ebook img

Neutrino-Nucleon Deep Inelastic Scattering PDF

44 Pages·2006·1.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrino-Nucleon Deep Inelastic Scattering

ν NNeeuuttrriinnoo--NNuucclleeoonn DDeeeepp IInneellaassttiicc SSccaatttteerriinngg 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 48 NNeeuuttrriinnoo--NNuucclleeoonn ν ‘‘nn aa NNuuttsshheellll • Charged - Current: W± exchange • Neutral - Current: Z0 exchange (cid:131) Quasi-elastic Scattering: (cid:131) Elastic Scattering: (Target changes but no break up) (Target unchanged) ν + n → μ− + p ν + N → ν + N μ μ μ (cid:131) Nuclear Resonance Production: (cid:131) Nuclear Resonance Production: (Target goes to excited state) (Target goes to excited state) ν + n → μ− + p + π0 (N* or Δ) ν + N → ν + N + π (N* or Δ) μ μ μ n + π+ (cid:131) Deep-Inelastic Scattering: (cid:131) Deep-Inelastic Scattering (Nucleon broken up) (Nucleon broken up) ν + quark → μ− + quark’ ν + quark → ν + quark μ μ μ Linear rise with energy Resonance Production 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 49 ν SSccaatttteerriinngg VVaarriiaabblleess Scattering variables given in terms of invariants •More general than just deep inelastic (neutrino-quark) scattering, although interpretation may change. ( )2 ( ) ' ' 4-momentum Transfer2: Q2 = −q2 = − p − p ≈ 4EE sin2(θ/2) Lab ( ) ' Energy Transfer: ν= (q⋅P)/M = E − E = (E − M ) T h T Lab Lab ( ) ' Inelasticity: y = (q⋅P)/( p⋅P) = (E − M )/ E + E h T h Lab Fractional Momentum of Struck Quark: x = −q2 /2( p⋅q) = Q2 /2M ν T Recoil Mass2 : W2 = (q + P)2 = M 2 +2M ν−Q2 T T 2 Q CM Energy2 : s = (p + P)2 = M 2 + T xy 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 50 ν 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 51 ν PPaarrttoonn IInntteerrpprreettaattiioonn ooff DDIISS 2 2 2 2 2 m = x P = x M Mass of target quark q T μ ν Mass of final state quark 2 2 m = (xP + q) , q q = pν − pμ In “infinite momentum frame”, x is momentum of partons inside the nucleon 2 2 Q Q x = = Neutrino scatters off a 2P ⋅ q 2M ν T parton inside the nucleon 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 52 SSoo wwhhyy iiss ccrroossss--sseeccttiioonn ssoo ν llaarrggee?? • (at least compared to νe- scattering!) • Recall that for neutrino beam and target at rest 2 Q ≡s 2 2 G max G s σ ≈ F ∫ dQ2 = F TOT π π 0 2 s = m + 2m E e e ν • But we just learned for DIS that effective mass of each m = xm target quark is q nucleon • So much larger target mass means larger σ TOT 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 53 CChhiirraalliittyy,, CChhaarrggee iinn CCCC νν--qq ν SSccaatttteerriinngg • Total spin determines * inelasticity distribution Flat in y (cid:131) Familiar from neutrino- electron scattering ♠ 1/4(1+cosθ∗)2 = (1-y)2 ♠ dσνp G2s * ∫(1-y)2dy=1/3 ( ) = F xd(x)+ xu(x)(1− y)2 • Neutrino/Anti-neutrino CC dxdy π each produce particular Δq dσνp G2s * ♠ ( ) = F xd(x)+ xu(x)(1− y)2 in scattering dxdy π − νd → μ u + νu → μ d 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 54 ν FFaaccttoorriizzaattiioonn aanndd PPaarrttoonnss • Factorization Theorem of QCD allows amplitudes for hadronic processes to be written as: ∑ A(l + h → l + X ) = ∫ dxA(l + q(x) → l + X )q (x) h q (cid:131) Parton distribution functions (PDFs) are universal (cid:131) Processes well described by single parton interactions (cid:131) Parton distribution functions not (yet) calculable from first principles in QCD • “Scaling”: parton distributions are largely independent of Q2 scale, and depend on fractional momentum, x. 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 55 ν 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 56 MMoommeennttuumm ooff QQuuaarrkkss && ν AAnnttiiqquuaarrkkss • Momentum carried by quarks much greater than anti-quarks in nucleon q(x) q (x) 12-15 August 2006 Kevin McFarland: Interactions of Neutrinos 57

Description:
experiments might think of parton distributions as an annoying piece of FORTRAN code in their C++ software. • The purpose, of course, exactly related
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.