ebook img

Neutrices and External Numbers: A Flexible Number System PDF

361 Pages·2019·5.447 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neutrices and External Numbers: A Flexible Number System

Neutrices and External Numbers A Flexible Number System Neutrices and External Numbers A Flexible Number System Bruno Dinis Imme van den Berg CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2019byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-1-4987-7267-9(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Cataloging-in-Publication Data Names:Dinis,Bruno,author.|Berg,Immevanden,author. Title:Neutricesandexternalnumbers:aflexiblenumbersystem/Bruno Dinis,ImmevandenBerg. Description:BocaRaton,Florida:CRCPress,[2019]|Series:Monographs andresearchnotesinmathematics Identifiers:LCCN2019007599|ISBN9781498772679(hardback:alk. paper)|ISBN9780429155390(ebook) Subjects:LCSH:Nonstandardmathematicalanalysis.|Modeltheory. Classification:LCCQA299.82.D562019|DDC511.3/4--dc23 LCrecordavailableathttps://lccn.loc.gov/2019007599 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Contents Foreword ix Preface xv 1 Introduction to Elementary Nonstandard Analysis 1 1.1 The axiomatic system ZFL and the Leibniz Rules . . . . . . 2 1.2 Internal and external sets, permanence . . . . . . . . . . . . 9 1.3 External Induction and the axiomatic system ENA . . . . . 16 1.4 Orders of Magnitude . . . . . . . . . . . . . . . . . . . . . . 19 1.5 Nonstandard regularity properties of real internal functions . 27 1.5.1 S-continuity. . . . . . . . . . . . . . . . . . . . . . . . 27 1.5.2 S-differentiability . . . . . . . . . . . . . . . . . . . . . 29 1.5.3 S-integrability . . . . . . . . . . . . . . . . . . . . . . 32 2 Some models and calculations involving imprecisions 39 2.1 Validity of asymptotic approximation by a Taylor polynomial 40 2.2 Mass and tail of a random variable . . . . . . . . . . . . . . 47 2.2.1 The Mass Concentration Lemma . . . . . . . . . . . . 47 2.2.2 Application: Stirling’s formula . . . . . . . . . . . . . 49 2.3 Jumps in singular perturbations . . . . . . . . . . . . . . . . 51 2.4 On linear equations . . . . . . . . . . . . . . . . . . . . . . . 54 3 Neutrices and external numbers 59 3.1 External numbers and operations . . . . . . . . . . . . . . . 59 3.2 Algebraic properties for addition and multiplication . . . . . 68 3.2.1 External numbers and regular semigroups . . . . . . . 68 3.2.2 Properties of neutral and inverse elements . . . . . . . 69 3.3 Distributivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.3.1 Distributivity with neutrices . . . . . . . . . . . . . . 76 3.3.2 Distributivity with zeroless external numbers . . . . . 77 3.3.3 Application: Binomial formulas . . . . . . . . . . . . . 82 v vi Contents 4 Advanced properties 85 4.1 Introduction to Internal Set Theory . . . . . . . . . . . . . . 85 4.1.1 Properties of IST . . . . . . . . . . . . . . . . . . . . . 87 4.1.2 External sets . . . . . . . . . . . . . . . . . . . . . . . 89 4.2 The nature of halflines, neutrices and external numbers . . . 94 4.3 Generalized Dedekind completeness . . . . . . . . . . . . . . 96 4.4 Flexible sequences and functions . . . . . . . . . . . . . . . . 100 4.4.1 Flexible functions. . . . . . . . . . . . . . . . . . . . . 100 4.4.2 Flexible sequences . . . . . . . . . . . . . . . . . . . . 104 4.5 Idempotent neutrices and ideals . . . . . . . . . . . . . . . . 109 4.5.1 Idempotent neutrices . . . . . . . . . . . . . . . . . . . 110 4.5.2 Ideals and the product of neutrices . . . . . . . . . . . 111 5 Sequences. Convergence up to a neutrix 117 5.1 Notions of convergence for flexible sequences . . . . . . . . . 118 5.1.1 Convergence for infinite sequences . . . . . . . . . . . 118 5.1.2 Convergence with respect to an initial segment . . . . 125 5.2 Operations on flexible sequences . . . . . . . . . . . . . . . . 129 5.2.1 Boundedness and monotonicity . . . . . . . . . . . . . 129 5.2.2 Operations . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3 Cauchy flexible sequences . . . . . . . . . . . . . . . . . . . . 135 6 Functions of external numbers 139 6.1 Limits of flexible functions . . . . . . . . . . . . . . . . . . . 140 6.1.1 Relation with convergence for sequences; strong convergence . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2 Flexible continuity . . . . . . . . . . . . . . . . . . . . . . . . 149 6.2.1 Outer continuity . . . . . . . . . . . . . . . . . . . . . 150 6.2.2 Inner continuity . . . . . . . . . . . . . . . . . . . . . 153 6.3 M ×N-derivation of flexible functions . . . . . . . . . . . . . 156 6.4 Weak extrema and monotonicity . . . . . . . . . . . . . . . . 160 7 Integration of functions of external numbers 163 7.1 Integrals of internal functions on external intervals . . . . . . 163 7.2 Integrals of flexible functions . . . . . . . . . . . . . . . . . . 167 7.3 Elementary properties of integrals . . . . . . . . . . . . . . . 172 7.4 Special integrals and applications . . . . . . . . . . . . . . . 178 7.4.1 Mass and tail of probabilities and integrals . . . . . . 178 7.4.2 On local averaging . . . . . . . . . . . . . . . . . . . . 180 7.4.3 The concentration lemma and the Laplace method . . 182 Contents vii 8 Flexible systems of linear equations 189 8.1 Flexible systems . . . . . . . . . . . . . . . . . . . . . . . . . 189 8.2 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 8.3 On Gauss-Jordan elimination . . . . . . . . . . . . . . . . . . 196 8.4 Parameter method . . . . . . . . . . . . . . . . . . . . . . . . 200 8.4.1 Non-singular systems. . . . . . . . . . . . . . . . . . . 202 8.4.2 Singular systems with strict rank equal to the number of equations . . . . . . . . . . . . . . . . . . . . . . . . 204 8.4.3 Singular systems with strict rank less than the number of equations . . . . . . . . . . . . . . . . . . . . . . . . 206 9 Applications in asymptotics 211 9.1 Nonstandard Borel-Ritt Theorem . . . . . . . . . . . . . . . 211 9.2 Tools for solution of external equations . . . . . . . . . . . . 213 9.3 Matching principles . . . . . . . . . . . . . . . . . . . . . . . 225 9.4 An external singular perturbation with canard solutions . . . 230 9.4.1 External differentiable equations and their solutions . 230 9.4.2 The external Riccati-Hermite equation . . . . . . . . . 231 9.4.3 Solving the external Riccati-Hermite equation . . . . . 232 9.4.4 Description of the canard behaviour . . . . . . . . . . 236 9.4.5 Influence of the singular point on the localization of canards . . . . . . . . . . . . . . . . . . . . . . . . . . 237 10 Applications in other fields 243 10.1 The Sorites paradox in philosophy . . . . . . . . . . . . . . . 244 10.1.1 Forms of the paradox . . . . . . . . . . . . . . . . . . 245 10.1.2 Response proposals . . . . . . . . . . . . . . . . . . . . 247 10.1.3 External numbers as a model . . . . . . . . . . . . . . 255 10.2 External recurrence relations and near stability . . . . . . . . 258 10.3 On the size of fluctuations of the financial market . . . . . . 264 10.4 Further applications of external numbers . . . . . . . . . . . 269 10.4.1 Near-optimization with uncertainties . . . . . . . . . . 269 10.4.2 On statistical estimation of uncertainties. . . . . . . . 270 11 External numbers as a complete arithmetical solid 275 11.1 The axioms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 11.1.1 Algebraic axioms . . . . . . . . . . . . . . . . . . . . . 277 11.1.2 Generalized Completeness axiom . . . . . . . . . . . . 280 11.1.3 Arithmetical axioms . . . . . . . . . . . . . . . . . . . 281 11.2 A formal construction of the external numbers . . . . . . . . 282 11.3 The solid E as a model for the axioms . . . . . . . . . . . . . 284 11.4 On the axioms for the external numbers . . . . . . . . . . . . 291 viii Contents A Background on Nonstandard Analysis 295 A.1 On the foundations of external sets . . . . . . . . . . . . . . 295 A.2 Set theoretical Nonstandard Analysis . . . . . . . . . . . . . 296 A.2.1 ZFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296 A.2.2 Theories for internal sets: IST and BST . . . . . . . . 299 A.2.3 Theories for external sets: HST . . . . . . . . . . . . . 301 A.2.3.1 HST axioms . . . . . . . . . . . . . . . . . . 303 A.3 Model theoretical nonstandard analysis . . . . . . . . . . . . 305 A.3.1 The superstructure approach . . . . . . . . . . . . . . 306 B Solutions to selected exercises 309 Bibliography 325 Index 337 Foreword Nonstandard Analysis and “the set of x such that ...” A superficial look at this book might suggest that it is addressed to “pure mathematicians” and more specifically to specialists in the logical founda- tions of mathematics. It is not so. This book is for applied mathematicians confronted with the imprecision of models. Let us try to explain what it is all about with the words of the ordinary working mathematician. In informal mathematical writing we often enunciate seemingly innocent sentences, as for example: The set of complex numbers that are the solution of a polynomial equation with integer coefficients is countable which in reality hides all the strength (and weakness) of the (formal) set theoryofZermelo,FraenkelwithChoice(ZFC).RecallthatthetheoryZFCis √ atheorywhereallmathematicalobjects1,2,...,N, 2,C,... havethestatus of set. A set is an object about which one can state properties, for example “tobecountable” asabove,andsetsarepatientlyconstructedfromtheempty set using a number of axioms. The axiom of comprehension (also called of separation) states that if P is a proposition written correctly in the language of set theory then: (cid:0) (cid:1) ∀X ∃Y ∀z z ∈Y ⇔(z ∈X∧P(z) , more commonly written: (cid:8) (cid:9) Y = z ∈X :P(z) , for which we read Y is the set of elements z that satisfy P. This is the axiom of comprehension because it “puts together” all z of X which satisfy P or of separation because it “separates” X into two complementary subsets, those whose elements have the property P and those whose elements do not. The informal statement that we proposed at the beginning assumes that “to be a solution of a polynomial equation with integer coefficients” is a proposition thatiswellwritteninthelanguageofsettheory,sothatthecomplexnumbers thathavethispropertydoindeedconstituteaset,whosecardinalisthatofN. ix

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.