ebook img

Neutrino-cooled Accretion Disks around Spinning Black Holes PDF

0.28 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrino-cooled Accretion Disks around Spinning Black Holes

Neutrino-cooled Accretion Disks around Spinning Black Holes Wen-xin Chen∗ and Andrei M. Beloborodov∗ ∗PhysicsDepartmentandColumbiaAstrophysicsLaboratory,ColumbiaUniversity,538West 6 120thStreet,NewYork,NY10027 0 0 2 Abstract. We calculate the structureof accretiondiskarounda spinningblack holefor accretion n rates M˙ =0.01−10M⊙ s−1. The model is fully relativistic and treats accurately the disk micro- a physics including neutrino emissivity, opacity, electron degeneracy,and nuclear composition.We J find that the accretion flow always regulates itself to a mildly degenerate state with the proton- 8 to-nucleon ratioYe <∼0.1 and becomes very neutron-rich.The disk has a well defined “ignition” radius where neutrino flux raises dramatically, cooling becomes efficient, andY suddenly drops. e 1 Wealsocalculateothercharacteristicradiiofthedisk,includingthen -opaqueandn -trappingradii, v andshowtheirdependenceonM˙.Accretiondisksaroundfast-rotatingblackholesproduceintense 7 neutrinofluxeswhichmaydepositenoughenergyabovethedisktogenerateaGRBjet. 5 1 1 0 Most GRB models assume a short-lived accretion disk as a primary source of energy. Such 6 diskshavehugeaccretionratesM˙ =0.01−10M⊙ s−1 andtheircoolingmechanismisneutrino 0 emission[1,2,3].Specialfeaturesofneutrino-cooleddisksare: / h p —Themaincoolingisduetoreactions p+e−→n+n andn+e+→ p+n¯. - —Electrondegeneracyaffectsthediskstructure. o r —Thediskcanbeopaquetoneutrinoswhichaffectsthecoolingrate. t s —Nuclearcompositionchangeswithradius,consumingenergy. a —Neutrinocoolingandelectrondegeneracyleadtoveryhighneutronrichness. : v i The disk model may be formulated following the classical vertically-integrated approach of X f Shakura & Sunyaev and approximating the azimuthal motion in the disk, u , as Keplerian r rotation. A small radial velocity is superimposedon this rotation. It is approximately given by a ur =a B(H/r)2ruf whereH ishalf-thicknessofthedisk(foundfromhydrostaticbalance),Bis anumericalfactordeterminedbyKerrmetric,anda =0.1−0.01. Themainequationsoftheaccretiondiskareasfollows. d(UH) U+Pd(r H) Energyconservation: F+−F−=cur − . (1) (cid:20) dr r dr (cid:21) 1 r dY d Leptonconservation: (N˙n¯−N˙n )=cur e + (nn −nn¯) . (2) H (cid:20)m dr dr (cid:21) p r Chargeconservation: ne−−ne+ =Yem . (3) p 1−Y Chemicalbalance: m e−m n =kTln e +(mn−mp)c2. (4) (cid:18) Y (cid:19) e HereF+ istheviscouslydissipatedenergyperunitarea,F− istheneutrinoenergyflux,N˙n and N˙n¯ arethenumberfluxesofneutrinosandantineutrinos,r isthemassdensity,T istemperature, Yeistheproton-to-baryonratio,m eandm n arethechemicalpotentialsofelectronsandneutrinos, ne− andne+ arenumberdensitiesofelectronsandpositrons.TheenergydensityU andpressure P include contributions of baryons, electrons, positrons, radiation, and neutrinos. They are calculatedbyintegratingthecorrespondingdistributionfunctions(Fermi-Diracdistributionsfor e± andn ,n¯ ifthediskisopaquetoneutrinos). Notethatweincludetheadvectiontermsinthelawsofenergyandleptonconservation(right- handsideofeqs.1and2).Theydescribethemostimportanteffectsofadvection.Othereffects ofheatstoragein thedisk—in particular, thedynamicaleffectsoftheradialpressuregradient onur anduf —arerelativelysmallandneglectedhere,i.e.thestandarda -diskmodelisusedto calculateuf andur. The chemical balance and m n are used only in the n -opaque region; then the cooling rate is calculatedasF− =cUn /tn +cUn¯/tn¯.Inthen -transparentregion,F− equals2H(U˙e−p+U˙e+n) whereU˙e−p andU˙e+n aretheratesofenergyreleasebyreactionse−+p→n+n ande++n→ p+n¯.Theabundanceofa -particlesisdeterminedbythenuclearstatisticalequilibrium. We have solved the set of disk equations numerically starting from an outer region where no neutrino cooling takes place and assuming that the infalling matter is initially made of a particles(heavierelementsaredecomposedinto a -particlesasthematterapproachesthe black hole).AschematicpictureoftheaccretiondiskanditscharacteristicradiiareshowninFigure1. FIGURE1. Schematicpictureofthediskwithcharacteristicradiiindicated. Theouterregionr>50r (r =2GM/c2isthegravitationalradiusoftheblackhole)isdom- g g inated by a particles. Neutrino cooling is negligible in this region and the viscouslydissipated heatis storedin thediskandadvectedinward.Thedestructionofa particlesatra ∼50rg con- sumes ∼7 MeV per baryon, which makes the disk somewhat thinner. At the "ignition" radius rign (slightly smaller than ra ), kT reaches ∼ MeV and neutrino cooling becomes significant, furtherreducingdiskscale-heightH/r.Withdecreasingradiusthediskbecomesopaquetoneu- trinos(firstton andthenton¯).IntheinnermostregionofdiskswithM˙ >2M⊙s−1theneutrinos aretrappedandadvectedtowardtheblackhole.Figure2showsthefoundcharacteristicradiias functionsofM˙ fordiskswitha =0.1aroundblackholeswithspinparametersa=0and0.95. Wefindtwogeneralpropertiesofthedisk: 1. — It regulates itself to a mildly degenerate state with m = 1 ∼ 3kT. The reason of this e regulationisthenegativefeedbackofdegeneracyandneutronizationonthecoolingrate:higher FIGURE 2. Characteristic radii in the accretion disk as a function of M˙ for a black hole of mass M =3M⊙ and spin parameter a=0.95 (left) and 0 (right). Viscosity parameter a =0.1 is assumed. NeutrinocoolingdoesnotignitewhenM˙ isbelow0.02M⊙s−1 forKerrand0.1M⊙s−1 forSchwarzschild black holes. Neutrino trapping takes place for Kerr black holes when M˙ >2M⊙ s−1. The disk extends downtothemarginallystableorbit,whichis3r fora=0and≈r fora=0.95. g g degeneracym e/kT →fewerpositrons(n+/n−∼e−m e/kT)→lowerequilibriumrateofneutrino emission→lowercoolingrate→highertemperature→lowerdegeneracy. 2. — In a broad range of relevant accretion rates the disk is found to reach Y ∼ 0.1. It e correspondstoaveryhighneutron-to-protonratio∼10. Figure 3 shows examples of the disk structure around a Kerr black hole with a=0.95 with accretion rate 0.2M⊙ s−1, for three different values of viscosity parameter a . The transitions atthecharacteristicradiimanifestthemselvesinthenon-monotonicbehaviorofthedegeneracy parameterh =m /kT,F−/F+,Y ,andH/r.InparticularthesharpmaximumofF−/F+appears e e attheignitionradius.Thediskisquitethinatr<r andcooledlocally,F−≈F+. ign ThehighneutronrichnesshasimportantimplicationsfortheglobalpictureofGRBexplosion. Whentheneutron-richmaterialisejectedinarelativisticjetanddevelopsalargeLorentzfactor, theneutronsdecayatdistance∼1016 cmandaffecttheobservedexplosion. Disks around rapidly rotating black holes produce a high neutrino flux. It deposits energy abovethedisk(vianeutrinoannihilationn +n¯ →e++e−)andcandriveanoutflowwithpower L>1051 erg/s.Adetailedstudyofn n¯ annihilationaroundaKerrblackholeisinpreparation. ACKNOWLEDGMENTS Thisworkwas supportedbyNASA grant NAG5-13382. REFERENCES 1. R.Popham,S.E.Woosley,&C.Fryer,Astrophys.J.,518,356(1999). 2. A.M.Beloborodov,Astrophys.J.,588,931(2003). 3. K.Kohri,R.Narayan,&T.Piran,Astrophys.J.,629,341(2005). 18 1013 a =0.1 a =0.1 2T/mc)e 111246 aa ==00..0031 3m) 11001112 aa ==00..0031 ature (k 1 80 sity (g/c 1100190 mper 6 Den 108 e 4 T 2 107 0 106 1 10 100 1000 1 10 100 1000 r/r r/r g g 5.5 1.4 a =0.1 a =0.1 4 .55 aa ==00..0031 1.2 aa ==00..0031 4 1 hgeneracy 23 ..355 -+F/F 00..68 e D 2 0.4 1.5 0.2 1 0.5 0 1 10 100 1000 1 10 100 1000 r/r r/r g g 0.8 102 a =0.1 a =0.1 0.7 aa ==00..0031 h 101 aa ==00..0031 0.6 ept 100 D 0.5 cal 10-1 H/R 00..34 no Opti 10-2 0.2 eutri 10-3 N 0.1 10-4 0 10-5 1 10 100 1000 1 10 100 1000 r/r r/r g g 0.55 a =0.1 a =0.1 0.5 a =0.03 1 a =0.03 Ye 0.45 a =0.01 a =0.01 n mass fraction 00 000..23...23455 ee neucleon Xf 000...468 oto 0.15 Fr Pr 0.1 0.2 0.05 0 0 1 10 100 1000 1 10 100 1000 r/r r/r g g FIGURE3. NumericalsolutionforaccretiondiskwithM˙ =0.2M⊙s−1 aroundablackholewithmass M=3M⊙ andspinparametera=0.95.Threemodelsareshownwithviscosityparametera =0.1,0.03 and0.01.Thedegeneracyparameterh isdefinedasm /kT,X isthemassfractionoffreenucleons. e free

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.