ebook img

Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism PDF

0.21 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrinoless double beta decay and pseudo-Dirac neutrino mass predictions through inverse seesaw mechanism

Neutrinoless double beta decay and pseudo-Dirac neutrino masspredictions through inverseseesaw mechanism Ram Lal Awasthi,δ M. K. Parida† and Sudhanwa Patra† †Center of Excellence in Theoretical and Mathematical Sciences, Siksha ’O’ Anusandhan University, Bhubaneswar-751030, India. δHarish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India.∗ Intheinverseseesawextensionofthestandardmodel,supersymmetricornon-supersymmetric,whilethelight left-handedneutrinosareMajorana,theheavyright-handedneutrinosarepseudo-Diracfermions.Weshowhow oneoftheselattercategoryofparticlescancontributequitesignificantlytoneutrinolessdoublebetadecay.The 3 neutrinovirtualitymomentum isfound toplay acrucial role inthenon-standard contributionsleading tothe 1 predictionofthepseudo-Diracfermionmassintherangeof 120MeV−500MeV. WhentheDiracneutrino 0 massmatrixintheinverseseesawformulaissimilartotheup-quarkmassmatrix,characteristicofhighscale 2 quark-leptonsymmetricorigin,thepredictedbranchingratiosforleptonflavorviolatingdecaysarealsofound tobeclosertotheaccessiblerangeofongoingexperiments. n a J I. INTRODUCTION: The standard gauge theory of strong, seesawmechanism[17,18],whichrequiresoneRHneutrino 1 weak,andelectromagneticinteractionshasconfrontednumer- as well as an additionalsterile fermionpergeneration, oper- 2 ousexperimentaltestswhilethelastpieceofevidenceonthe atesatTeV scaleandis, therefore,experimentallyverifiable. ] HiggsbosoniscurrentlyunderrigorousscrutinyattheLarge InthisframeworkwhiletheLHlightneutrinosareMajorana h HadronCollider(LHC).Inspiteofthese,neutrinooscillation fermions,theRHneutrinosarepseudo-Diracbynaturehaving p datauncoveringtinymassesofleft-handed(LH)neutrinoscall heaviermasses. - p for physics beyond the standard model (SM) which is most In this letter we show that the inverse seesaw formulaex- e simply achievedvia canonicalseesaw mechanism[1, 2] that plaining the light neutrino masses and mixings permits the h requirestheadditionofoneheavyright-handed(RH)neutrino lightestofthethreepseudo-Diracneutrinosinthemassrange [ pergenerationprovidedbothLHandRHneutrinosareMajo- (120 500)MeVleadingtonewcontributionsto0νββdecay 1 ranafermions[3]. Severalotherformsofseesawmechanism comp−arableto,ormuchmorethan,thoseduetotheexchanges v [5–7]alsorequireMajoranafermions.Quiteinterestingly,on- ofthelightleft-handedneutrinos.Theneutrinovirtualitymo- 4 8 goingexperimentsonneutrinolessdoublebetadecay(0νββ) mentum [19, 20], p 190 MeV, is noted to play a crucial | | ∼ 7 [8] is expectedto resolve the issue between Majorana [3] or rolein suchnew contributions. The originofDirac neutrino 4 Dirac[4]natureoftheneutrino1. Incontrasttothepredicted massmatrixisalsofoundtobeimportantinourestimationsin 1. smallcontributiontothe0νββdecayrateintheSM,therehas predictingleptonflavorviolatingdecaysaccessibletoongoing 0 beenquite significant, orevenmoredominantpredictionsif, experimentalsearches. As our results are also applicable in 3 attheTeVscale,thereisleft-right(LR)gaugetheory[10,11]. the inverseseesaw extensionof the minimalsupersymmetric 1 Even,attemptshavebeenmadetopredictnonstandardcontri- standardmodel(MSSM),theyareconsistentwithgaugecou- : v butions to 0νββ decay rate due to the mediation of pseudo- pling unificationat the MSSM-GUT scale, M 2 1016 U Xi Diracneutrinoswhereeachofthemisconsideredtobeapair GeV. ≃ × ofMajorananeutrinos[11,12]. Whilethepossibilityofleft- r II.THEINVERSESEESAWEXTENSION:Asiscustomaryto a handed neutrinos being pseudo-Dirac has been shown to be theimplementationofinverseseesawmechanism,weaddtwo highly challenging [13], contribution of a fourth generation fermionsingletstoeachgenerationoftheSM,withorwithout heavypseudo-Diracneutrinoto0νββ hasbeenexploredwith supersymmetry. While we call the first type of singlet a RH theconditionthatitsmassshouldbegreaterthanMZ/2[14]. neutrino(NR),thesecondtypeofsingletisnamedasasterile IftheDiracneutrinomassmatrixoccurringinseesawformu- neutrino(S )and,inthe(ν ,Nc,S )basis,the9 9neutrino lashasitsleft-rightsymmetricorquark-leptonsymmetricori- L L R L × massmatrixis[18] gin, descending from Pati-Salam symmetry [15] or SO(10) grand unified theory [16] at high scales, then the canonical 0 M 0 D seesaw scale is toolargeto beexperimentallytestedby high = MT 0 MT , (1) energyacceleratorsincludingLHC.Alternatively,theinverse Mν  D  0 M µ S   where M is the Dirac massterm ofthe neutrino,and M is D theheavyDiracmassmatrixrelatingN andS . Thematri- 1Besides the two distinct possibilities, Dirac or Majorana, very recently R L cesM andM areingeneral3 3complexinflavorspace a new hypothesis has been advanced in which neutrinos could be D × schizophrenic[9]. whereastheµS is3 3complexsymmetricmatrix. × Transformationfromflavortomassbasisanddiagonaliza- 2 tionareachievedthrough where ν = ∗ ν , (2) f m | i V | i M∗−1µ∗(M M−1)† 0 BT − S D . (6) † ∗ = ˆ =Diag m ;M , (3) ≃(cid:18) (MDM−1)† (cid:19)≃(cid:18)X†(cid:19) V MνV Mν { νi ζj} where ν = (ν˜,ζ )T represents the three light and six m i j Hence, in the leadingorderapproximation, can be written | i heavy mass states, and i and j run over the light and heavy V as masseigenstates,respectively. Withµ ,M M,thema- S D ≪ trix canbeblockdiagonalizedtolightandheavysectors ν M 1 1XX† 0 X MD MD T − 20 1 0 Uν 0 , (7) mν ≃ M µS M , V ≃ X† 0 1 1X†X(cid:18) 0 UH(cid:19) (cid:18) (cid:19) (cid:18) (cid:19) − − 2 0 MT   M . (4) H ≃ M µS (cid:18) (cid:19) whereX =(M M−1),andalltheelementsinthefirstblock D where mν has the well known inverse seesaw formula [18] are3 3matrices. and M is the mass matrix for heavy pseudo-Diracpairs of × H comparablemasseswithsplittingoftheorderof µS. TheµS (II. A) µS from neutrino oscillation data: The inverse see- term in the Lagrangianbreaksthe leptonic globalsymmetry, saw formula in eqn. (4) predicts light neutrino mass ma- U(1)L,whichisotherwisepreservedinthestandardmodelin trix in terms of three other matrices, MD, M, and µS. At thelimitµS → 0renderingalltheLHneutrinostobemass- first we take MD ≃ Mℓ, the charged lepton mass matrix, less. Hence the small µ should be a natural parameter in which may arise if the SM originates from high scale left- S thistheoryinthe’tHooftsense[21]. Theaboveblockdiago- right gauge symmetry, SU(2)L SU(2)R U(1)B−L × × × nalizedmatricesarefurtherdiagonalizedthroughthe PMNS SU(3) MR SM,whereM >> M . Assumingthema- C R W matrix, Uν, and a 6 6 unitary matrix UH, respectively, so trix M to−→be diagonal for the sake of simplicity and using × that M =diag m ,m ,m = 0.0005,0.1,1.7 GeV,weob- D e µ τ { } { } tain µ from global fits to the neutrino oscillation data [22] 1 1B∗BT B∗ U 0 S V ≃(cid:18) −−2BT 1− 21BTB∗(cid:19)(cid:18) 0ν UH(cid:19) , (5) giveninTABLEI µ (GeV) = X−1 mˆ T XT−1 (8) S ν N N 6.71 10−7+1.96 10−7i 1.17 10−8 3.22 10−8i 3.71 10−8 2.03 10−8i × × − × − × − × − × = 1.17 10−8 3.22 10−8i 1.53 10−08 2.22 10−10i 7.0 10−9 2.83 10−9i , (9)   − × − × × − × × − × 3.71 10−8 2.03 10−8i 7.0 10−9 2.83 10−9i 5.50 10−9+5.26 10−11i  − × − × × − × − × ×    where N = (1 − η)Uν and η = 21XX† is a mea- Neutrinooscillationparameters Globallyfittedvalues sure of unitarity violation. This particular structure of µS has been derived using, as an example, the nor- ∆m2sol[eV2] 7.58×10−5 mal hierarchical (NH) light neutrino masses mˆdνiag = |∆m2atm|[eV2] 2.35×10−3 diag(0.00127 eV, 0.00885 eV, 0.0495 eV) and non- sin2θ12 0.320 degenerate eigenvalues of M = diag{0.2,2.6,23.7} GeV. sin2θ23 0.427 Similaranalysispredictssomewhatdifferentstructuresofµ S sin2θ13 0.0246 forinvertedhierarchical(IH)andquasi-degenerate(QD)pat- tern of the light neutrinosand can furtherbe easily obtained δCP 0.8π for degenerate M = M = M or, partially-degenerate 1 2 3 M1 = M2 M3 after taking care of the phenomenolog- TABLEI:Masssquareddifferences,mixingangles,andCP-phase ≪ ical bounds η < 2.0 10−3, η < 8.0 10−4, and fromglobalfitstoneutrinooscillationdata[22]. ee µµ | | × | | × η <2.7 10−3.OuransatzwithM =diag(M ,M ,M ) ττ 1 2 3 | | × 3 gives pseudo-Dirac neutrinos have been discussed in Sec-II. The half-lifeof0νββ transitionisthenfoundtobe 1.25 10−7 0.005 1.35 η =diag × , , , −1 (cid:18) M12 M22 M32(cid:19) T10/ν2ββ =K0ν meνe,LL+Mζe,eLL 2 , (13) whereallmassesontherighthandsideareinGeV. (cid:20) (cid:21) (cid:20)(cid:12) (cid:12) (cid:21) III.NEUTRINOLESSDOUBLEBETADECAYPREDICTIONS where 0ν contains phase s(cid:12)pace factors plus(cid:12)nuclear matrix K Two separate contributions due to light and heavy neutrino elementsandmeνe,LL(Mζe,eLL)representstheeffectiveneutrino exchangesto 0νββ transition becometransparentbywriting mass derived from light neutrino (heavy pseudo-Dirac neu- theflavoreigenstatesaslinearcombinationoflightandheavy trino)exchangesinthemassbasis. Theanalyticformsofthe masseigenstates two effective masses have been estimated for this model as showninTABLE.II: ν = ν + ζ , α αi i αj j N U Effectivemass Analyticalexpression where (0,X)U isa3 6matrix.Thentheweakcharge- H U ≃ × currentLagrangiancanbeexpressedas = g Wµℓ¯ γµP ν +h.c. meνe,LL Ne2imνi LCC √2 L α L α g = √2WLµℓ¯αγµPL(Nαiνi+Uαjζj)+h.c., (10) Mζe,eLL (Uej)2 p2M−Mζjζ2j|hpi|2 resultingintwodifferentcategoriesofFeynmanamplitudes: TABLE II: Effective mass parameter for standard (non-standard) ν which arises from the Feynman diagram of • ALL contributionsduetolight(heavypseudo-Dirac)neutrinoexchanges Fig.1(a)duetoonlylightneutrinoexchanges for0νββdecay. m ν =G2 2 νi , (11) ALL F Nei p2 Wediscussbelowthreedifferentcases: (III.A)Thestandardcontribution.Itiswellknownthatthe where p 190 MeV represents neutrino virtuality standardcontributionsduetolightneutrinoexchangesarede- h i ≃ momentum[19,20]. pendenton their allowed mass patterns; normalhierarchical (NH),invertedhierarchical(IH),orquasi-degenerate(QD), ζ which arises from the Feynman diagram of • AFiLg.L1(b)duetoheavypseudo-Diracneutrinos, mν U2 m +U2 e2iαm +U2 e2iβm ee,LL ≃ e1 ν1 e2 2 e3 3 M ζ =G2 ( )2 ζj . (12) 0.004eV NH, ALL F U ej p2 M2 − ζj ⇒|mνee,LL|≃ 0.048eV IH, (14) 0.1eV QD. n p n p In our case, U and light neutrino exchanges in the WL − WL − Nei ≃ ei Nei eL Uej eL massbasisgivesalmostthesamecontributionswhicharepre- sentedbysolidlinesshowninFig. 2,Fig. 3,andFig. 4. νi ζj (III. B) M p: In the inverse seesaw extension under Nei e−L Uej e−L study,inadζdjiti≫on|to|thestandardeffectivemassparameter,the WL WL n p n p additionaleffectivemassparameterfor M p satisfies | ζj| ≫ | | (a) (b) M −1 = ( ±)2 −1 . Thisresultsinnewcontributionto h ζ±i U Mζ± 0νββ transitionhalf-life FIG.1: Feynmandiagramscontributingtoneutrinolessdoublebeta decayduetolightneutrinoexchanges(left-panel)andheavypseudo- −1 2 1 1 Diracneutrinoexchanges(right-panel). T0νββ = p 2 1/2 K0ν |h i| M − M (cid:20) (cid:21) (cid:12) (cid:18)h ζ+i h ζ−i(cid:19)(cid:12) The mass eigenstates of heavy pseudo-Dirac neutrinos (cid:12) 2 (cid:12) are ζ1+,ζ2+,ζ3+;ζ1−,ζ2−,ζ3− with almost degenerate pairs ≃ K0ν(cid:12)(cid:12)|hpi|2 U± 2ek µMSk2k , (cid:12)(cid:12) (15) (ζ+,ζ−; k=1,2,3) but having small mass difference µ (cid:12) kk(cid:12) k (cid:0)k (cid:1) S (cid:12) (cid:0) (cid:1) (cid:12) between the members of the pair and the flavor states where µ and M are(cid:12)the eigenvalues of µ(cid:12) and M, re- Skk kk (cid:12) S(cid:12) are (N ,N ,N ;S ,S ,S ). The mixing matrix for these spectively. One exampleofthiscase hasbeenshownin Fig. 1 2 3 1 2 3 4 10 10 1 1 |e |e e 0.1 e 0.1 M M Std Std | | 150 150 0.01 180 0.01 180 250 250 500 500 0.001 0.001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.2:Predictionsofeffectivemass|Mee|in0νββdecaywithDiracneutrinomassMD =chargedleptonmassMlandthediagonalstructure ofM forNH(IH)patternoflightLHneutrinomassesasshownintheleft(right)panel. Thestandardcontributionisshownbysolidlineand nonstandardcontributionswithpseudo-DiracneutrinoexchangesofdifferentmassesexpressedinMeVareshownbyotherlines. 2forM = 0.5GeVwherethepredictedeffectivemasspa- Inthenexttwoexamplesweadoptplausibleparametrization ζ1 rameterisnearly3/2(4)timeslargerthanthestandardpredic- predicting significantly larger contribution to these branch- tionforNH(IH)case. ingratioswhileretainingthedominantcontributionsto0νββ (III.C)M p: Inthisregionwheredifferentallowedval- transition. ζj ≃| | uesofM areoftheorderofneutrinovirtualitymomentum (IV.A)M M withnon-diagonalM: Wegeneratenon- ζj D ≃ ℓ p 190 MeV, the new contributionto neutrinolessdouble diagonalmatrix M to satisfy the existing phenomenological | | ≃ beta decay due to heavy pseudo-Dirac neutrino exchange is boundsontheelementsofη[23], foundtobemoredominantthanthestandardcontributionand η <2.0 10−3, η <3.5 10−5, the0νββ transitionhalf-lifeisgivenbelow | ee| × | eµ| × η <8.0 10−3, η <8.0 10−4, eτ µµ | | × | | × T0νββ −1= p 2 ± Mζ+ Mζ− 2 |ηµτ|<5.1×10−3, |ηττ|<2.7×10−3. (17) (cid:20) 1/2 (cid:21)pseudo−KD0iνra(cid:12)(cid:12)c|h i| U p2−Mζ2+ − p2−Mζ2−!(cid:12)(cid:12) Usingtheparametrizationofthetypeusedinref.[24],M can (cid:12) 2 (cid:12) beexpressedas ≃ K0ν(cid:12)(cid:12)(cid:12)|hpi|2 U± 2ek p2µ−SkMkk2k(cid:12) . (16(cid:12)(cid:12)) 1 −1 † 1 −1 (cid:12) (cid:0) (cid:1) (cid:12) M OTM M OTM (cid:12) (cid:12) D D The predicted new v(cid:12)alues of the effective mas(cid:12)s parameters " (cid:18)√2η (cid:19) # " (cid:18)√2η (cid:19) # arising solely due to pseudo-Dirac neutrino exchanges have =1 =V†V (18) beenshowninFig. 2intheleft-pannel(right-pannel)forNH 3 (IH)patternsofthelightneutrinomasses,respectively,where whereO isthematrixdiagonalizing η andV isanarbitrary | | Mζ1 = (0.15−0.5)GeV.Itisquiteclearfromtheplotsthat unitarymatrix. Choosing,forthesakeofsimplicity, V = 13 even for Mζ1 = 0.25 GeV or, 0.5 GeV, the new contribu- andwenotethatthatalightestpairwithMζ1 ≃0.16GeV,in tions are 3-6 times larger than the standard ones. While for thevicinityofneutrinovirtualitymomentum,canbeachieved thevalueofMζ1 = 0.18GeV,thecontributionisnearly100 by suitable rescaling, e.g. ηαβ → ηαβ/(1500). After this timeslargershowninFig. 2. Thislargeenhancementoccurs scalingwefind asM approachesthevicinityoftheneutrinovirtualitymo- ζ1 1 mentum, p 190 MeV. We point out that such important M(GeV) = OTM (19) effectsof|ps|eu≃do-Diracneutrinomassesarefoundforthefirst √2η D (cid:18) (cid:19) timeinthiswork. 0.092i 14.08i 383.7i IV.LEPTONFLAVORVIOLATIONWITHDOMINANT0νββ = 0.217 70.36 −80.39 ,   DECAYRATE:Wehaveclearlyshownthatthepredictednon- − − 0.074 8.866 320.5 standardcontributionsto neutrinolessdoublebetadecayrate     are dominant for the lightest allowed pseudo-Dirac neutrino where massM (0.15 0.5)GeV.However,becauseofthediag- ζ1 ≃ − 0.5874i 0.5446 0.5987 onalnatureofM andassumedstructureofM,thebranching D ratios for lepton flavor violating (LFV) decays, µ e+γ, O = 0.4284i 0.8368 0.3409 . → − τ e+γ,andτ µ+γareassmallastheSMpredictions. 0.6866i 0.0562 0.7248 → → − −    5 10 10 1 1 |e |e e 0.1 e 0.1 M M | | Std Std |η|/1000 |η|/1000 0.01 |η|/1500 0.01 |η|/1500 |η|/2000 |η|/2000 |η|/3000 |η|/3000 0.001 0.001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.3:SameasFig.2butnowwithnon-diagonalstructureofM andreducedvaluesofnonunitaritymatricesηasdescribedinthetext. With the allowed mass eigenvalues for the heavy pseudo- eqn.(8). Weobtainforn=4 Dirac neutrinos, M = diag 0.159,72.0,506.4 GeV, the ζ { } M(GeV) predicted branching ratios for lepton flavor violating decays are[25] 5.9 3.45i 0.2 60.72i 5.15 1760i − − − − = 10.44+2.13i 60.9 0.5i 598.0 12.16i ,   − − − − − Br(µ e+γ)=1.56 10−26,  7.08−5.09i 70.86−0.18i 1547−4.15i  Br(τ →e+γ)=5.79×10−27,   (22) → × Br(τ µ+γ)=1.10 10−18. (20) µ (eV) S → × 3.42 0.51i 1.92+5.55i 0.28 1.92i − − − − Althoughallthethreebranchingratiosaremuchsmallerthan = 1.92+5.55i 39.1+5.68i 12.1+0.11i .(23)   their correspondingexperimental upper limits [27], they are − − 0.28 1.92i 12.1+0.11i 4.10 0.68i considerably larger than the SM predictions. However we  − − −    note below that with M similar to M , the up-quarkmass Our predictionson numericalvalues of the effective mass D u matrix, a phenomenonunderlyingthe possible origin of SM parameterfor 0νββ are shownin Fig. 4 forNH, IH andQD from Pati-Salam [15] or SO(10) model, LFV decays have cases. ForNHlightneutrinoswefindthatthepredictedvalue much larger predicted values, accessible to ongoing experi- of M is increasedby a factor3 for η = η /3, corre- ee max | | | | mentalsearches,whilesimilarpredictionsondominant0νββ sponding to lightest pair M = 131 MeV, while the incre- ζ1 decayaremaintained. ment is 10 times for η = η /4 and M = 152 MeV, | |max ζ1 and 30 times for η = η /5 and M = 169 MeV. We (IV. B) MD Mu and GUT connection: In this case | |max ζ1 ≃ find that the enhancement survives as long as lightest pair Dirac neutrino mass matrix is approximated to be up-quark M 120 350MeV.FortheIHlightneutrinomassesthe mass matrix, which originates if the high scale symme- ζ1 ≃ − resultsaresimilarasshownontherightpanelofFig.4. The try is Pati-Salam or SO(10) GUT, SU(2) SU(2) L R × × branching ratios for lepton flavor violating decays predicted SU(4) or SO(10) MR SM. Using running masses C −→ inthisscenariowithMζ =(0.152,39.5,2426)GeVare (m ,m ,m ) = (0.00233,1.275,160) GeV and Cabbibo- u c t Kobayashi-Maskawamixingmatrix,V [28], Br(µ e+γ)=3.6 10−13, CKM → × Br(τ e+γ)=4.2 10−14, → × M (GeV) M =V Mˆ VT Br(τ µ+γ)=3.3 10−12, (24) D ≃ u CKM u CKM → × 0.067 0.004i 0.302 0.022i 0.55 0.53i while the present experimental limits at 90% C.L. on these − − − = 0.302 0.022i 1.48 0.0i 6.534 0.001i .(21) branching ratios are Br(µ e+γ) 1.2 10−11,  − − −  Br(τ e+γ) 3.3 10−8→,andBr(τ ≤ µ+γ)× 4.4 0.55 0.53i 6.534 0.0009i 159.72+0.0i → ≤ × → ≤ ×  − −  10−8 [27]. The projected reach of sensitivity in the future   isBr(τ e+γ), Br(τ µ+γ) 10−9 andspecifically → → ≤ At first using the phenomenologicalbounds from eqn. (17) Br(µ e+γ) 10−19[27]. → ≤ andsaturatingouransatzforη = η /n,n=1,..5,we Thepredictednonstandardcontributionsto0νββtransition αβ max | | searchformatrix M througheqn. (18)whichgivesµ from are shown in the left-panel for NH and in the it right-panel S 6 1 10 1 0.1 0.1 |e |e e 0.01 e M Std M | | 0.01 Std η η 0.001 η/3 η/3 η/4 0.001 η/4 η/5 η/5 0.0001 0.0001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.4: Theeffectivemassparameter, |Mee|,predictionfor0νββ decayduetolight(Solidline)andpseudo-Dirac(dashedlines)neutrino exchangewhereMD ≃Muandη=|ηmax|/n, n=1,3,4,5asdiscussedinthetext. for IH case of Fig. 4. In view of the M -dependent en- tributions to 0νββ decay rates, even far exceeding the stan- ζ1 hancementsof0νββ decayratesdiscussedaboveitistempt- dard contributions. The Dirac neutrino mass possibly origi- ing to search for the possibility of the lightest pseudo-Dirac natingfromhighscalePati-SalamsymmetryorSO(10)grand neutrinomasswhichweperformbythereplacementM2 unification,playsacrucialroleindeterminingdominantcon- ζ1 → M2 +iM Γ , whereΓ correspondstoplausiblevalueof tributionsto 0νββ decay ratessimultaneouslywith LFV de- ζ1 ζ1 1 1 widthoftheparticle. Using,forexample,Γ 0.1keV,our cays with predicted branching ratios accessible to on going 1 predictionsarepresentedbysolidcurveinFig.≃5forNHlight search experiments. The underlying mechanism provides neutrinomasseswheretheresonantbehaviorisclearlyexhib- three distinct platforms for its falsifiability (i) 0νββ decay itedaroundM =190MeV. rates, (ii) determination of light pseudo-Diracneutrino mass ζ1 M 120 500MeV,and(iii)thethreepredictedbranching ζ1 ≃ − ratiosofeqn.(24).Asallourresultsareapplicableinthecase 1 of inverse seesaw extended supersymmetric standard model, Non-Std theyarealsoconsistentwithgaugecouplingunificationatthe 0.1 MSSM-GUTscale,MU 2 1016 GeV.ThePati-Salamor ≃ × L SO(10)completionof themodeldiscussedin Sec. IV.B will V e bereportedelsewhereinfuturepublication[26]. H 0.01 Èe ACKNOWLEDGEMENT:RamLalAwasthiacknowledgesthe e M hospitalityatCenterofExcellenceinTheoreticalandMathe- StdHNHL È0.001 maticalSciences,SOAUniversitywherethepresentworkhas beencompleted. 10-4 170. 180. 190. 200. 210. 220. 230. M HMeVL Ζ 1 ∗ Electronicaddress: [email protected],[email protected],paridamk@soauni FIG. 5: Variation of effective mass |Mee| prediction as a function [1] P.Minkowski,Phys.Lett.B67,421(1977);T.Yanagida,pro- of lightest pseudo-Dirac neutrino mass Mζ1 where µS matrix has ceedings of the Workshop on Unified Theories and Baryon beendeterminedforNHlightneutrinomasses. Theresonancepeak Number in the Universe, Tsukuba, 1979, eds. A. Sawada, A. isatM ≃ 190MeVasshownbythesolidline. Forcomparison, Sugamoto, KEK Report No. 79-18, Tsukuba; S. Glashow, ζ1 the standard contribution with NH masses is shown by the dashed in Quarks and Leptons, Carge`se 1979, eds. M. Le´vy. et horizontalline. al., (Plenum, 1980, New York); M. Gell-Mann, P. Ramond, R.Slansky,proceedingsoftheSupergravityStonyBrookWork- V.DISCUSSIONSANDCONCLUSION:In thisletterwe have shop,NewYork,1979,eds.P.VanNiewenhuizen,D.Freeman shown that in the inverse seesaw framework of the standard (North-Holland, Amsterdam); R. N. Mohapatra and G. Sen- janovic,Phys.Rev.Lett.44,912(1980). model, the lightest of the pseudo-Diracneutrinocould be of [2] J.SchechterandJ.W.F.Valle,Phys.Rev.D 22,2227(1980). (100) MeV in concordance with tiny left handed neutrino O [3] E.Majorana;N.Cim.14(1937)171. masses and the oscillation data. This pseudo-Dirac neutrino [4] P. A.M. Dirac; Proceedings of the Royal Society of London, mass being in the vicinity of the neutrino virtuality momen- 109,752(Dec.1,1925),pp.642-653. tum p 190MeV,givesverysignificantnon-standardcon- [5] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 | | ≃ 7 (1981); R.N.Mohapatra,J.W.F.Valle,Phys.Rev.D34,1642(1986). [6] G.Lazarides,Q.ShafiandC.Wetterich,Nucl.Phys.B181,287 [18] D. Wyler, L. Wolfenstein, Nucl. Phys. B218, 205 (1983); (1981); E.Witten,Nucl.Phys.B268,79(1986). [7] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44, [19] R.N.Mohapatra; Phys.Rev.D 34(1986) 909; M.DoiandT. 441 (1989); B. Bajc, G. Senjanovic´, JHEP 0708, 014 (2007) Kotani,Prog.Theor.Phys.89(1993)139. [hep-ph/0612029]; E. Ma and D. P. Roy, Nucl. Phys. B 644, [20] K. Muto, I. Blender, and H. V. Klapdor-Kleingrothaus, Z. 290 (2002); W. Grimus and L. Lavoura, JHEP 0011, 042 Phys. A 334 (1989) 177; M. Hirsch, K. Muto, T. Oda, and (2000), arXiv: 0008179 [hep-ph]; M. Hirsch, H. V. Klapdor- H. V. Klapdor-Kleingrothaus, Z. Phys. A 347 (1994) 151; Kleingrothaus and O. Panella, Phys. Lett. B 374, 7 (1996), J.J.Gomez-Cadenas, J.Martin-Albo, M. Mezzetto, F.Monra- arXiv:9602306[hep-ph]; bal, and M. Sorel, Riv.Nuovo Cim. 35 (2012) 29-98, e-Print: B.Bajc,M.Nemevsˇek,G.Senjanovic´,Phys.Rev.D76 (2007) arXiv:1109.5515[hep-ex]. 055011[hep-ph/0703080]; [21] G.tHooft,inProceedingsofthe1979CargeseSummerInsti- [8] H.V.Klapdor-Kleingrothaus,A.Dietz,L.Baudis,G.Heusser, tuteonRecentDevelopmentsinGaugeTheories,editedbyG.t I. V. Krivosheina, S. Kolb, B. Majorovits, H. Pas et al., Eur. Hooftetal.(PlenumPress,NewYork,1980). Phys.J.A12(2001)147-154;C.Arnaboldietal.[CUORICINO [22] F. P. An et. al. [DAYA-BAY Collaboration], arXiv:1203.1669 Collaboration],Phys.Rev.C78,035502(2008); C.E.Aalseth [hep-ex];J.K.Ahnet.al.[Soo-BongKimforRENOcollabora- etal.[IGEXCollaboration],Phys.Rev.D65(2002)092007; tion],arXiv:1204.0626v1[hep-ex];G.L.Fogli,E.Lisi,A.Mar- J. Argyriades et al. [NEMO Collaboration], Phys. Rev. C80, rone,A.PalazzoandA.M.Rotunno,Phys.Rev.D84,053007 032501(2009);I.Abt,M.F.Altmann,A.Bakalyarov,I.Bara- (2011),arXiv:1106.6028[hep-ph];D.V.Forero,M.Tortolaand banov,C.Bauer,E.Bellotti,S.T.Belyaev,L.B.Bezrukovetal., J.W.F.Valle,arXiv:1205.4018[hep-ph]. [hep-ex/0404039]; S.Schonert etal.[GERDACollaboration], [23] S.Antusch, J.P.Baumann, andE.Fernandez-Martinez, Nucl. Nucl.Phys.Proc.Suppl.145,242-245(2005);C.Arnaboldiet Phys.B810,369(2009);RamLalAwasthiandMinaK.Parida, al.[CUORECollaboration], Nucl.Instrum.Meth.A518, 775- Phys.Rev.D 86(2012)093004. 798 (2004); H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, [24] J.A.CasasandA.Ibarra,Nucl.Phys.B 618,171(2001). A.Dietz,O.Chkvorets,Phys.Lett.B586,198-212(2004); H. [25] A. Ilakovac, A. Pilaftsis, Nucl. Phys. B437, 491 (1995) V.Klapdor-Kleingrothaus, I.V.Krivosheina,Mod.Phys.Lett. [hep-ph/9403398]; F. Deppisch, J. W. F. Valle, Phys. Rev. A21,1547-1566(2006). D72, 036001 (2005) [hep-ph/0406040]; C. Arina, F. Baz- [9] JamesBarry,RabindraN.MohapatraandWernerRodejohann; zocchi, N. Fornengo, J. C. Romao, J. W. F. Valle, Phys. Phys.Rev.D 83 (2011) 113012; R. Allahverdi, B. Dutta, and Rev. Lett. 101, 161802 (2008) [arXiv:0806.3225 [hep-ph]]; R.N.Mohapatra,Phys.Lett.B695(2011)181-184. M. Malinsky, T. Ohlsson, Z. -z. Xing, H. Zhang, Phys. Lett. [10] V. Tello, M. Nemevsˇek, F. Nesti, G. Senjanovic´, F. Vissani, B679,242-248(2009)[arXiv:0905.2889[hep-ph]];M.Hirsch, Phys. Rev. Lett. 106, 151801 (2011); Joydeep Chakrabortty, T. Kernreiter, J. C. Romao, A. Villanova del Moral, JHEP H.ZeenDevi, SrubabatiGoswamiandSudhanwaPatra,JHEP 1001, 103 (2010) [arXiv:0910.2435 [hep-ph]]; F. Deppisch, 1208(2012)008.arXiv:1204.2527[hep-ph]. T.S.Kosmas, J.W.F.Valle, Nucl.Phys.B752, 80-92 (2006) [11] M.K. Parida and Sudhanwa Patra; Phys. Lett. B 718 (2013) [arXiv:0910.3924[hep-ph]]. 1407. [26] Ram Lal Awasthi, M. K. Parida, and Sudhanwa Patra (under [12] H.Zhang,andS.Zhou,Phys.Lett.B685(2010)297. preparation). [13] J.F.Beacom, N.F.Bell, D.Hooper, J.G.Learned, S.Pakvasa, [27] M. L. Brooks et al. [MEGA Collaboration], Phys. Rev. Lett. andT.J.Weiler,Phys.Rev.Lett.92(2004)011101. 83, 1521 (1999); B. Aubert [The BABAR Collaboration], [14] A.Lenz,H.Pas,andD.Schalla,Phys.Rev.D85(2012)075025. arXiv:0908.2381[hep-ex];Y.Kuno(PRIMEWorkingGroup), [15] J.C.PatiandA.Salam,Phys.Rev.D10(1974)275. Nucl.Phys.B.Proc.Suppl.149,376(2005).Forareviewsee [16] H.Georgi,ParticlesandFields,ProceedingsofAPSDivisionof F.R.Joaquim,A.Rossi,Nucl.Phys.B765,71(2007). ParticlesandFields,edC.Carlson,p 575(1975);H.Fritzsch, [28] C.Amsleretal.,Phys.Lett.B 667,1(2008). P.Minkowski,Ann.Phys.93,193(1975). [17] R. N. Mohapatra, Phys. Rev. Lett. 56, 561-563 (1986);

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.