–LiouvilleorCaputotypesasoneofthemostimportantresultsofthismanuscript. conditionsoftheCreativeCommons Anintegro-differentialkineticequationwasderivedin[5]byusingnovelfractional Attribution(CCBY)license(https:// operatorsanditssolutionusingweightedgeneralizedLaplacetransforms.Theweighted creativecommons.org/licenses/by/ (k,s)-Riemann–Liouvillefractionalintegralanddifferentialoperatorsaredefinedbythe 4.0/). FractalFract.2022,6,284.https://doi.org/10.3390/fractalfract6060284 1 https://www.mdpi.com/journal/fractalfract FractalFract.2022,6,284 authors. The paper includes some specific properties of the operators as well as the weightedgeneralizedLaplacetransformofthenewoperators. Themodelsthatincludevaccinationasacontrolmeasureareveryimportant. In lightofthis,theauthorsdevelopedandmathematicallyinvestigatedintegerandfractional modelsoftyphoidfevertransmissiondynamicsin[6].Severalnumericalsimulationswere run,allowingustoconcludethatsuchdiseasesmaybecombatedthroughvaccination combinedwithenvironmentalsanitation. Chemical,electrical,biochemical,geometrical,andmeteorologicalmodelsareexam- plesofnonlinearmodelsusedinscienceandengineering.Theauthorsof[7]investigated theglobalfractalbehaviorofanewnonlinearthree-stepmethodwithtenth-orderconver- gence.Basinsofattractionconsidervarioustypesofcomplexfunctions.Whencompared tootherwell-knownmethods,theproposedmethodachievesthespecifiedtoleranceinthe smallestnumberofiterationswhileassumingdifferentinitialguesses. TheauthorsinvestigatetheexistenceresultsforthehybridCaputo–Hadamardfrac- tionalboundaryvalueproblemin[8].TheproposedBVP’sinclusionversionwiththree- pointhybridCaputo–Hadamardterminalconditionsisalsoconsidered,andtherelated existenceresultsareprovided.Toaccomplishtheseobjectives,Dhage’swell-knownfixed- pointtheoremsforbothBVPsareapplied. Furthermore, twonumericalexamplesare presentedtovalidatetheanalyticalfindings. Theauthorsof[9]developedafeedback-controlstrategytocontrolthechaoscaused bybifurcation. Theproposedmodel’sfractaldimensionswerecomputed. Tofurther confirmthecomplexityandchaoticbehavior,themaximumLyapunovexponentsand phaseportraitsweredepicted.Finally,numericalsimulationswerepresentedtovalidate thetheoreticalandanalyticalresults. Numerical analysis is always necessary to demonstrate the efficacy of proposed schemes.Keepingthisinmind,theauthorsin[10]concentratedonnumericallyaddress- ingthetimefractionalCattaneoequationinvolvingtheCaputo–Fabrizioderivativeusing spline-basednumericaltechniques.Themainadvantageoftheschemesisthattheapproxi- mationsolutionisgeneratedasasmoothpiecewisecontinuousfunction,whichallowsto approximateasolutionatanypointinthedomainofinterest. Certainconvexands-convexfunctionshaveapplicationsinoptimizationtheory.Asa result,in[11],theauthorsinvestigatedavarietyofmean-typeintegralinequalitiesfora well-knownHilferfractionalderivative.Someidentitieswerealsoestablishedinorderto infermoreinterestingmeaninequalities.TheCaputofractionalderivativeconsequences werepresentedasspecialcasestotheirgeneralconclusions. The authors of [12] proposed a numerical method for solving Caputo fractional- order differential equations based on the operational matrices of shifted Vieta–Lucas polynomials(VLPs)(FDEs).Anewoperationalmatrixoffractional-orderderivativesin theCaputosensewasderived,whichwasthenusedinconjunctionwiththespectraltau andspectralcollocationmethodstoreducetheFDEstoasystemofalgebraicequations. Numericalexampleswereprovidedtodemonstratetheaccuracyofthismethod,which demonstratedthattheobtainedresultsagreewellwiththeanalyticalsolutionsforboth linearandnonlinearFDEs. Asemi-analyticalanalysisofthefractional-ordernon-linearcoupledsystemofWhitham– Broer–Kaupequationswaspresentedin[13]. Thefractionalderivativewasconsidered intheCaputo–Fabriziosense. Whentheanalyticalandactualsolutionsarecompared, itisclearthattheproposedapproacheseffectivelysolvecomplexnonlinearproblems. Furthermore,theproposedmethodologiescontrolandmanipulatetheobtainednumerical solutionsinanextrememannerinalargeacceptableregion. Theauthorsof[14]derivedsomesuitableresultsforextremalsolutionstoaclassof generalizedCaputo-typenonlinearfractionaldifferentialequations(FDEs)withnonlinear boundaryconditions(NBCs).Theaforementionedoutcomeswereobtainedbyemploying themonotoneiterativemethod,whichemploystheprocedureofupperandlowersolutions. Therearetwosequencesofextremalsolutionsgenerated,oneofwhichconvergestothe 2 FractalFract.2022,6,284 uppersolutionandtheothertothecorrespondinglowersolution.Themethoddoesnot requireanypriordiscretizationorcollocationtogeneratetheaforementionedupperand lowersolutionsequences. Q-calculusisanon-trivialandusefulgeneralizationofcalculus.Theauthorsof[15] presentedtwonewidentitiesinvolvingq-Riemann–Liouvillefractionalintegrals. New q-fractionalestimatesoftrapezoidal-likeinequalitieswerederivedusingtheseidentitiesas auxiliaryresults,inessenceoftheclassofgeneralizedexponentialconvexfunctions. Thedefinitionandapplicabilityofnewfamiliesofpolynomialsgeneratingfunction andoperationalrepresentationsarealwaysofgreatinterest.Theauthorsof[16]usedoper- ationaltechniquestoinvestigateanewtypeofpolynomial,specificallytheGould–Hopper– Laguerre–Sheffermatrixpolynomials.Furthermore,theseparticularmatrixpolynomials wereinterpretedintermsofquasi-monomiality.Theintegraltransformwasusedtoinvesti- gatethepropertiesoftheextendedversionsoftheGould–Hopper–Laguerre–Sheffermatrix polynomials.Therewerealsoexamplesofhowtheseresultsapplytospecificmembersof thematrixpolynomialfamily. LaplacetransformoftheRiemannzetafunctionusingitsdistributionalrepresentation wascomputed,whichplayedacriticalroleinapplyingtheoperatorsofgeneralizedfrac- tionalcalculustothiswell-studiedfunction[17].Asaresult,asspecialcases,similarnew imagescanbeobtainedusingvariousotherpopularfractionaltransforms.TheRiemann zetafunctionwasusedtoformulateandsolveanewfractionalkineticequation.Following that,anewrelationshipinvolvingtheLaplacetransformoftheRiemannzetafunctionand theFox–Wrightfunctionwasinvestigated,whichsignificantlysimplifiedtheresults. Tosummarize, thisspecialselectioncoversthescopeofongoingactivitiesinthe contextoffractionalcalculusbypresentingalternativeperspectives,viablemethods,new derivatives,andstrategiestosolvepracticalissues.Aseditors,wepresumethatthiswillbe followedbyasetofSpecialIssuesandtextstofurtherinvestigatethistheme. AstheguesteditorsofthisSpecialIssue, wewouldliketotakethisopportunity tothankallofthereviewers,editorialboardmembers,andeditorswhoassistedusin perfectingthecontentofthisvolume.WewouldalsoliketothankMs.CecileZhengfrom thejournalofficeforherpromptassistanceacrosstheSpecialIssuemanagementprocess. AllauthorcontributionstothisSpecialIssuearegreatlyacknowledgedwiththanks. Funding:Thisresearchreceivednoexternalfunding. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. Ali,R.;Mukheimer,A.;Abdeljawad,T.;Mubeen,S.;Ali,S.;Rahman,G.;Nisar,K.SomeNewHarmonicallyConvexFunction TypeGeneralizedFractionalIntegralIntegralInequalities.FractalFract.2021,5,54.[CrossRef] 2. Rashid,S.;Hammouch,Z.;Aydi,H.;Ahmad,A.;Alsharif,A.NovelComputationsoftheTime-FractionalFisher’sModelvia GeneralizedFractionalIntegralOperatorsbyMeansoftheElzakiTransform.FractalFract.2021,5,94.[CrossRef] 3. Rashid,S.;Ashraf,R.;Akdemir,A.;Alqudah,M.;Abdeljawad,T.;Mohamed,M.AnalyticFuzzyFormulationofaTime-Fractional Fornberg–WhithamModelwithPowerandMittag–LefflerKernels.FractalFract.2021,5,113.[CrossRef] 4. Delgado,B.;Macias-Diaz,J.OntheGeneralSolutionsofSomeNon-HomogeneousDiv-CurlSystemswithRiemann–Liouville andCaputoFractionalDerivatives.FractalFract.2021,5,117.[CrossRef] 5. Samraiz,M.;Umer,M.;Kashuri,A.;Abdeljawad,T.;Iqbal,S.;Mlaiki,N.OnWeighted(k,s)-Riemann-LiouvilleFractional OperatorsandSolutionofFractionalKineticEquation.FractalFract.2021,5,118.[CrossRef] 6. Abboubakar,H.;KomRegonne,R.;SooppyNisar,K.FractionalDynamicsofTyphoidFeverTransmissionModelswithMass VaccinationPerspectives.FractalFract.2021,5,149.[CrossRef] 7. Tassaddiq,A.;Qureshi,S.;Soomro,A.;Hincal,E.;Baleanu,D.;Shaikh,A.ANewThree-StepRoot-FindingNumericalMethod andItsFractalGlobalBehavior.FractalFract.2021,5,204.[CrossRef] 8. Yaseen,M.;Mumtaz,S.;George,R.;Hussain,A.ExistenceResultsfortheSolutionoftheHybridCaputo-HadamardFractional DifferentialProblemsUsingDhage’sApproach.FractalFract.2022,6,17.[CrossRef] 9. Tassaddiq,A.;Shabbir,M.;Din,Q.;Naaz,H.Discretization,Bifurcation,andControlforaClassofPredator-PreyInteractions. FractalFract.2022,6,31.[CrossRef] 10. Yaseen,M.;Arif,Q.U.N.;George,R.;Khan,S.ComparativeNumericalStudyofSpline-BasedNumericalTechniquesforTime FractionalCattaneoEquationintheSenseofCaputo-Fabrizio.FractalFract.2022,6,50.[CrossRef] 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.