Neutrinoless double beta decay and pseudo-Dirac neutrino masspredictions through inverseseesaw mechanism Ram Lal Awasthi,δ M. K. Parida† and Sudhanwa Patra† †Center of Excellence in Theoretical and Mathematical Sciences, Siksha ’O’ Anusandhan University, Bhubaneswar-751030, India. δHarish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India.∗ Intheinverseseesawextensionofthestandardmodel,supersymmetricornon-supersymmetric,whilethelight left-handedneutrinosareMajorana,theheavyright-handedneutrinosarepseudo-Diracfermions.Weshowhow oneoftheselattercategoryofparticlescancontributequitesignificantlytoneutrinolessdoublebetadecay.The 3 neutrinovirtualitymomentum isfound toplay acrucial role inthenon-standard contributionsleading tothe 1 predictionofthepseudo-Diracfermionmassintherangeof 120MeV−500MeV. WhentheDiracneutrino 0 massmatrixintheinverseseesawformulaissimilartotheup-quarkmassmatrix,characteristicofhighscale 2 quark-leptonsymmetricorigin,thepredictedbranchingratiosforleptonflavorviolatingdecaysarealsofound tobeclosertotheaccessiblerangeofongoingexperiments. n a J I. INTRODUCTION: The standard gauge theory of strong, seesawmechanism[17,18],whichrequiresoneRHneutrino 1 weak,andelectromagneticinteractionshasconfrontednumer- as well as an additionalsterile fermionpergeneration, oper- 2 ousexperimentaltestswhilethelastpieceofevidenceonthe atesatTeV scaleandis, therefore,experimentallyverifiable. ] HiggsbosoniscurrentlyunderrigorousscrutinyattheLarge InthisframeworkwhiletheLHlightneutrinosareMajorana h HadronCollider(LHC).Inspiteofthese,neutrinooscillation fermions,theRHneutrinosarepseudo-Diracbynaturehaving p datauncoveringtinymassesofleft-handed(LH)neutrinoscall heaviermasses. - p for physics beyond the standard model (SM) which is most In this letter we show that the inverse seesaw formulaex- e simply achievedvia canonicalseesaw mechanism[1, 2] that plaining the light neutrino masses and mixings permits the h requirestheadditionofoneheavyright-handed(RH)neutrino lightestofthethreepseudo-Diracneutrinosinthemassrange [ pergenerationprovidedbothLHandRHneutrinosareMajo- (120 500)MeVleadingtonewcontributionsto0νββdecay 1 ranafermions[3]. Severalotherformsofseesawmechanism comp−arableto,ormuchmorethan,thoseduetotheexchanges v [5–7]alsorequireMajoranafermions.Quiteinterestingly,on- ofthelightleft-handedneutrinos.Theneutrinovirtualitymo- 4 8 goingexperimentsonneutrinolessdoublebetadecay(0νββ) mentum [19, 20], p 190 MeV, is noted to play a crucial | | ∼ 7 [8] is expectedto resolve the issue between Majorana [3] or rolein suchnew contributions. The originofDirac neutrino 4 Dirac[4]natureoftheneutrino1. Incontrasttothepredicted massmatrixisalsofoundtobeimportantinourestimationsin 1. smallcontributiontothe0νββdecayrateintheSM,therehas predictingleptonflavorviolatingdecaysaccessibletoongoing 0 beenquite significant, orevenmoredominantpredictionsif, experimentalsearches. As our results are also applicable in 3 attheTeVscale,thereisleft-right(LR)gaugetheory[10,11]. the inverseseesaw extensionof the minimalsupersymmetric 1 Even,attemptshavebeenmadetopredictnonstandardcontri- standardmodel(MSSM),theyareconsistentwithgaugecou- : v butions to 0νββ decay rate due to the mediation of pseudo- pling unificationat the MSSM-GUT scale, M 2 1016 U Xi Diracneutrinoswhereeachofthemisconsideredtobeapair GeV. ≃ × ofMajorananeutrinos[11,12]. Whilethepossibilityofleft- r II.THEINVERSESEESAWEXTENSION:Asiscustomaryto a handed neutrinos being pseudo-Dirac has been shown to be theimplementationofinverseseesawmechanism,weaddtwo highly challenging [13], contribution of a fourth generation fermionsingletstoeachgenerationoftheSM,withorwithout heavypseudo-Diracneutrinoto0νββ hasbeenexploredwith supersymmetry. While we call the first type of singlet a RH theconditionthatitsmassshouldbegreaterthanMZ/2[14]. neutrino(NR),thesecondtypeofsingletisnamedasasterile IftheDiracneutrinomassmatrixoccurringinseesawformu- neutrino(S )and,inthe(ν ,Nc,S )basis,the9 9neutrino lashasitsleft-rightsymmetricorquark-leptonsymmetricori- L L R L × massmatrixis[18] gin, descending from Pati-Salam symmetry [15] or SO(10) grand unified theory [16] at high scales, then the canonical 0 M 0 D seesaw scale is toolargeto beexperimentallytestedby high = MT 0 MT , (1) energyacceleratorsincludingLHC.Alternatively,theinverse Mν D 0 M µ S where M is the Dirac massterm ofthe neutrino,and M is D theheavyDiracmassmatrixrelatingN andS . Thematri- 1Besides the two distinct possibilities, Dirac or Majorana, very recently R L cesM andM areingeneral3 3complexinflavorspace a new hypothesis has been advanced in which neutrinos could be D × schizophrenic[9]. whereastheµS is3 3complexsymmetricmatrix. × Transformationfromflavortomassbasisanddiagonaliza- 2 tionareachievedthrough where ν = ∗ ν , (2) f m | i V | i M∗−1µ∗(M M−1)† 0 BT − S D . (6) † ∗ = ˆ =Diag m ;M , (3) ≃(cid:18) (MDM−1)† (cid:19)≃(cid:18)X†(cid:19) V MνV Mν { νi ζj} where ν = (ν˜,ζ )T represents the three light and six m i j Hence, in the leadingorderapproximation, can be written | i heavy mass states, and i and j run over the light and heavy V as masseigenstates,respectively. Withµ ,M M,thema- S D ≪ trix canbeblockdiagonalizedtolightandheavysectors ν M 1 1XX† 0 X MD MD T − 20 1 0 Uν 0 , (7) mν ≃ M µS M , V ≃ X† 0 1 1X†X(cid:18) 0 UH(cid:19) (cid:18) (cid:19) (cid:18) (cid:19) − − 2 0 MT M . (4) H ≃ M µS (cid:18) (cid:19) whereX =(M M−1),andalltheelementsinthefirstblock D where mν has the well known inverse seesaw formula [18] are3 3matrices. and M is the mass matrix for heavy pseudo-Diracpairs of × H comparablemasseswithsplittingoftheorderof µS. TheµS (II. A) µS from neutrino oscillation data: The inverse see- term in the Lagrangianbreaksthe leptonic globalsymmetry, saw formula in eqn. (4) predicts light neutrino mass ma- U(1)L,whichisotherwisepreservedinthestandardmodelin trix in terms of three other matrices, MD, M, and µS. At thelimitµS → 0renderingalltheLHneutrinostobemass- first we take MD ≃ Mℓ, the charged lepton mass matrix, less. Hence the small µ should be a natural parameter in which may arise if the SM originates from high scale left- S thistheoryinthe’tHooftsense[21]. Theaboveblockdiago- right gauge symmetry, SU(2)L SU(2)R U(1)B−L × × × nalizedmatricesarefurtherdiagonalizedthroughthe PMNS SU(3) MR SM,whereM >> M . Assumingthema- C R W matrix, Uν, and a 6 6 unitary matrix UH, respectively, so trix M to−→be diagonal for the sake of simplicity and using × that M =diag m ,m ,m = 0.0005,0.1,1.7 GeV,weob- D e µ τ { } { } tain µ from global fits to the neutrino oscillation data [22] 1 1B∗BT B∗ U 0 S V ≃(cid:18) −−2BT 1− 21BTB∗(cid:19)(cid:18) 0ν UH(cid:19) , (5) giveninTABLEI µ (GeV) = X−1 mˆ T XT−1 (8) S ν N N 6.71 10−7+1.96 10−7i 1.17 10−8 3.22 10−8i 3.71 10−8 2.03 10−8i × × − × − × − × − × = 1.17 10−8 3.22 10−8i 1.53 10−08 2.22 10−10i 7.0 10−9 2.83 10−9i , (9) − × − × × − × × − × 3.71 10−8 2.03 10−8i 7.0 10−9 2.83 10−9i 5.50 10−9+5.26 10−11i − × − × × − × − × × where N = (1 − η)Uν and η = 21XX† is a mea- Neutrinooscillationparameters Globallyfittedvalues sure of unitarity violation. This particular structure of µS has been derived using, as an example, the nor- ∆m2sol[eV2] 7.58×10−5 mal hierarchical (NH) light neutrino masses mˆdνiag = |∆m2atm|[eV2] 2.35×10−3 diag(0.00127 eV, 0.00885 eV, 0.0495 eV) and non- sin2θ12 0.320 degenerate eigenvalues of M = diag{0.2,2.6,23.7} GeV. sin2θ23 0.427 Similaranalysispredictssomewhatdifferentstructuresofµ S sin2θ13 0.0246 forinvertedhierarchical(IH)andquasi-degenerate(QD)pat- tern of the light neutrinosand can furtherbe easily obtained δCP 0.8π for degenerate M = M = M or, partially-degenerate 1 2 3 M1 = M2 M3 after taking care of the phenomenolog- TABLEI:Masssquareddifferences,mixingangles,andCP-phase ≪ ical bounds η < 2.0 10−3, η < 8.0 10−4, and fromglobalfitstoneutrinooscillationdata[22]. ee µµ | | × | | × η <2.7 10−3.OuransatzwithM =diag(M ,M ,M ) ττ 1 2 3 | | × 3 gives pseudo-Dirac neutrinos have been discussed in Sec-II. The half-lifeof0νββ transitionisthenfoundtobe 1.25 10−7 0.005 1.35 η =diag × , , , −1 (cid:18) M12 M22 M32(cid:19) T10/ν2ββ =K0ν meνe,LL+Mζe,eLL 2 , (13) whereallmassesontherighthandsideareinGeV. (cid:20) (cid:21) (cid:20)(cid:12) (cid:12) (cid:21) III.NEUTRINOLESSDOUBLEBETADECAYPREDICTIONS where 0ν contains phase s(cid:12)pace factors plus(cid:12)nuclear matrix K Two separate contributions due to light and heavy neutrino elementsandmeνe,LL(Mζe,eLL)representstheeffectiveneutrino exchangesto 0νββ transition becometransparentbywriting mass derived from light neutrino (heavy pseudo-Dirac neu- theflavoreigenstatesaslinearcombinationoflightandheavy trino)exchangesinthemassbasis. Theanalyticformsofthe masseigenstates two effective masses have been estimated for this model as showninTABLE.II: ν = ν + ζ , α αi i αj j N U Effectivemass Analyticalexpression where (0,X)U isa3 6matrix.Thentheweakcharge- H U ≃ × currentLagrangiancanbeexpressedas = g Wµℓ¯ γµP ν +h.c. meνe,LL Ne2imνi LCC √2 L α L α g = √2WLµℓ¯αγµPL(Nαiνi+Uαjζj)+h.c., (10) Mζe,eLL (Uej)2 p2M−Mζjζ2j|hpi|2 resultingintwodifferentcategoriesofFeynmanamplitudes: TABLE II: Effective mass parameter for standard (non-standard) ν which arises from the Feynman diagram of • ALL contributionsduetolight(heavypseudo-Dirac)neutrinoexchanges Fig.1(a)duetoonlylightneutrinoexchanges for0νββdecay. m ν =G2 2 νi , (11) ALL F Nei p2 Wediscussbelowthreedifferentcases: (III.A)Thestandardcontribution.Itiswellknownthatthe where p 190 MeV represents neutrino virtuality standardcontributionsduetolightneutrinoexchangesarede- h i ≃ momentum[19,20]. pendenton their allowed mass patterns; normalhierarchical (NH),invertedhierarchical(IH),orquasi-degenerate(QD), ζ which arises from the Feynman diagram of • AFiLg.L1(b)duetoheavypseudo-Diracneutrinos, mν U2 m +U2 e2iαm +U2 e2iβm ee,LL ≃ e1 ν1 e2 2 e3 3 M ζ =G2 ( )2 ζj . (12) 0.004eV NH, ALL F U ej p2 M2 − ζj ⇒|mνee,LL|≃ 0.048eV IH, (14) 0.1eV QD. n p n p In our case, U and light neutrino exchanges in the WL − WL − Nei ≃ ei Nei eL Uej eL massbasisgivesalmostthesamecontributionswhicharepre- sentedbysolidlinesshowninFig. 2,Fig. 3,andFig. 4. νi ζj (III. B) M p: In the inverse seesaw extension under Nei e−L Uej e−L study,inadζdjiti≫on|to|thestandardeffectivemassparameter,the WL WL n p n p additionaleffectivemassparameterfor M p satisfies | ζj| ≫ | | (a) (b) M −1 = ( ±)2 −1 . Thisresultsinnewcontributionto h ζ±i U Mζ± 0νββ transitionhalf-life FIG.1: Feynmandiagramscontributingtoneutrinolessdoublebeta decayduetolightneutrinoexchanges(left-panel)andheavypseudo- −1 2 1 1 Diracneutrinoexchanges(right-panel). T0νββ = p 2 1/2 K0ν |h i| M − M (cid:20) (cid:21) (cid:12) (cid:18)h ζ+i h ζ−i(cid:19)(cid:12) The mass eigenstates of heavy pseudo-Dirac neutrinos (cid:12) 2 (cid:12) are ζ1+,ζ2+,ζ3+;ζ1−,ζ2−,ζ3− with almost degenerate pairs ≃ K0ν(cid:12)(cid:12)|hpi|2 U± 2ek µMSk2k , (cid:12)(cid:12) (15) (ζ+,ζ−; k=1,2,3) but having small mass difference µ (cid:12) kk(cid:12) k (cid:0)k (cid:1) S (cid:12) (cid:0) (cid:1) (cid:12) between the members of the pair and the flavor states where µ and M are(cid:12)the eigenvalues of µ(cid:12) and M, re- Skk kk (cid:12) S(cid:12) are (N ,N ,N ;S ,S ,S ). The mixing matrix for these spectively. One exampleofthiscase hasbeenshownin Fig. 1 2 3 1 2 3 4 10 10 1 1 |e |e e 0.1 e 0.1 M M Std Std | | 150 150 0.01 180 0.01 180 250 250 500 500 0.001 0.001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.2:Predictionsofeffectivemass|Mee|in0νββdecaywithDiracneutrinomassMD =chargedleptonmassMlandthediagonalstructure ofM forNH(IH)patternoflightLHneutrinomassesasshownintheleft(right)panel. Thestandardcontributionisshownbysolidlineand nonstandardcontributionswithpseudo-DiracneutrinoexchangesofdifferentmassesexpressedinMeVareshownbyotherlines. 2forM = 0.5GeVwherethepredictedeffectivemasspa- Inthenexttwoexamplesweadoptplausibleparametrization ζ1 rameterisnearly3/2(4)timeslargerthanthestandardpredic- predicting significantly larger contribution to these branch- tionforNH(IH)case. ingratioswhileretainingthedominantcontributionsto0νββ (III.C)M p: Inthisregionwheredifferentallowedval- transition. ζj ≃| | uesofM areoftheorderofneutrinovirtualitymomentum (IV.A)M M withnon-diagonalM: Wegeneratenon- ζj D ≃ ℓ p 190 MeV, the new contributionto neutrinolessdouble diagonalmatrix M to satisfy the existing phenomenological | | ≃ beta decay due to heavy pseudo-Dirac neutrino exchange is boundsontheelementsofη[23], foundtobemoredominantthanthestandardcontributionand η <2.0 10−3, η <3.5 10−5, the0νββ transitionhalf-lifeisgivenbelow | ee| × | eµ| × η <8.0 10−3, η <8.0 10−4, eτ µµ | | × | | × T0νββ −1= p 2 ± Mζ+ Mζ− 2 |ηµτ|<5.1×10−3, |ηττ|<2.7×10−3. (17) (cid:20) 1/2 (cid:21)pseudo−KD0iνra(cid:12)(cid:12)c|h i| U p2−Mζ2+ − p2−Mζ2−!(cid:12)(cid:12) Usingtheparametrizationofthetypeusedinref.[24],M can (cid:12) 2 (cid:12) beexpressedas ≃ K0ν(cid:12)(cid:12)(cid:12)|hpi|2 U± 2ek p2µ−SkMkk2k(cid:12) . (16(cid:12)(cid:12)) 1 −1 † 1 −1 (cid:12) (cid:0) (cid:1) (cid:12) M OTM M OTM (cid:12) (cid:12) D D The predicted new v(cid:12)alues of the effective mas(cid:12)s parameters " (cid:18)√2η (cid:19) # " (cid:18)√2η (cid:19) # arising solely due to pseudo-Dirac neutrino exchanges have =1 =V†V (18) beenshowninFig. 2intheleft-pannel(right-pannel)forNH 3 (IH)patternsofthelightneutrinomasses,respectively,where whereO isthematrixdiagonalizing η andV isanarbitrary | | Mζ1 = (0.15−0.5)GeV.Itisquiteclearfromtheplotsthat unitarymatrix. Choosing,forthesakeofsimplicity, V = 13 even for Mζ1 = 0.25 GeV or, 0.5 GeV, the new contribu- andwenotethatthatalightestpairwithMζ1 ≃0.16GeV,in tions are 3-6 times larger than the standard ones. While for thevicinityofneutrinovirtualitymomentum,canbeachieved thevalueofMζ1 = 0.18GeV,thecontributionisnearly100 by suitable rescaling, e.g. ηαβ → ηαβ/(1500). After this timeslargershowninFig. 2. Thislargeenhancementoccurs scalingwefind asM approachesthevicinityoftheneutrinovirtualitymo- ζ1 1 mentum, p 190 MeV. We point out that such important M(GeV) = OTM (19) effectsof|ps|eu≃do-Diracneutrinomassesarefoundforthefirst √2η D (cid:18) (cid:19) timeinthiswork. 0.092i 14.08i 383.7i IV.LEPTONFLAVORVIOLATIONWITHDOMINANT0νββ = 0.217 70.36 −80.39 , DECAYRATE:Wehaveclearlyshownthatthepredictednon- − − 0.074 8.866 320.5 standardcontributionsto neutrinolessdoublebetadecayrate are dominant for the lightest allowed pseudo-Dirac neutrino where massM (0.15 0.5)GeV.However,becauseofthediag- ζ1 ≃ − 0.5874i 0.5446 0.5987 onalnatureofM andassumedstructureofM,thebranching D ratios for lepton flavor violating (LFV) decays, µ e+γ, O = 0.4284i 0.8368 0.3409 . → − τ e+γ,andτ µ+γareassmallastheSMpredictions. 0.6866i 0.0562 0.7248 → → − − 5 10 10 1 1 |e |e e 0.1 e 0.1 M M | | Std Std |η|/1000 |η|/1000 0.01 |η|/1500 0.01 |η|/1500 |η|/2000 |η|/2000 |η|/3000 |η|/3000 0.001 0.001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.3:SameasFig.2butnowwithnon-diagonalstructureofM andreducedvaluesofnonunitaritymatricesηasdescribedinthetext. With the allowed mass eigenvalues for the heavy pseudo- eqn.(8). Weobtainforn=4 Dirac neutrinos, M = diag 0.159,72.0,506.4 GeV, the ζ { } M(GeV) predicted branching ratios for lepton flavor violating decays are[25] 5.9 3.45i 0.2 60.72i 5.15 1760i − − − − = 10.44+2.13i 60.9 0.5i 598.0 12.16i , − − − − − Br(µ e+γ)=1.56 10−26, 7.08−5.09i 70.86−0.18i 1547−4.15i Br(τ →e+γ)=5.79×10−27, (22) → × Br(τ µ+γ)=1.10 10−18. (20) µ (eV) S → × 3.42 0.51i 1.92+5.55i 0.28 1.92i − − − − Althoughallthethreebranchingratiosaremuchsmallerthan = 1.92+5.55i 39.1+5.68i 12.1+0.11i .(23) their correspondingexperimental upper limits [27], they are − − 0.28 1.92i 12.1+0.11i 4.10 0.68i considerably larger than the SM predictions. However we − − − note below that with M similar to M , the up-quarkmass Our predictionson numericalvalues of the effective mass D u matrix, a phenomenonunderlyingthe possible origin of SM parameterfor 0νββ are shownin Fig. 4 forNH, IH andQD from Pati-Salam [15] or SO(10) model, LFV decays have cases. ForNHlightneutrinoswefindthatthepredictedvalue much larger predicted values, accessible to ongoing experi- of M is increasedby a factor3 for η = η /3, corre- ee max | | | | mentalsearches,whilesimilarpredictionsondominant0νββ sponding to lightest pair M = 131 MeV, while the incre- ζ1 decayaremaintained. ment is 10 times for η = η /4 and M = 152 MeV, | |max ζ1 and 30 times for η = η /5 and M = 169 MeV. We (IV. B) MD Mu and GUT connection: In this case | |max ζ1 ≃ find that the enhancement survives as long as lightest pair Dirac neutrino mass matrix is approximated to be up-quark M 120 350MeV.FortheIHlightneutrinomassesthe mass matrix, which originates if the high scale symme- ζ1 ≃ − resultsaresimilarasshownontherightpanelofFig.4. The try is Pati-Salam or SO(10) GUT, SU(2) SU(2) L R × × branching ratios for lepton flavor violating decays predicted SU(4) or SO(10) MR SM. Using running masses C −→ inthisscenariowithMζ =(0.152,39.5,2426)GeVare (m ,m ,m ) = (0.00233,1.275,160) GeV and Cabbibo- u c t Kobayashi-Maskawamixingmatrix,V [28], Br(µ e+γ)=3.6 10−13, CKM → × Br(τ e+γ)=4.2 10−14, → × M (GeV) M =V Mˆ VT Br(τ µ+γ)=3.3 10−12, (24) D ≃ u CKM u CKM → × 0.067 0.004i 0.302 0.022i 0.55 0.53i while the present experimental limits at 90% C.L. on these − − − = 0.302 0.022i 1.48 0.0i 6.534 0.001i .(21) branching ratios are Br(µ e+γ) 1.2 10−11, − − − Br(τ e+γ) 3.3 10−8→,andBr(τ ≤ µ+γ)× 4.4 0.55 0.53i 6.534 0.0009i 159.72+0.0i → ≤ × → ≤ × − − 10−8 [27]. The projected reach of sensitivity in the future isBr(τ e+γ), Br(τ µ+γ) 10−9 andspecifically → → ≤ At first using the phenomenologicalbounds from eqn. (17) Br(µ e+γ) 10−19[27]. → ≤ andsaturatingouransatzforη = η /n,n=1,..5,we Thepredictednonstandardcontributionsto0νββtransition αβ max | | searchformatrix M througheqn. (18)whichgivesµ from are shown in the left-panel for NH and in the it right-panel S 6 1 10 1 0.1 0.1 |e |e e 0.01 e M Std M | | 0.01 Std η η 0.001 η/3 η/3 η/4 0.001 η/4 η/5 η/5 0.0001 0.0001 1e-05 0.0001 0.001 0.01 0.1 1 1e-05 0.0001 0.001 0.01 0.1 1 m (eV) m (eV) 1 1 FIG.4: Theeffectivemassparameter, |Mee|,predictionfor0νββ decayduetolight(Solidline)andpseudo-Dirac(dashedlines)neutrino exchangewhereMD ≃Muandη=|ηmax|/n, n=1,3,4,5asdiscussedinthetext. for IH case of Fig. 4. In view of the M -dependent en- tributions to 0νββ decay rates, even far exceeding the stan- ζ1 hancementsof0νββ decayratesdiscussedaboveitistempt- dard contributions. The Dirac neutrino mass possibly origi- ing to search for the possibility of the lightest pseudo-Dirac natingfromhighscalePati-SalamsymmetryorSO(10)grand neutrinomasswhichweperformbythereplacementM2 unification,playsacrucialroleindeterminingdominantcon- ζ1 → M2 +iM Γ , whereΓ correspondstoplausiblevalueof tributionsto 0νββ decay ratessimultaneouslywith LFV de- ζ1 ζ1 1 1 widthoftheparticle. Using,forexample,Γ 0.1keV,our cays with predicted branching ratios accessible to on going 1 predictionsarepresentedbysolidcurveinFig.≃5forNHlight search experiments. The underlying mechanism provides neutrinomasseswheretheresonantbehaviorisclearlyexhib- three distinct platforms for its falsifiability (i) 0νββ decay itedaroundM =190MeV. rates, (ii) determination of light pseudo-Diracneutrino mass ζ1 M 120 500MeV,and(iii)thethreepredictedbranching ζ1 ≃ − ratiosofeqn.(24).Asallourresultsareapplicableinthecase 1 of inverse seesaw extended supersymmetric standard model, Non-Std theyarealsoconsistentwithgaugecouplingunificationatthe 0.1 MSSM-GUTscale,MU 2 1016 GeV.ThePati-Salamor ≃ × L SO(10)completionof themodeldiscussedin Sec. IV.B will V e bereportedelsewhereinfuturepublication[26]. H 0.01 Èe ACKNOWLEDGEMENT:RamLalAwasthiacknowledgesthe e M hospitalityatCenterofExcellenceinTheoreticalandMathe- StdHNHL È0.001 maticalSciences,SOAUniversitywherethepresentworkhas beencompleted. 10-4 170. 180. 190. 200. 210. 220. 230. M HMeVL Ζ 1 ∗ Electronicaddress: [email protected],[email protected],paridamk@soauni FIG. 5: Variation of effective mass |Mee| prediction as a function [1] P.Minkowski,Phys.Lett.B67,421(1977);T.Yanagida,pro- of lightest pseudo-Dirac neutrino mass Mζ1 where µS matrix has ceedings of the Workshop on Unified Theories and Baryon beendeterminedforNHlightneutrinomasses. Theresonancepeak Number in the Universe, Tsukuba, 1979, eds. A. Sawada, A. isatM ≃ 190MeVasshownbythesolidline. Forcomparison, Sugamoto, KEK Report No. 79-18, Tsukuba; S. Glashow, ζ1 the standard contribution with NH masses is shown by the dashed in Quarks and Leptons, Carge`se 1979, eds. M. Le´vy. et horizontalline. al., (Plenum, 1980, New York); M. Gell-Mann, P. Ramond, R.Slansky,proceedingsoftheSupergravityStonyBrookWork- V.DISCUSSIONSANDCONCLUSION:In thisletterwe have shop,NewYork,1979,eds.P.VanNiewenhuizen,D.Freeman shown that in the inverse seesaw framework of the standard (North-Holland, Amsterdam); R. N. Mohapatra and G. Sen- janovic,Phys.Rev.Lett.44,912(1980). model, the lightest of the pseudo-Diracneutrinocould be of [2] J.SchechterandJ.W.F.Valle,Phys.Rev.D 22,2227(1980). (100) MeV in concordance with tiny left handed neutrino O [3] E.Majorana;N.Cim.14(1937)171. masses and the oscillation data. This pseudo-Dirac neutrino [4] P. A.M. Dirac; Proceedings of the Royal Society of London, mass being in the vicinity of the neutrino virtuality momen- 109,752(Dec.1,1925),pp.642-653. tum p 190MeV,givesverysignificantnon-standardcon- [5] R. N. Mohapatra and G. Senjanovic, Phys. Rev. D 23, 165 | | ≃ 7 (1981); R.N.Mohapatra,J.W.F.Valle,Phys.Rev.D34,1642(1986). [6] G.Lazarides,Q.ShafiandC.Wetterich,Nucl.Phys.B181,287 [18] D. Wyler, L. Wolfenstein, Nucl. Phys. B218, 205 (1983); (1981); E.Witten,Nucl.Phys.B268,79(1986). [7] R. Foot, H. Lew, X. G. He and G. C. Joshi, Z. Phys. C 44, [19] R.N.Mohapatra; Phys.Rev.D 34(1986) 909; M.DoiandT. 441 (1989); B. Bajc, G. Senjanovic´, JHEP 0708, 014 (2007) Kotani,Prog.Theor.Phys.89(1993)139. [hep-ph/0612029]; E. Ma and D. P. Roy, Nucl. Phys. B 644, [20] K. Muto, I. Blender, and H. V. Klapdor-Kleingrothaus, Z. 290 (2002); W. Grimus and L. Lavoura, JHEP 0011, 042 Phys. A 334 (1989) 177; M. Hirsch, K. Muto, T. Oda, and (2000), arXiv: 0008179 [hep-ph]; M. Hirsch, H. V. Klapdor- H. V. Klapdor-Kleingrothaus, Z. Phys. A 347 (1994) 151; Kleingrothaus and O. Panella, Phys. Lett. B 374, 7 (1996), J.J.Gomez-Cadenas, J.Martin-Albo, M. Mezzetto, F.Monra- arXiv:9602306[hep-ph]; bal, and M. Sorel, Riv.Nuovo Cim. 35 (2012) 29-98, e-Print: B.Bajc,M.Nemevsˇek,G.Senjanovic´,Phys.Rev.D76 (2007) arXiv:1109.5515[hep-ex]. 055011[hep-ph/0703080]; [21] G.tHooft,inProceedingsofthe1979CargeseSummerInsti- [8] H.V.Klapdor-Kleingrothaus,A.Dietz,L.Baudis,G.Heusser, tuteonRecentDevelopmentsinGaugeTheories,editedbyG.t I. V. Krivosheina, S. Kolb, B. Majorovits, H. Pas et al., Eur. Hooftetal.(PlenumPress,NewYork,1980). Phys.J.A12(2001)147-154;C.Arnaboldietal.[CUORICINO [22] F. P. An et. al. [DAYA-BAY Collaboration], arXiv:1203.1669 Collaboration],Phys.Rev.C78,035502(2008); C.E.Aalseth [hep-ex];J.K.Ahnet.al.[Soo-BongKimforRENOcollabora- etal.[IGEXCollaboration],Phys.Rev.D65(2002)092007; tion],arXiv:1204.0626v1[hep-ex];G.L.Fogli,E.Lisi,A.Mar- J. Argyriades et al. [NEMO Collaboration], Phys. Rev. C80, rone,A.PalazzoandA.M.Rotunno,Phys.Rev.D84,053007 032501(2009);I.Abt,M.F.Altmann,A.Bakalyarov,I.Bara- (2011),arXiv:1106.6028[hep-ph];D.V.Forero,M.Tortolaand banov,C.Bauer,E.Bellotti,S.T.Belyaev,L.B.Bezrukovetal., J.W.F.Valle,arXiv:1205.4018[hep-ph]. [hep-ex/0404039]; S.Schonert etal.[GERDACollaboration], [23] S.Antusch, J.P.Baumann, andE.Fernandez-Martinez, Nucl. Nucl.Phys.Proc.Suppl.145,242-245(2005);C.Arnaboldiet Phys.B810,369(2009);RamLalAwasthiandMinaK.Parida, al.[CUORECollaboration], Nucl.Instrum.Meth.A518, 775- Phys.Rev.D 86(2012)093004. 798 (2004); H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, [24] J.A.CasasandA.Ibarra,Nucl.Phys.B 618,171(2001). A.Dietz,O.Chkvorets,Phys.Lett.B586,198-212(2004); H. [25] A. Ilakovac, A. Pilaftsis, Nucl. Phys. B437, 491 (1995) V.Klapdor-Kleingrothaus, I.V.Krivosheina,Mod.Phys.Lett. [hep-ph/9403398]; F. Deppisch, J. W. F. Valle, Phys. Rev. A21,1547-1566(2006). D72, 036001 (2005) [hep-ph/0406040]; C. Arina, F. Baz- [9] JamesBarry,RabindraN.MohapatraandWernerRodejohann; zocchi, N. Fornengo, J. C. Romao, J. W. F. Valle, Phys. Phys.Rev.D 83 (2011) 113012; R. Allahverdi, B. Dutta, and Rev. Lett. 101, 161802 (2008) [arXiv:0806.3225 [hep-ph]]; R.N.Mohapatra,Phys.Lett.B695(2011)181-184. M. Malinsky, T. Ohlsson, Z. -z. Xing, H. Zhang, Phys. Lett. [10] V. Tello, M. Nemevsˇek, F. Nesti, G. Senjanovic´, F. Vissani, B679,242-248(2009)[arXiv:0905.2889[hep-ph]];M.Hirsch, Phys. Rev. Lett. 106, 151801 (2011); Joydeep Chakrabortty, T. Kernreiter, J. C. Romao, A. Villanova del Moral, JHEP H.ZeenDevi, SrubabatiGoswamiandSudhanwaPatra,JHEP 1001, 103 (2010) [arXiv:0910.2435 [hep-ph]]; F. Deppisch, 1208(2012)008.arXiv:1204.2527[hep-ph]. T.S.Kosmas, J.W.F.Valle, Nucl.Phys.B752, 80-92 (2006) [11] M.K. Parida and Sudhanwa Patra; Phys. Lett. B 718 (2013) [arXiv:0910.3924[hep-ph]]. 1407. [26] Ram Lal Awasthi, M. K. Parida, and Sudhanwa Patra (under [12] H.Zhang,andS.Zhou,Phys.Lett.B685(2010)297. preparation). [13] J.F.Beacom, N.F.Bell, D.Hooper, J.G.Learned, S.Pakvasa, [27] M. L. Brooks et al. [MEGA Collaboration], Phys. Rev. Lett. andT.J.Weiler,Phys.Rev.Lett.92(2004)011101. 83, 1521 (1999); B. Aubert [The BABAR Collaboration], [14] A.Lenz,H.Pas,andD.Schalla,Phys.Rev.D85(2012)075025. arXiv:0908.2381[hep-ex];Y.Kuno(PRIMEWorkingGroup), [15] J.C.PatiandA.Salam,Phys.Rev.D10(1974)275. Nucl.Phys.B.Proc.Suppl.149,376(2005).Forareviewsee [16] H.Georgi,ParticlesandFields,ProceedingsofAPSDivisionof F.R.Joaquim,A.Rossi,Nucl.Phys.B765,71(2007). ParticlesandFields,edC.Carlson,p 575(1975);H.Fritzsch, [28] C.Amsleretal.,Phys.Lett.B 667,1(2008). P.Minkowski,Ann.Phys.93,193(1975). [17] R. N. Mohapatra, Phys. Rev. Lett. 56, 561-563 (1986);