mathematics Article Neutrosophic Permeable Values and Energetic Subsets with Applications in BCK/BCI-Algebras YoungBaeJun1,*,FlorentinSmarandache2 ID,Seok-ZunSong3 ID andHashemBordbar4 ID 1 DepartmentofMathematicsEducation,GyeongsangNationalUniversity,Jinju52828,Korea 2 Mathematics&ScienceDepartment,UniversityofNewMexico,705GurleyAve.,Gallup,NM87301,USA; [email protected] 3 DepartmentofMathematics,JejuNationalUniversity,Jeju63243,Korea;[email protected] 4 PostdoctoralResearchFellow,ShahidBeheshtiUniversity,Tehran,District1, DaneshjouBoulevard1983969411,Iran;[email protected] * Correspondence:[email protected] (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:14March2018;Accepted:2May2018;Published:7May2018 Abstract: The concept of a (∈, ∈)-neutrosophic ideal is introduced, and its characterizations are established. Thenotionsofneutrosophicpermeablevaluesareintroduced,andrelatedpropertiesare investigated.Conditionsfortheneutrosophiclevelsetstobeenergetic,rightstable,andrightvanished arediscussed. RelationsbetweenneutrosophicpermeableS-and I-valuesareconsidered. Keywords:(∈,∈)-neutrosophicsubalgebra;(∈,∈)-neutrosophicideal;neutrosophic(anti-)permeable S-value;neutrosophic(anti-)permeable I-value;S-energeticset; I-energeticset MSC:06F35;03G25;08A72 1. Introduction Thenotionofneutrosophicset(NS)theorydevelopedbySmarandache(see[1,2])isamoregeneral platformthatextendstheconceptsofclassicandfuzzysets,intuitionisticfuzzysets,andinterval-valued (intuitionistic)fuzzysetsandthatisappliedtovariousparts: patternrecognition,medicaldiagnosis, decision-makingproblems, andsoon(see[3–6]). Smarandache[2]mentionedthatacloudisaNS becauseitsbordersareambiguousandbecauseeachelement(waterdrop)belongswithaneutrosophic probabilitytotheset(e.g.,therearetypesofseparatedwaterdropsaroundacompactmassofwater drops,suchthatwedonotknowhowtoconsiderthem: inoroutofthecloud). Additionally,weare notsurewherethecloudendsnorwhereitbegins,andneitherwhethersomeelementsareorarenot intheset. Thisiswhythepercentageofindeterminacyisrequiredandtheneutrosophicprobability (usingsubsets—notnumbers—ascomponents)shouldbeusedforbettermodeling: itisamoreorganic, smooth,andparticularlyaccurateestimation. Indeterminacyisthezoneofignoranceofaproposition’s value,betweentruthandfalsehood. Algebraicstructuresplayanimportantroleinmathematicswithwide-rangingapplicationsin severaldisciplinessuchascodingtheory,informationsciences,computersciences,controlengineering, theoreticalphysics,andsoon. NStheoryisalsoappliedtoseveralalgebraicstructures. Inparticular, Junetal. appliedittoBCK/BCI-algebras(see[7–12]). Junetal. [8]introducedthenotionsofenergetic subsets,rightvanishedsubsets,rightstablesubsets,and(anti-)permeablevaluesinBCK/BCI-algebras andinvestigatedrelationsbetweenthesesets. In this paper, we introduce the notions of neutrosophic permeable S-values, neutrosophic permeable I-values, (∈, ∈)-neutrosophic ideals, neutrosophic anti-permeable S-values, and neutrosophic anti-permeable I-values, which are motivated by the idea of subalgebras Mathematics2018,6,74;doi:10.3390/math6050074 www.mdpi.com/journal/mathematics Mathematics2018,6,74 2of16 (i.e.,S-values)andideals(i.e.,I-values),andinvestigatetheirproperties. Weconsidercharacterizations of(∈,∈)-neutrosophicideals. Wediscussconditionsforthelower(upper)neutrosophic∈Φ-subsetsto be S-and I-energetic. Weprovideconditionsforatriple (α,β,γ) ofnumberstobeaneutrosophic (anti-)permeableS-orI-value.Weconsiderconditionsfortheupper(lower)neutrosophic∈Φ-subsetsto berightstable(rightvanished)subsets. Weestablishrelationsbetweenneutrosophic(anti-)permeable S-and I-values. 2. Preliminaries Analgebra(X;∗,0)oftype(2,0)iscalledaBCI-algebraifitsatisfiesthefollowingconditions: (I) (∀x,y,z ∈ X)(((x∗y)∗(x∗z))∗(z∗y) =0); (II) (∀x,y ∈ X)((x∗(x∗y))∗y =0); (III) (∀x ∈ X)(x∗x =0); (IV) (∀x,y ∈ X)(x∗y =0,y∗x =0 ⇒ x = y). IfaBCI-algebraXsatisfiesthefollowingidentity: (V) (∀x ∈ X)(0∗x =0), thenXiscalledaBCK-algebra. AnyBCK/BCI-algebraXsatisfiesthefollowingconditions: (∀x ∈ X)(x∗0= x), (1) (∀x,y,z ∈ X)(x ≤ y ⇒ x∗z ≤ y∗z, z∗y ≤ z∗x), (2) (∀x,y,z ∈ X)((x∗y)∗z = (x∗z)∗y), (3) (∀x,y,z ∈ X)((x∗z)∗(y∗z) ≤ x∗y), (4) where x ≤ y if and only if x∗y = 0. A nonempty subset S of a BCK/BCI-algebra X is called a subalgebraofXifx∗y ∈ Sforallx,y ∈ S.Asubset I ofaBCK/BCI-algebraXiscalledanidealofXif itsatisfiesthefollowing: 0∈ I, (5) (∀x,y ∈ X)(x∗y ∈ I, y ∈ I → x ∈ I). (6) We refer the reader to the books [13] and [14] for further information regarding BCK/BCI-algebras. Foranyfamily{a |i ∈ Λ}ofrealnumbers,wedefine i (cid:95){a |i ∈ Λ} =sup{a |i ∈ Λ} i i and (cid:94){a |i ∈ Λ} =inf{a |i ∈ Λ}. i i IfΛ = {1,2},wealsousea ∨a anda ∧a insteadof(cid:87){a |i ∈ {1,2}}and(cid:86){a |i ∈ {1,2}}, 1 2 1 2 i i respectively. WeletXbeanonemptyset. ANSinX(see[1])isastructureoftheform A := {(cid:104)x;A (x),A (x),A (x)(cid:105) | x ∈ X}, T I F where A : X → [0,1]isatruthmembershipfunction, A : X → [0,1]isanindeterminatemembership T I function,and A : X → [0,1]isafalsemembershipfunction. Forthesakeofsimplicity,weusethe F symbol A = (A , A , A )fortheNS T I F A := {(cid:104)x;A (x),A (x),A (x)(cid:105) | x ∈ X}. T I F Mathematics2018,6,74 3of16 Asubset AofaBCK/BCI-algebraXissaidtobeS-energetic(see[8])ifitsatisfies (∀x,y ∈ X)(x∗y ∈ A ⇒ {x,y}∩A (cid:54)= ∅). (7) Asubset AofaBCK/BCI-algebraXissaidtobe I-energetic(see[8])ifitsatisfies (∀x,y ∈ X)(y ∈ A ⇒ {x,y∗x}∩A (cid:54)= ∅). (8) Asubset AofaBCK/BCI-algebraXissaidtoberightvanished(see[8])ifitsatisfies (∀x,y ∈ X)(x∗y ∈ A ⇒ x ∈ A). (9) A subset A of a BCK/BCI-algebra X is said to be right stable (see [8]) if A∗X := {a∗x | a ∈ A, x ∈ X} ⊆ A. 3. NeutrosophicPermeableValues GivenaNSA = (A ,A ,A )inasetX,α,β ∈ (0,1]andγ ∈ [0,1),weconsiderthefollowingsets: T I F U∈(A;α) = {x ∈ X | A (x) ≥ α}, U∈(A;α)∗ = {x ∈ X | A (x) > α}, T T T T U∈(A;β) = {x ∈ X | A (x) ≥ β}, U∈(A;β)∗ = {x ∈ X | A (x) > β}, I I I I U∈(A;γ) = {x ∈ X | A (x) ≤ γ}, U∈(A;γ)∗ = {x ∈ X | A (x) < γ}, F F F F L∈(A;α) = {x ∈ X | A (x) ≤ α}, L∈(A;α)∗ = {x ∈ X | A (x) < α}, T T T T L∈(A;β) = {x ∈ X | A (x) ≤ β}, L∈(A;β)∗ = {x ∈ X | A (x) < β}, I I I I L∈(A;γ) = {x ∈ X | A (x) ≥ γ}, L∈(A;γ)∗ = {x ∈ X | A (x) > γ}. F F F F WesayU∈(A;α),U∈(A;β),andU∈(A;γ)areupperneutrosophic∈Φ-subsetsofX,and L∈(A;α), T I F T L∈(A;β),andL∈(A;γ)arelowerneutrosophic∈Φ-subsetsofX,whereΦ ∈ {T,I,F}. WesayU∈(A;α)∗, I F T U∈(A;β)∗, and U∈(A;γ)∗ are strong upper neutrosophic ∈Φ-subsets of X, and L∈(A;α)∗, L∈(A;β)∗, I F T I and L∈(A;γ)∗ arestronglowerneutrosophic∈Φ-subsetsofX,whereΦ ∈ {T,I,F}. F Definition 1 ([7]). A NS A = (A , A , A ) in a BCK/BCI-algebra X is called an (∈, ∈)- T I F neutrosophicsubalgebraofXifthefollowingassertionsarevalid: x ∈U∈(A;α ), y ∈U∈(A;α ) ⇒ x∗y ∈U∈(A;α ∧α ), T x T y T x y x ∈U∈(A;β ), y ∈U∈(A;β ) ⇒ x∗y ∈U∈(A;β ∧β ), (10) I x I y I x y x ∈U∈(A;γ ), y ∈U∈(A;γ ) ⇒ x∗y ∈U∈(A;γ ∨γ ), F x F y F x y forallx,y ∈ X,α ,α ,β ,β ∈ (0,1]andγ ,γ ∈ [0,1). x y x y x y Lemma1([7]). ANS A = (A , A , A )inaBCK/BCI-algebraXisan(∈,∈)-neutrosophicsubalgebraof T I F Xifandonlyif A = (A , A , A )satisfies T I F A (x∗y) ≥ A (x)∧A (y) T T T (∀x,y ∈ X) A (x∗y) ≥ A (x)∧A (y) . (11) I I I A (x∗y) ≤ A (x)∨A (y) F F F Proposition1. Every(∈,∈)-neutrosophicsubalgebra A = (A , A , A )ofaBCK/BCI-algebraXsatisfies T I F (∀x ∈ X)(A (0) ≥ A (x), A (0) ≥ A (x), A (0) ≤ A (x)). (12) T T I I F F Mathematics2018,6,74 4of16 Proof. Straightforward. Theorem1. If A = (A , A , A )isan(∈,∈)-neutrosophicsubalgebraofaBCK/BCI-algebraX,thenthe T I F lowerneutrosophic∈Φ-subsetsofXareS-energeticsubsetsofX,whereΦ ∈ {T,I,F}. Proof. Letx,y ∈ Xandα ∈ (0,1]besuchthatx∗y ∈ L∈(A;α). Then T α ≥ A (x∗y) ≥ A (x)∧A (y), T T T andthus A (x) ≤ αor A (y) ≤ α;thatis,x ∈ L∈(A;α)ory ∈ L∈(A;α). Thus{x,y}∩L∈(A;α) (cid:54)= ∅. T T T T T ThereforeL∈(A;α)isanS-energeticsubsetofX.Similarly,wecanverifythatL∈(A;β)isanS-energetic T I subsetofX. Weletx,y ∈ Xandγ ∈ [0,1)besuchthatx∗y ∈ L∈(A;γ). Then F γ ≤ A (x∗y) ≤ A (x)∨A (y). F F F Itfollowsthat A (x) ≥ γor A (y) ≥ γ;thatis, x ∈ L∈(A;γ)ory ∈ L∈(A;γ). Hence{x,y}∩ F F F F L∈(A;γ) (cid:54)= ∅,andthereforeL∈(A;γ)isanS-energeticsubsetofX. F F Corollary1. If A = (A , A , A )isan(∈,∈)-neutrosophicsubalgebraofaBCK/BCI-algebraX,thenthe T I F stronglowerneutrosophic∈Φ-subsetsofXareS-energeticsubsetsofX,whereΦ ∈ {T,I,F}. Proof. Straightforward. TheconverseofTheorem1isnottrue,asseeninthefollowingexample. Example1. ConsideraBCK-algebraX = {0,1,2,3,4}withthebinaryoperation∗thatisgiveninTable1 (see[14]). Table1.Cayleytableforthebinaryoperation“∗”. * 0 1 2 3 4 0 0 0 0 0 0 1 1 0 0 0 0 2 2 1 0 0 1 3 3 2 1 0 2 4 4 1 1 1 0 Let A = (A , A , A )beaNSinXthatisgiveninTable2. T I F Table2.TabulationrepresentationofA=(A ,A ,A ). T I F X A (x) A (x) A (x) T I F 0 0.6 0.8 0.2 1 0.4 0.5 0.7 2 0.4 0.5 0.6 3 0.4 0.5 0.5 4 0.7 0.8 0.2 If α ∈ [0.4,0.6), β ∈ [0.5,0.8), and γ ∈ (0.2,0.5], then L∈(A;α) = {1,2,3}, L∈(A;β) = {1,2,3}, T I and L∈(A;γ) = {1,2,3}areS-energeticsubsetsofX. Because F A (4∗4) = A (0) =0.6(cid:3)0.7= A (4)∧A (4) T T T T Mathematics2018,6,74 5of16 and/or A (3∗2) = A (1) =0.7(cid:2)0.6= A (3)∨A (2), F F F F itfollowsfromLemma1that A = (A , A , A )isnotan(∈,∈)-neutrosophicsubalgebraofX. T I F Definition 2. Let A = (A , A , A ) be aNS ina BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F where Λ , Λ , and Λ are subsets of [0,1]. Then (α,β,γ) is called a neutrosophic permeable S-value for T I F A = (A , A , A )ifthefollowingassertionisvalid: T I F x∗y ∈U∈(A;α) ⇒ A (x)∨A (y) ≥ α, T T T (∀x,y ∈ X) x∗y ∈U∈(A;β) ⇒ A (x)∨A (y) ≥ β, (13) I I I x∗y ∈U∈(A;γ) ⇒ A (x)∧A (y) ≤ γ F F F Example2. LetX = {0,1,2,3,4}beasetwiththebinaryoperation∗thatisgiveninTable3. Table3.Cayleytableforthebinaryoperation“∗”. * 0 1 2 3 4 0 0 0 0 0 0 1 1 0 1 1 0 2 2 2 0 2 0 3 3 3 3 0 3 4 4 4 4 4 0 Then(X,∗,0)isaBCK-algebra(see[14]).LetA=(A ,A ,A )beaNSinXthatisgiveninTable4. T I F Table4.TabulationrepresentationofA=(A ,A ,A ). T I F X A (x) A (x) A (x) T I F 0 0.2 0.3 0.7 1 0.6 0.4 0.6 2 0.5 0.3 0.4 3 0.4 0.8 0.5 4 0.7 0.6 0.2 Itisroutinetoverifythat(α,β,γ) ∈ (0,2,1]×(0.3,1]×[0,0.7)isaneutrosophicpermeableS-valuefor A = (A , A , A ). T I F Theorem 2. Let A = (A , A , A ) be a NS in a BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F whereΛ ,Λ ,andΛ aresubsetsof[0,1]. If A = (A , A , A )satisfiesthefollowingcondition: T I F T I F A (x∗y) ≤ A (x)∨A (y) T T T (∀x,y ∈ X) A (x∗y) ≤ A (x)∨A (y) , (14) I I I A (x∗y) ≥ A (x)∧A (y) F F F then(α,β,γ)isaneutrosophicpermeableS-valuefor A = (A , A , A ). T I F Proof. Letx,y ∈ Xbesuchthatx∗y ∈U∈(A;α). Then T α ≤ A (x∗y) ≤ A (x)∨A (y). T T T Mathematics2018,6,74 6of16 Similarly,ifx∗y ∈U∈(A;β)forx,y ∈ X,then A (x)∨A (y) ≥ β. Now,leta,b ∈ Xbesuchthat I I I a∗b ∈U∈(A;γ). Then F γ ≥ A (a∗b) ≥ A (a)∧A (b). F F F Therefore(α,β,γ)isaneutrosophicpermeableS-valuefor A = (A , A , A ). T I F Theorem3. Let A = (A , A , A )beaNSinaBCK-algebraXand(α,β,γ) ∈ Λ ×Λ ×Λ ,whereΛ , T I F T I F T Λ ,andΛ aresubsetsof[0,1]. If A = (A , A , A )satisfiesthefollowingconditions: I F T I F (∀x ∈ X)(A (0) ≤ A (x),A (0) ≤ A (x),A (0) ≥ A (x)) (15) T T I I F F and A (x) ≤ A (x∗y)∨A (y) T T T (∀x,y ∈ X) A (x) ≤ A (x∗y)∨A (y) , (16) I I I A (x) ≥ A (x∗y)∧A (y) F F F then(α,β,γ)isaneutrosophicpermeableS-valuefor A = (A , A , A ). T I F Proof. Letx,y,a,b,u,v∈ Xbesuchthatx∗y∈U∈(A;α),a∗b∈U∈(A;β),andu∗v∈U∈(A;γ).Then T I F α ≤ A (x∗y) ≤ A ((x∗y)∗x)∨A (x) T T T = A ((x∗x)∗y)∨A (x) = A (0∗y)∨A (x) T T T T = A (0)∨A (x) = A (x), T T T β ≤ A (a∗b) ≤ A ((a∗b)∗a)∨A (a) I I I = A ((a∗a)∗b)∨A (a) = A (0∗b)∨A (a) I I I I = A (0)∨A (a) = A (a), I I I and γ ≥ A (u∗v) ≥ A ((u∗v)∗u)∧A (u) F F F = A ((u∗u)∗v)∧A (u) = A (0∗v)∧A (v) F F F F = A (0)∧A (v) = A (v) F F F byEquations(3),(V),(15),and(16). Itfollowsthat A (x)∨A (y) ≥ A (x) ≥ α, T T T A (a)∨A (b) ≥ A (a) ≥ β, I I I A (u)∧A (v) ≤ A (u) ≤ γ. F F F Therefore(α,β,γ)isaneutrosophicpermeableS-valuefor A = (A , A , A ). T I F Theorem 4. Let A = (A , A , A ) be a NS in a BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F whereΛ ,Λ ,andΛ aresubsetsof[0,1]. If(α,β,γ)isaneutrosophicpermeableS-valuefor A = (A , A , T I F T I AF),thenupperneutrosophic∈Φ-subsetsofXareS-energeticwhereΦ ∈ {T,I,F}. Mathematics2018,6,74 7of16 Proof. Let x,y,a,b,u,v ∈ X besuchthat x∗y ∈ U∈(A;α), a∗b ∈ U∈(A;β), and u∗v ∈ U∈(A;γ). T I F Using Equation (13), we have A (x)∨ A (y) ≥ α, A (a)∨ A (b) ≥ β, and A (u)∧ A (v) ≤ γ. T T I I F F Itfollowsthat A (x) ≥ αor A (y) ≥ α,thatis,x ∈U∈(A;α)ory ∈U∈(A;α); T T T T A (a) ≥ βor A (b) ≥ β,thatis,a ∈U∈(A;β)orb ∈U∈(A;β); I I I I and A (u) ≤ γor A (v) ≤ γ,thatis,u ∈U∈(A;γ)orv ∈U∈(A;γ). F F F F Hence {x,y} ∩ U∈(A;α) (cid:54)= ∅, {a,b} ∩ U∈(A;β) (cid:54)= ∅, and {u,v} ∩ U∈(A;γ) (cid:54)= ∅. T I F Therefore U∈(A;α),U∈(A;β),andU∈(A;γ)areS-energeticsubsetsofX. T I F Definition 3. Let A = (A , A , A ) be aNS ina BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F whereΛ ,Λ ,andΛ aresubsetsof[0,1]. Then(α,β,γ)iscalledaneutrosophicanti-permeableS-valuefor T I F A = (A , A , A )ifthefollowingassertionisvalid: T I F x∗y ∈ L∈(A;α) ⇒ A (x)∧A (y) ≤ α, T T T (∀x,y ∈ X) x∗y ∈ L∈(A;β) ⇒ A (x)∧A (y) ≤ β, . (17) I I I x∗y ∈ L∈(A;γ) ⇒ A (x)∨A (y) ≥ γ F F F Example3. LetX = {0,1,2,3,4}beasetwiththebinaryoperation∗thatisgiveninTable5. Table5.Cayleytableforthebinaryoperation“∗”. * 0 1 2 3 4 0 0 0 0 0 0 1 1 0 0 1 0 2 2 1 0 2 0 3 3 3 3 0 3 4 4 4 4 4 0 Then(X,∗,0)isaBCK-algebra(see[14]).LetA=(A ,A ,A )beaNSinXthatisgiveninTable6. T I F Table6.TabulationrepresentationofA=(A ,A ,A ). T I F X A (x) A (x) A (x) T I F 0 0.7 0.6 0.4 1 0.4 0.5 0.6 2 0.4 0.5 0.6 3 0.5 0.2 0.7 4 0.3 0.3 0.9 Itisroutinetoverifythat(α,β,γ) ∈ (0.3,1]×(0.2,1]×[0,0.9)isaneutrosophicanti-permeableS-value for A = (A , A , A ). T I F Theorem 5. Let A = (A , A , A ) be a NS in a BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F whereΛ ,Λ ,andΛ aresubsetsof[0,1]. If A = (A , A , A )isan(∈,∈)-neutrosophicsubalgebraofX, T I F T I F then(α,β,γ)isaneutrosophicanti-permeableS-valuefor A = (A , A , A ). T I F Mathematics2018,6,74 8of16 Proof. Let x,y,a,b,u,v ∈ X be such that x∗y ∈ L∈(A;α), a∗b ∈ L∈(A;β), and u∗v ∈ L∈(A;γ). T I F UsingLemma1,wehave A (x)∧A (y) ≤ A (x∗y) ≤ α, T T T A (a)∧A (b) ≤ A (a∗b) ≤ β, I I I A (u)∨A (v) ≥ A (u∗v) ≥ γ, F F F andthus(α,β,γ)isaneutrosophicanti-permeableS-valuefor A = (A , A , A ). T I F Theorem 6. Let A = (A , A , A ) be a NS in a BCK/BCI-algebra X and (α,β,γ) ∈ Λ ×Λ ×Λ , T I F T I F whereΛ ,Λ ,andΛ aresubsetsof[0,1]. If(α,β,γ)isaneutrosophicanti-permeableS-valuefor A = (A , T I F T AI, AF),thenlowerneutrosophic∈Φ-subsetsofXareS-energeticwhereΦ ∈ {T,I,F}. Proof. Let x,y,a,b,u,v ∈ X be such that x∗y ∈ L∈(A;α), a∗b ∈ L∈(A;β), and u∗v ∈ L∈(A;γ). T I F Using Equation (17), we have A (x)∧ A (y) ≤ α, A (a)∧ A (b) ≤ β, and A (u)∨ A (v) ≥ γ, T T I I F F whichimplythat A (x) ≤ αor A (y) ≤ α,thatis,x ∈ L∈(A;α)ory ∈ L∈(A;α); T T T T A (a) ≤ βor A (b) ≤ β,thatis,a ∈ L∈(A;β)orb ∈ L∈(A;β); I I I I and A (u) ≥ γor A (v) ≥ γ,thatis,u ∈ L∈(A;γ)orv ∈ L∈(A;γ). F F F F Hence {x,y} ∩ L∈(A;α) (cid:54)= ∅, {a,b} ∩ L∈(A;β) (cid:54)= ∅, and {u,v} ∩ L∈(A;γ) (cid:54)= ∅. T I F Therefore L∈(A;α),L∈(A;β),andL∈(A;γ)areS-energeticsubsetsofX. T I F Definition4. ANS A = (A , A , A )inaBCK/BCI-algebraXiscalledan (∈,∈)-neutrosophicidealof T I F Xifthefollowingassertionsarevalid: x ∈U∈(A;α) ⇒ 0∈U∈(A;α) T T (∀x ∈ X) x ∈U∈(A;β) ⇒ 0∈U∈(A;β) , (18) I I x ∈U∈(A;γ) ⇒ 0∈U∈(A;γ) F F x∗y ∈U∈(A;α ), y ∈U∈(A;α ) ⇒ x ∈U∈(A;α ∧α ) T x T y T x y (∀x,y ∈ X) x∗y ∈U∈(A;β ), y ∈U∈(A;β ) ⇒ x ∈U∈(A;β ∧β ) , (19) I x I y I x y x∗y ∈U∈(A;γ ), y ∈U∈(A;γ ) ⇒ x ∈U∈(A;γ ∨γ ) F x F y F x y forallα,β,α ,α ,β ,β ∈ (0,1]andγ,γ ,γ ∈ [0,1). x y x y x y Theorem7. ANS A = (A , A , A )inaBCK/BCI-algebraXisan(∈,∈)-neutrosophicidealofXifand T I F onlyif A = (A , A , A )satisfies T I F A (0) ≥ A (x) ≥ A (x∗y)∧A (y) T T T T (∀x,y ∈ X) A (0) ≥ A (x) ≥ A (x∗y)∧A (y) . (20) I I I I A (0) ≤ A (x) ≤ A (x∗y)∨A (y) F F F F Proof. Assume that Equation (20) is valid, and let x ∈ U∈(A;α), a ∈ U∈(A;β), and u ∈ U∈(A;γ) T I F for any x,a,u ∈ X, α,β ∈ (0,1] and γ ∈ [0,1). Then A (0) ≥ A (x) ≥ α, A (0) ≥ A (a) ≥ β, T T I I and A (0) ≤ A (u) ≤ γ. Hence 0 ∈ U∈(A;α), 0 ∈ U∈(A;β), and 0 ∈ U∈(A;γ), and thus F F T I F Equation (18) is valid. Let x,y,a,b,u,v ∈ X be such that x∗y ∈ U∈(A;α ), y ∈ U∈(A;α ), T x T y a∗b ∈ U∈(A;β ),b ∈ U∈(A;β ),u∗v ∈ U∈(A;γ ),andv ∈ U∈(A;γ )forallα ,α ,β ,β ∈ (0,1] I a I b F u F v x y a b Mathematics2018,6,74 9of16 andγ ,γ ∈ [0,1). Then A (x∗y) ≥ α , A (y) ≥ α , A (a∗b) ≥ β , A (b) ≥ β , A (u∗v) ≤ γ , u v T x T y I a I b F u and A (v) ≤ γ . ItfollowsfromEquation(20)that F v A (x) ≥ A (x∗y)∧A (y) ≥ α ∧α , T T T x y A (a) ≥ A (a∗b)∧A (b) ≥ β ∧β , I I I a b A (u) ≤ A (u∗v)∨A (v) ≤ γ ∨γ . F F F u v Hencex ∈U∈(A;α ∧α ),a ∈U∈(A;β ∧β ),andu ∈U∈(A;γ ∨γ ). Therefore A = (A , A , T x y I a b F u v T I A )isan(∈,∈)-neutrosophicidealofX. F Conversely,let A = (A , A , A ) bean (∈, ∈)-neutrosophicidealof X. Ifthereexists x ∈ X T I F 0 such that A (0) < A (x ), then x ∈ U∈(A;α) and 0 ∈/ U∈(A;α), where α = A (x ). This is a T T 0 0 T T T 0 contradiction,andthusA (0) ≥ A (x)forallx ∈ X. AssumethatA (x ) < A (x ∗y )∧A (y )for T T T 0 T 0 0 T 0 somex ,y ∈ X. Takingα := A (x ∗y )∧A (y )impliesthatx ∗y ∈U∈(A;α)andy ∈U∈(A;α); 0 0 T 0 0 T 0 0 0 T 0 T but x ∈/ U∈(A;α). This is a contradiction, and thus A (x) ≥ A (x∗y)∧A (y) for all x,y ∈ X. 0 T T T T Similarly, we can verify that A (0) ≥ A (x) ≥ A (x∗y)∧A (y) for all x,y ∈ X. Now, suppose I I I I that A (0) > A (a) for some a ∈ X. Then a ∈ U∈(A;γ) and 0 ∈/ U∈(A;γ) by taking γ = A (a). F F F F F This is impossible, and thus A (0) ≤ A (x) for all x ∈ X. Suppose there exist a ,b ∈ X such F F 0 0 that A (a ) > A (a ∗b )∨A (b ), and take γ := A (a ∗b )∨A (b ). Then a ∗b ∈ U∈(A;γ), F 0 F 0 0 F 0 F 0 0 F 0 0 0 F b ∈U∈(A;γ),anda ∈/ U∈(A;γ),whichisacontradiction. Thus A (x) ≤ A (x∗y)∨A (y)forall 0 F 0 F F F F x,y ∈ X. Therefore A = (A , A , A )satisfiesEquation(20). T I F Lemma2. Every(∈,∈)-neutrosophicideal A = (A , A , A )ofaBCK/BCI-algebraXsatisfies T I F (∀x,y ∈ X)(x ≤ y ⇒ A (x) ≥ A (y), A (x) ≥ A (y), A (x) ≤ A (y)). (21) T T I I F F Proof. Letx,y ∈ Xbesuchthatx ≤ y. Thenx∗y =0,andthus A (x) ≥ A (x∗y)∧A (y) = A (0)∧A (y) = A (y), T T T T T T A (x) ≥ A (x∗y)∧A (y) = A (0)∧A (y) = A (y), I I I I I I A (x) ≤ A (x∗y)∨A (y) = A (0)∨A (y) = A (y), F F F F F F byEquation(20). Thiscompletestheproof. Theorem8. ANS A = (A , A , A )inaBCK-algebraXisan(∈,∈)-neutrosophicidealofXifandonlyif T I F A = (A , A , A )satisfies T I F A (x) ≥ A (y)∧A (z) T T T (∀x,y,z ∈ X) x∗y ≤ z ⇒ A (x) ≥ A (y)∧A (z) (22) I I I A (x) ≤ A (y)∨A (z) F F F Proof. Let A = (A , A , A ) bean (∈, ∈)-neutrosophicidealof X,andlet x,y,z ∈ X besuchthat T I F x∗y ≤ z. UsingTheorem7andLemma2,wehave A (x) ≥ A (x∗y)∧A (y) ≥ A (y)∧A (z), T T T T T A (x) ≥ A (x∗y)∧A (y) ≥ A (y)∧A (z), I I I I I A (x) ≤ A (x∗y)∨A (y) ≤ A (y)∨A (z). F F F F F Mathematics2018,6,74 10of16 Conversely,assumethat A = (A , A , A )satisfiesEquation(22). Because0∗x ≤ xforallx ∈ X, T I F itfollowsfromEquation(22)that A (0) ≥ A (x)∧A (x) = A (x), T T T T A (0) ≥ A (x)∧A (x) = A (x), I I I I A (0) ≤ A (x)∨A (x) = A (x), F F F F forallx ∈ X. Becausex∗(x∗y) ≤ yforallx,y ∈ X,wehave A (x) ≥ A (x∗y)∧A (y), T T T A (x) ≥ A (x∗y)∧A (y), I I I A (x) ≤ A (x∗y)∨A (y), F F F for all x,y ∈ X by Equation (22). It follows from Theorem 7 that A = (A , A , A ) is an T I F (∈,∈)-neutrosophicidealofX. Theorem9. If A = (A , A , A )isan(∈,∈)-neutrosophicidealofaBCK/BCI-algebraX,thenthelower T I F neutrosophic∈Φ-subsetsofXare I-energeticsubsetsofXwhereΦ ∈ {T,I,F}. Proof. Let x,a,u ∈ X, α,β ∈ (0,1], and γ ∈ [0,1) be such that x ∈ L∈(A;α), a ∈ L∈(A;β), T I andu ∈ L∈(A;γ). UsingTheorem7,wehave F α ≥ A (x) ≥ A (x∗y)∧A (y), T T T β ≥ A (a) ≥ A (a∗b)∧A (b), I I I γ ≤ A (u) ≤ A (u∗v)∨A (v), F F F forally,b,v ∈ X. Itfollowsthat A (x∗y) ≤ αor A (y) ≤ α,thatis,x∗y ∈ L∈(A;α)ory ∈ L∈(A;α); T T T T A (a∗b) ≤ βor A (b) ≤ β,thatis,a∗b ∈ L∈(A;β)orb ∈ L∈(A;β); I I T T and A (u∗v) ≥ γor A (v) ≥ γ,thatis,u∗v ∈ L∈(A;γ)orv ∈ L∈(A;γ). F F T T Hence {y,x ∗ y} ∩ L∈(A;α), {b,a ∗ b} ∩ L∈(A;β), and {v,u ∗ v} ∩ L∈(A;γ) are nonempty, T I F andthereforeL∈(A;α),L∈(A;β)andL∈(A;γ)are I-energeticsubsetsofX. T I F Corollary2. If A = (A , A , A )isan(∈,∈)-neutrosophicidealofaBCK/BCI-algebraX,thenthestrong T I F lowerneutrosophic∈Φ-subsetsofXare I-energeticsubsetsofXwhereΦ ∈ {T,I,F}. Proof. Straightforward. Theorem10. Let(α,β,γ) ∈ Λ ×Λ ×Λ ,whereΛ ,Λ ,andΛ aresubsetsof[0,1]. If A = (A , A , T I F T I F T I A )isan(∈,∈)-neutrosophicidealofaBCK-algebraX,then F (1) the(strong)upperneutrosophic∈Φ-subsetsofXarerightstablewhereΦ ∈ {T,I,F}; (2) the(strong)lowerneutrosophic∈Φ-subsetsofXarerightvanishedwhereΦ ∈ {T,I,F}. Proof. (1) Let x ∈ X, a ∈ U∈(A;α), b ∈ U∈(A;β), and c ∈ U∈(A;γ). Then A (a) ≥ α, A (b) ≥ β, T I F T I and A (c) ≤ γ. Because a∗x ≤ a, b∗x ≤ b, and c∗x ≤ c, it follows from Lemma 2 that A (a∗ F T x) ≥ A (a) ≥ α, A (b∗x) ≥ A (b) ≥ β, and A (c∗x) ≤ A (c) ≤ γ; that is, a∗x ∈ U∈(A;α), T I I F F T