3142•TheJournalofNeuroscience,February26,2014•34(9):3142–3160 Behavioral/Cognitive Neuropeptidergic Signaling Partitions Arousal Behaviors in Zebrafish IanG.Woods,1,2DavidSchoppik,2VeronicaJ.Shi,2StevenZimmerman,2HaleyA.Coleman,1JoelGreenwood,3 EdwardR.Soucy,3andAlexanderF.Schier2,3 1DepartmentofBiology,IthacaCollege,Ithaca,NewYork14850,and2DepartmentofMolecularandCellularBiologyand3CenterforBrainScience,Harvard University,Cambridge,Massachusetts02138 Animalsmodulatetheirarousalstatetoensurethattheirsensoryresponsivenessandlocomotoractivitymatchenvironmentaldemands. Neuropeptidescanregulatearousal,butstudiesoftheirrolesinvertebrateshavebeenconstrainedbythevastarrayofneuropeptidesand theirpleiotropiceffects.Toovercometheselimitations,wesystematicallydissectedtheneuropeptidergicmodulationofarousalinlarval zebrafish.Wequantifiedspontaneouslocomotoractivityandresponsivenesstosensorystimuliaftergeneticallyinducedexpressionof sevenevolutionarilyconservedneuropeptides,includingadenylatecyclaseactivatingpolypeptide1b(adcyap1b),cocaine-relatedand amphetamine-relatedtranscript(cart),cholecystokinin(cck),calcitoningene-relatedpeptide(cgrp),galanin,hypocretin,andnocicep- tin.Ourstudyrevealsthatarousalbehaviorsaredissociable:neuropeptideexpressionuncoupledspontaneousactivityfromsensory responsiveness,anduncoveredmodality-specificeffectsuponsensoryresponsiveness.Principalcomponentsanalysisandphenotypic clusteringrevealedbothsharedanddivergentfeaturesofneuropeptidergicfunctions:hypocretinandcgrpstimulatedspontaneous locomotoractivity,whereasgalaninandnociceptinattenuatedthesebehaviors.Incontrast,cartandadcyap1benhancedsensoryrespon- sivenessyethadminimalimpactsonspontaneousactivity,andcckexpressioninducedtheoppositeeffects.Furthermore,hypocretinand nociceptininducedmodality-specificdifferencesinresponsivenesstochangesinillumination.Ourstudyprovidesthefirstsystematic andhigh-throughputanalysisofneuropeptidergicmodulationofarousal,demonstratesthatarousalcanbepartitionedintoindependent behavioralcomponents,andrevealsnovelandconservedfunctionsofneuropeptidesinregulatingarousal. Introduction Magoun,1949;Saperetal.,2005,2010;PfaffandBanavar,2007; Arousal is fundamental to life, from the vigilance required to Fulleretal.,2011). huntpreyoravoidpredators,tothedriveneededtoobtainsus- Despiteextensivestudiesofthearousalsystems,severalim- tenanceandmates.Defectsinarousalcanbedebilitating.Forthe portant questions remain. For example, the partitioning of (cid:2)15–20%ofAmericanswithsleepdisorders,approximatelyhalf arousalintoindividualbehavioralcomponents,includingspon- exhibitinsomnia,whichisassociatedwithaninabilitytoregulate taneouslocomotoractivityandsensoryresponsiveness,hasstim- physiologicalarousal(MahowaldandSchenk,2005;Coltenand ulated debate regarding the independence of different arousal Altevogt, 2006; Saper et al., 2010). Inappropriately elevated behaviors(Robbins,1997;Gareyetal.,2003;Pfaff,2006;Jinget arousal is associated with stress, anxiety, and hyperactivity, al.,2009;Lebestkyetal.,2009;Agmo,2011;VanSwinderenand whereasabnormallylowarousalcancauseinattention,excessive Andretic, 2011; Yokogawa et al., 2012). In addition, relatively sleepiness,chronicfatigue,andvegetativestates(PfaffandBana- littleisknownabouthowexternalandinternalinputsinteractto var,2007;Pfaffetal.,2008;Berridgeetal.,2010).Nearlyacentury setandmaintainappropriatelevelsofarousal.Neuropeptidesare ofresearchhaselucidatedtheprimaryarousal-promotingneu- attractivecandidatestomodulatetheseinputs(Pfaffetal.,2008; roanatomy:ascendingprojectionsfrombrainstemnucleistimu- Bargmann,2012),yetsystematicandcomparativeinterrogations latewakefulnessinthebrain(vonEconomo,1930;Moruzziand of neuropeptide function have been constrained by behavioral variabilityacrossexperimentalconditions. Larvalzebrafishareespeciallyusefulforstudyingthemolecu- ReceivedAug.16,2013;revisedJan.1,2014;acceptedJan.7,2014. Authorcontributions:I.G.W.,D.S.,andA.F.S.designedresearch;I.G.W.,V.J.S.,andH.A.C.performedresearch; larandcellularcontrolofarousal,astheypossessaconservedyet I.G.W.,D.S.,S.Z.,J.G.,andE.R.S.contributedunpublishedreagents/analytictools;I.G.W.analyzeddata;I.G.W.and relativelysimplenervoussystemanddisplayarousal-associated A.F.S.wrotethepaper. behaviorssimilartomammals(Proberetal.,2006;Burgessand ThisworkwassupportedbyapostdoctoralfellowshipfromtheAmericanCancerSociety(PF-07-262-01-DDCto Granato,2007a,b;WolmanandGranato,2012;ChiuandProber, I.G.W.),byaHelenHayWhitneypostdoctoralfellowship(toD.S.),bytheMcKnightEndowmentFundforNeurosci- 2013).Moreover,theirsmallsizefacilitatesuniformlycontrolled ence(toA.F.S.),andbytheNationalInstitutesofHealth(R01HL109525toA.F.S.).WethankConstanceRichterfor criticalreadingofthemanuscript. analysesofbehavioracrossexperimentalmanipulations.Thedi- Theauthorsdeclarenocompetingfinancialinterests. vergence between fish and other vertebrates, separated by 450 Correspondenceshouldbeaddressedtoeitherofthefollowing:IanG.Woodsattheaboveaddress.E-mail: millionyearsofevolution,mayalsobeusedtoinfertheancestral [email protected];orAlexanderF.Schierattheaboveaddress.E-mail:[email protected]. regulationofarousalstates(KumarandHedges,1998;Garrison DOI:10.1523/JNEUROSCI.3529-13.2014 Copyright©2014theauthors 0270-6474/14/333142-19$15.00/0 etal.,2012). Woodsetal.•NeuropeptidesandArousalinZebrafish J.Neurosci.,February26,2014•34(9):3142–3160•3143 Table1.Locomotorbehavioranalysisofwild-typelarvae pvalues Day5 Night5 Day6 Day5vsNight5 Day5vsDay6 Night5vsDay6 Normallight–dark(n(cid:4)80) Light Dark Light Wakingactivity(s/wakingmin) 7.78(cid:5)0.303 1.41(cid:5)0.048 4.28(cid:5)0.168 (cid:6)1.0E-16 2.2E-16 (cid:6)1.0E-16 Rest(min/10min) 0.19(cid:5)0.041 1.75(cid:5)0.131 0.51(cid:5)0.069 (cid:6)1.0E-16 4.7E-07 1.6E-14 Maximumamplitude/movement(pixels) 9.07(cid:5)0.098 7.13(cid:5)0.082 8.01(cid:5)0.108 (cid:6)1.0E-16 2.3E-11 1.4E-09 Movementduration(s) 0.19(cid:5)0.002 0.20(cid:5)0.002 0.17(cid:5)0.002 6.0E-04 2.7E-09 6.5E-14 Movementfrequency(Hz) 0.67(cid:5)0.024 0.10(cid:5)0.004 0.37(cid:5)0.014 (cid:6)1.0E-16 (cid:6)1.0E-16 (cid:6)1.0E-16 Boutduration(s) 1.17(cid:5)0.056 0.36(cid:5)0.004 0.89(cid:5)0.032 (cid:6)1.0E-16 1.8E-05 (cid:6)1.0E-16 Boutfrequency(s) 0.26(cid:5)0.005 0.08(cid:5)0.003 0.18(cid:5)0.005 (cid:6)1.0E-16 3.3E-16 (cid:6)1.0E-16 Constantdark(n(cid:4)79) Dark Dark Dark Wakingactivity(s/wakingmin) 2.18(cid:5)0.075 1.29(cid:5)0.050 1.69(cid:5)0.051 2.2E-16 2.7E-07 4.7E-08 Rest(min/10min) 1.65(cid:5)0.129 3.01(cid:5)0.160 1.80(cid:5)0.125 2.7E-09 3.0E-01 9.9E-08 Maximumamplitude/movement(pixels) 9.43(cid:5)0.209 8.03(cid:5)0.183 9.29(cid:5)0.209 1.1E-06 4.9E-01 1.6E-05 Movementduration(s) 0.23(cid:5)0.003 0.20(cid:5)0.003 0.21(cid:5)0.003 1.6E-08 8.2E-03 4.1E-04 Movementfrequency(Hz) 0.12(cid:5)0.005 0.08(cid:5)0.003 0.11(cid:5)0.004 1.8E-11 2.4E-01 1.7E-09 Boutduration(s) 0.42(cid:5)0.010 0.36(cid:5)0.008 0.46(cid:5)0.010 6.2E-07 1.9E-03 1.7E-13 Boutfrequency(s) 0.09(cid:5)0.003 0.06(cid:5)0.003 0.08(cid:5)0.003 1.1E-10 9.0E-03 1.4E-06 Constantlight(n(cid:4)79) Light Light Light Wakingactivity(s/wakingmin) 5.85(cid:5)0.224 2.85(cid:5)0.125 3.55(cid:5)0.138 (cid:6)1.0E-16 2.1E-14 7.1E-04 Rest(min/10min) 0.35(cid:5)0.094 0.59(cid:5)0.127 0.39(cid:5)0.049 1.7E-03 1.2E-05 2.1E-02 Maximumamplitude/movement(pixels) 7.94(cid:5)0.133 6.67(cid:5)0.119 7.11(cid:5)0.120 5.3E-13 1.3E-07 2.0E-03 Movementduration(s) 0.18(cid:5)0.002 0.16(cid:5)0.002 0.17(cid:5)0.002 6.7E-13 3.1E-05 2.3E-05 Movementfrequency(Hz) 0.52(cid:5)0.018 0.28(cid:5)0.012 0.34(cid:5)0.013 (cid:6)1.0E-16 6.7E-13 2.4E-03 Boutduration(s) 0.91(cid:5)0.044 0.50(cid:5)0.018 0.72(cid:5)0.031 (cid:6)1.0E-16 3.9E-06 4.1E-14 Boutfrequency(s) 0.24(cid:5)0.007 0.17(cid:5)0.007 0.17(cid:5)0.005 1.4E-09 1.8E-11 5.0E-01 Valuesaremean(cid:5)SEMpvaluesfromKruskall–Wallisone-wayANOVA. Hereweestablishquantitativeassaysofbehavioralarousalby peptide; stable transgenic lines were derived from the founders that decomposingmultidimensionalandcomplexlocomotorbehav- producedthestrongestandmostwidespreadexpressionuponheat- iorsintosimpleparameters(WolmanandGranato,2012).Via shock. Transgenic larvae in the behavioral analyses were distin- geneticexpressionofsevenevolutionarilyconservedneuropep- guishedfromtheirwild-typesiblingsbyPCR.Accessionnumbersfor tides [adenylate cyclase activating polypeptide 1b (adcyap1b), transcripts in this study are as follows: adcyap1b, NM_214715; cart, cocaine-relatedandamphetamine-relatedtranscript(cart),cho- BQ480503; cck, BC066290; cgrp, NM_001002471; galanin, EH455016; hypocretin,NM_001077392;nociceptin,NM_001015044.Thetransgenic lecystokinin(cck),calcitoningene-relatedpeptide(cgrp),gala- lineidentifiersfortransgenesusedinthisstudyareasfollows:Tg(hsp70l: nin, hypocretin, and nociceptin], we demonstrate that arousal adcyap1b)a140, Tg(hsp70l:cart)a137, Tg(hsp70l:cck)a138, Tg(hsp70l:cgrp) behaviorsarebehaviorallypartitioned:spontaneouslocomotor a136,Tg(hsp70l:galanin)a135,Tg(hsp70l:hcrt)zf12,Tg(hsp70l:nociceptin)a139. activitycanbeindependentofsensoryresponsiveness.Inaddi- Analysisofspontaneouslocomotoractivity.Larvaewereraisedat28.5°C tion,wedefineseveralnovel,unexpected,orconservedfunctions onastandard14/10hlight/darkcycle:lightswereturnedonat9A.M. forneuropeptides.Thesestudiesconstitutethefirstquantitative andoffat11P.M.Recordingofrest/wakeactivitywasperformedvia anduniformlycontrolledcomparisonofmolecularregulatorsof infraredBoschDinionXFLTC0385cameras(one-thirdinchsensors, arousal in vertebrates, partition diverse arousal-associated be- 752 (cid:3) 582-pixel resolution; Bosch) as in Prober et al. (2006). Dishes haviors,andsuggestconservedandnovelfunctionsofneuropep- containing80larvaeofeithersex,eachinaseparatewell,wereplaced tidesinregulatingarousal. intherecordingchamberintheeveningofthefourthdaypostfertil- ization[dpf,(cid:2)102hpostfertilization(hpf)],andwereheatshockedat MaterialsandMethods 37°C from 12 noon to 1 P.M. on 5 dpf ((cid:2)122–123 hpf). Analysis of Generationoftransgenicfish.Peptideswithdiscretepatternsofexpression locomotoractivitycommenced1hpostheatshock((cid:2)124hpf)andcon- intheCNSoflarvalzebrafishwereidentifiedbytranscriptomeprofiling tinuedthrough6dpf((cid:2)157hpf). andscreeningviainsituhybridization(I.G.WoodsandA.F.Schier, For the frame-by-frame (15 Hz) comparisons between peptide- unpublished observations). Primers were designed to amplify open overexpressing larvae and their wild-type siblings, the raw locomotor reading frames of these peptides via RT-PCR (adcyap1b: ATGGCC datawereparsedviaPerlandMatlabscripts.Amovementwasdefinedas AGATCTAGTAAAGCG, CTACAAATAAGCAAATCGACGTC; cart: apixeldisplacementbetweenadjacentvideoframesprecededandfol- ATGACCATGGAGAGTTCCAAAA,TTACAAACACTTCAACAAAA lowedbyaperiodofinactivityofatleast67ms(thelimitoftemporal AGTAATTG; cck: ATGAGCGCTCTCTCTCCG, TTATGATGAGTATTC resolution).Amovementboutwasdefinedasacontinuousclusterof ATATTCCTCAGC; cgrp: CCCTCTGTTTTGGGACGACT, AACTGT movementsseparatedby(cid:2)1sofinactivity.Restlatencywasdefinedasin GGACGTGTGGACTG; galanin: ATGCACAGGTGTGTCGGT, TTAGG Proberetal.(2006)astheelapsedtimebetweenlightsouton5dpf((cid:2)133 GTTGACTGATCTCTTCTGATG;nociceptin:TGAAGTTCCTGCCTCA hpf)andthefirst1minperiodofcontinuousinactivity.Pairwisecom- TTCC,ATGTGACCCGAGCGACCT).PCRampliconswereclonedinto parisonsbetweentransgeniclarvaeandtheirwild-typesiblings(Tables apreviouslydescribedvector(Proberetal.,2006)andverifiedbyse- quencing.Thisvectorwasmodifiedtobecompatiblewiththetol2trans- 1–3)wereperformedviaKruskal–Wallisone-wayANOVAandcorrected poson system (Kawakami, 2004) and to include GATEWAY (Life formultiplecomparisonsviatheHolm–Bonferronimethod,whilecom- Technologies) recombination sites downstream of the zebrafish heat- parisons across genotypes (see Fig. 5) were performed using Tukey’s shock(hsp70l)promoter.Embryoswereinjectedattheone-cellstageand honestlysignificantdifferencetest. raised to adulthood. Founder adults were identified by screening for Togeneratethestatisticallytypicaltracesoflocomotoractivity,behav- ubiquitousexpressionofthetargetgeneinheatshockedlarvalprogeny iorwasexaminedin1minwindows,spacedevery12s,foreachlarvaein viainsituhybridization.Severalfounderadultswereidentifiedforeach eachexperiment.Thelarvaandtimeperiodthatbestmatchedtheaver- 3144•J.Neurosci.,February26,2014•34(9):3142–3160 Woodsetal.•NeuropeptidesandArousalinZebrafish Table2.Analysisoflocomotoractivityinpeptide-overexpressinglarvae Day5 Night5 Day6 Hypocretin Wildtype(n(cid:4)17) Hypocretin(n(cid:4)45) pvalues Wildtype Hypocretin pvalues Wildtype Hypocretin pvalues Wakingactivity(s/wakingmin) 5.20(cid:5)0.534 7.55(cid:5)0.320 4.21E-04 1.55(cid:5)0.188 2.02(cid:5)0.109 2.15E-03 3.30(cid:5)0.404 5.15(cid:5)0.320 1.18E-03 Rest(min/10min) 1.08(cid:5)0.281 0.50(cid:5)0.086 8.66E-02 4.61(cid:5)0.345 1.91(cid:5)0.250 3.63E-06 1.26(cid:5)0.335 0.56(cid:5)0.104 2.21E-02 Maximumamplitude/movement(pixels) 8.43(cid:5)0.175 9.19(cid:5)0.135 3.79E-03 6.70(cid:5)0.216 7.82(cid:5)0.104 1.11E-11 6.83(cid:5)0.223 8.04(cid:5)0.108 3.44E-05 Movementduration(s) 0.17(cid:5)0.005 0.18(cid:5)0.002 1.77E-01 0.19(cid:5)0.000 0.21(cid:5)0.003 1.04E-06 0.16(cid:5)0.003 0.17(cid:5)0.002 2.45E-02 Movementfrequency(Hz) 0.67(cid:5)0.058 0.92(cid:5)0.034 3.96E-04 0.20(cid:5)0.025 0.34(cid:5)0.018 8.02E-12 0.42(cid:5)0.050 0.64(cid:5)0.035 5.33E-04 Boutduration(s) 1.76(cid:5)0.279 2.25(cid:5)0.187 1.91E-02 0.67(cid:5)0.103 0.76(cid:5)0.031 2.59E-09 1.07(cid:5)0.156 1.47(cid:5)0.164 2.08E-02 Boutfrequency(s) 0.19(cid:5)0.013 0.22(cid:5)0.008 8.12E-02 0.11(cid:5)0.009 0.17(cid:5)0.006 3.88E-12 0.16(cid:5)0.012 0.21(cid:5)0.007 1.40E-03 Restlatency(1min) 41.05(cid:5)13.94 125.91(cid:5)16.01 1.47E-03 Adcyap1b Wildtype(n(cid:4)40) Adcyap1b(n(cid:4)39) pvalues Wildtype Adcyap1b pvalues Wildtype Adcyap1b pvalues Wakingactivity(s/wakingmin) 4.02(cid:5)0.266 4.69(cid:5)0.326 1.14E-01 1.35(cid:5)0.091 1.33(cid:5)0.089 9.30E-01 3.40(cid:5)0.204 3.82(cid:5)0.252 2.76E-01 Rest(min/10min) 2.13(cid:5)0.318 1.18(cid:5)0.246 1.17E-02 3.41(cid:5)0.268 3.01(cid:5)0.287 2.66E-01 2.51(cid:5)0.251 1.71(cid:5)0.232 1.93E-02 Maximumamplitude/movement(pixels) 7.70(cid:5)0.141 7.42(cid:5)0.217 4.39E-01 7.54(cid:5)0.161 7.37(cid:5)0.182 7.17E-01 6.92(cid:5)0.171 6.87(cid:5)0.200 7.91E-01 Movementduration(s) 0.15(cid:5)0.002 0.15(cid:5)0.003 9.22E-01 0.20(cid:5)0.003 0.20(cid:5)0.003 5.83E-01 0.14(cid:5)0.003 0.14(cid:5)0.003 8.29E-01 Movementfrequency(Hz) 0.51(cid:5)0.039 0.64(cid:5)0.043 3.21E-02 0.10(cid:5)0.008 0.11(cid:5)0.009 5.30E-01 0.43(cid:5)0.031 0.51(cid:5)0.030 8.09E-02 Boutduration(s) 1.22(cid:5)0.091 1.21(cid:5)0.072 6.73E-01 0.35(cid:5)0.009 0.36(cid:5)0.010 4.10E-01 1.39(cid:5)0.099 1.48(cid:5)0.097 3.47E-01 Boutfrequency(s) 0.20(cid:5)0.014 0.24(cid:5)0.013 5.59E-02 0.08(cid:5)0.006 0.08(cid:5)0.007 6.10E-01 0.15(cid:5)0.008 0.16(cid:5)0.008 1.21E-01 Restlatency(1min) 24.27(cid:5)6.31 26.65(cid:5)5.03 3.88E-01 Cart Wildtype(n(cid:4)48) Cart(n(cid:4)33) pvalues Wildtype Cart pvalues Wildtype Cart pvalues Wakingactivity(s/wakingminute) 4.08(cid:5)0.300 4.75(cid:5)0.488 4.31E-01 0.83(cid:5)0.042 1.06(cid:5)0.068 1.50E-02 3.75(cid:5)0.293 3.64(cid:5)0.272 9.85E-01 Rest(min/10min) 1.94(cid:5)0.342 2.48(cid:5)0.453 1.91E-01 3.86(cid:5)0.280 3.05(cid:5)0.290 8.36E-02 2.59(cid:5)0.265 2.93(cid:5)0.328 4.19E-01 Maxamplitude/movement(pixels) 7.40(cid:5)0.249 7.50(cid:5)0.248 9.69E-01 6.91(cid:5)0.217 7.01(cid:5)0.216 9.85E-01 7.01(cid:5)0.248 6.93(cid:5)0.262 8.33E-01 Movementduration(s) 0.16(cid:5)0.004 0.17(cid:5)0.004 2.82E-01 0.19(cid:5)0.004 0.20(cid:5)0.004 2.41E-01 0.15(cid:5)0.004 0.15(cid:5)0.004 8.55E-01 Movementfrequency(Hz) 0.51(cid:5)0.034 0.55(cid:5)0.052 5.97E-01 0.07(cid:5)0.005 0.09(cid:5)0.005 6.34E-03 0.43(cid:5)0.033 0.39(cid:5)0.029 6.72E-01 Boutduration(s) 1.04(cid:5)0.070 1.61(cid:5)0.179 1.25E-02 0.32(cid:5)0.008 0.36(cid:5)0.042 7.95E-01 1.29(cid:5)0.086 1.49(cid:5)0.138 3.61E-01 Boutfrequency(s) 0.22(cid:5)0.014 0.19(cid:5)0.017 8.89E-02 0.05(cid:5)0.004 0.07(cid:5)0.004 1.13E-02 0.16(cid:5)0.011 0.14(cid:5)0.012 2.33E-01 Restlatency(1min) 16.14(cid:5)2.69 24.81(cid:5)3.63 1.12E-02 Cck Wildtype(n(cid:4)48) Cck(n(cid:4)31) pvalues Wildtype Cck pvalues Wildtype Cck pvalues Wakingactivity(s/wakingmin) 3.93(cid:5)0.22 7.58(cid:5)0.443 1.10E-09 0.96(cid:5)0.06 1.02(cid:5)0.07 2.83E-01 2.08(cid:5)0.12 2.51(cid:5)0.19 6.92E-02 Rest(min/10min) 0.72(cid:5)0.11 0.87(cid:5)0.142 2.36E-01 3.69(cid:5)0.26 4.02(cid:5)0.40 7.03E-01 1.65(cid:5)0.20 2.04(cid:5)0.30 4.13E-01 Maximumamplitude/movement(pixels) 6.45(cid:5)0.14 6.40(cid:5)0.204 6.02E-01 6.21(cid:5)0.13 6.25(cid:5)0.18 9.36E-01 5.53(cid:5)0.11 5.39(cid:5)0.15 3.45E-01 Movementduration(s) 0.16(cid:5)0.00 0.15(cid:5)0.003 4.91E-02 0.20(cid:5)0.00 0.20(cid:5)0.00 7.56E-01 0.14(cid:5)0.00 0.14(cid:5)0.00 2.28E-01 Movementfrequency(Hz) 0.55(cid:5)0.03 1.11(cid:5)0.051 5.90E-11 0.08(cid:5)0.01 0.08(cid:5)0.01 6.81E-01 0.32(cid:5)0.02 0.39(cid:5)0.03 9.76E-02 Boutduration(s) 1.12(cid:5)0.06 4.94(cid:5)0.501 1.09E-13 0.34(cid:5)0.01 0.42(cid:5)0.02 6.18E-04 0.80(cid:5)0.03 1.15(cid:5)0.07 2.48E-05 Boutfrequency(s) 0.22(cid:5)0.01 0.13(cid:5)0.007 6.90E-09 0.06(cid:5)0.00 0.06(cid:5)0.01 9.36E-01 0.16(cid:5)0.01 0.15(cid:5)0.01 8.37E-01 Restlatency(1min) 20.48(cid:5)3.61 21.09(cid:5)3.89 4.48E-01 Cgrp Wildtype(n(cid:4)42) Cgrp(n(cid:4)37) pvalues Wildtype Cgrp pvalues Wildtype Cgrp pvalues Wakingactivity(s/wakingmin) 4.26(cid:5)0.26 9.30(cid:5)0.490 3.10E-11 1.02(cid:5)0.06 1.23(cid:5)0.07 2.57E-02 2.56(cid:5)0.19 3.65(cid:5)0.34 1.94E-02 Rest(min/10min) 0.89(cid:5)0.16 0.09(cid:5)0.017 3.62E-07 2.98(cid:5)0.27 1.69(cid:5)0.25 1.35E-04 1.48(cid:5)0.21 0.85(cid:5)0.19 5.52E-04 Maximumamplitude/movement(pixels) 7.20(cid:5)0.15 7.23(cid:5)0.166 8.06E-01 6.82(cid:5)0.13 7.00(cid:5)0.16 3.46E-01 6.21(cid:5)0.12 6.00(cid:5)0.14 7.22E-02 Movementduration(s) 0.16(cid:5)0.00 0.16(cid:5)0.002 5.56E-01 0.21(cid:5)0.00 0.22(cid:5)0.00 2.23E-01 0.15(cid:5)0.00 0.14(cid:5)0.00 5.67E-02 Movementfrequency(Hz) 0.55(cid:5)0.04 1.28(cid:5)0.058 3.50E-12 0.07(cid:5)0.01 0.10(cid:5)0.01 5.27E-03 0.36(cid:5)0.03 0.55(cid:5)0.05 2.64E-03 Boutduration(s) 1.15(cid:5)0.10 5.40(cid:5)0.759 6.43E-11 0.36(cid:5)0.01 0.37(cid:5)0.01 2.50E-01 1.00(cid:5)0.07 1.47(cid:5)0.17 1.84E-02 Boutfrequency(s) 0.22(cid:5)0.01 0.18(cid:5)0.013 3.14E-02 0.06(cid:5)0.00 0.08(cid:5)0.01 1.01E-02 0.15(cid:5)0.01 0.18(cid:5)0.01 2.38E-02 Restlatency(1min) 17.84(cid:5)3.11 42.30(cid:5)6.53 9.60E-06 Galanin Wildtype(n(cid:4)23) Galanin(n(cid:4)57) pvalues Wildtype Galanin pvalues Wildtype Galanin pvalues Wakingactivity(s/wakingmin) 5.07(cid:5)0.34 2.52(cid:5)0.131 3.76E-09 1.64(cid:5)0.11 1.81(cid:5)0.09 3.75E-01 4.45(cid:5)0.41 4.30(cid:5)0.23 9.11E-01 Rest(min/10min) 0.96(cid:5)0.36 3.78(cid:5)0.199 7.25E-10 2.22(cid:5)0.30 2.49(cid:5)0.21 5.17E-01 1.03(cid:5)0.23 1.01(cid:5)0.15 9.32E-01 Maximumamplitude/movement(pixels) 7.50(cid:5)0.18 6.67(cid:5)0.116 5.62E-04 6.02(cid:5)0.24 6.40(cid:5)0.12 1.69E-01 7.84(cid:5)0.12 7.88(cid:5)0.11 9.79E-01 Movementduration(s) 0.16(cid:5)0.00 0.15(cid:5)0.002 8.78E-03 0.17(cid:5)0.01 0.18(cid:5)0.00 9.83E-02 0.16(cid:5)0.00 0.16(cid:5)0.00 8.69E-01 Movementfrequency(Hz) 0.72(cid:5)0.05 0.36(cid:5)0.021 1.25E-08 0.21(cid:5)0.02 0.20(cid:5)0.01 7.14E-01 0.58(cid:5)0.05 0.55(cid:5)0.03 7.62E-01 Boutduration(s) 1.21(cid:5)0.10 0.93(cid:5)0.038 2.97E-03 0.43(cid:5)0.01 0.44(cid:5)0.01 9.70E-01 1.33(cid:5)0.16 1.24(cid:5)0.07 9.87E-01 Boutfrequency(s) 0.25(cid:5)0.01 0.15(cid:5)0.006 1.01E-09 0.14(cid:5)0.01 0.13(cid:5)0.01 7.78E-01 0.20(cid:5)0.01 0.20(cid:5)0.01 8.52E-01 Restlatency(1min) 27.62(cid:5)7.03 27.27(cid:5)6.57 7.50E-02 Nociceptin Wildtype(n(cid:4)21) Nociceptin(n(cid:4)57) pvalues Wildtype Nociceptin pvalues Wildtype Nociceptin pvalues Wakingactivity(s/wakingmin) 4.06(cid:5)0.38 2.96(cid:5)0.128 1.30E-02 0.96(cid:5)0.08 1.00(cid:5)0.04 5.77E-01 2.78(cid:5)0.23 2.75(cid:5)0.13 7.14E-01 Rest(min/10min) 1.26(cid:5)0.30 1.84(cid:5)0.155 1.12E-02 2.65(cid:5)0.38 3.26(cid:5)0.20 1.01E-01 1.61(cid:5)0.30 1.78(cid:5)0.17 4.30E-01 Maximumamplitude/movement(pixels) 7.40(cid:5)0.34 8.89(cid:5)0.175 2.93E-04 6.92(cid:5)0.26 7.82(cid:5)0.15 4.14E-03 6.57(cid:5)0.30 7.65(cid:5)0.15 1.52E-03 Movementduration(s) 0.15(cid:5)0.00 0.17(cid:5)0.003 2.68E-04 0.20(cid:5)0.01 0.22(cid:5)0.00 4.32E-02 0.15(cid:5)0.00 0.16(cid:5)0.00 4.69E-04 Movementfrequency(Hz) 0.55(cid:5)0.05 0.31(cid:5)0.016 7.95E-06 0.08(cid:5)0.01 0.07(cid:5)0.00 2.26E-01 0.35(cid:5)0.03 0.29(cid:5)0.01 4.93E-02 Boutduration(s) 1.21(cid:5)0.12 0.81(cid:5)0.029 6.29E-04 0.32(cid:5)0.01 0.36(cid:5)0.01 9.73E-03 0.93(cid:5)0.07 0.88(cid:5)0.04 6.56E-01 Boutfrequency(s) 0.21(cid:5)0.02 0.16(cid:5)0.007 8.38E-04 0.07(cid:5)0.01 0.06(cid:5)0.00 1.51E-01 0.16(cid:5)0.01 0.14(cid:5)0.01 7.79E-02 Restlatency(1min) 20.25(cid:5)5.72 13.42(cid:5)1.46 5.77E-02 Valuesaremean(cid:5)SEMpvaluesfromKruskall–Wallisone-wayANOVA. Woodsetal.•NeuropeptidesandArousalinZebrafish J.Neurosci.,February26,2014•34(9):3142–3160•3145 Table3.Analysisoflocomotoractivityintransgeniclarvaewithoutheatshock Table3.Continued Day5 Day5 Hypocretin Wildtype(n(cid:4)11) Hypocretin(n(cid:4)19) pvalues Nociceptin Wildtype(n(cid:4)11) Hypocretin(n(cid:4)19) pvalues Wakingactivity(s/wakingmin) 3.54(cid:5)0.544 5.26(cid:5)0.543 3.69E-02 Movementfrequency(Hz) 0.33(cid:5)0.031 0.27(cid:5)0.026 1.56E-01 Rest(min/10min) 3.10(cid:5)0.911 1.23(cid:5)0.376 7.39E-02 Boutduration(s) 0.94(cid:5)0.074 1.23(cid:5)0.097 1.12E-02 Maximumamplitude/movement(pixels) 11.60(cid:5)3.322 12.30(cid:5)1.318 2.20E-01 Boutfrequency(s) 0.17(cid:5)0.015 0.12(cid:5)0.012 1.41E-02 Movementduration(s) 0.14(cid:5)0.007 0.14(cid:5)0.003 4.01E-01 Restlatency(1min) 6.40(cid:5)0.44 6.24(cid:5)0.42 6.89E-01 Movementfrequency(Hz) 0.41(cid:5)0.080 0.61(cid:5)0.062 5.55E-02 Valuesaremean(cid:5)SEMpvaluesfromKruskall–Wallisone-wayANOVA.LarvaewiththeHS-nociceptintransgene Boutduration(s) 1.49(cid:5)0.239 1.59(cid:5)0.125 5.61E-01 exhibiteddecreasesinmeasuresofspontaneouslocomotionindependentofheatshock,butthesedecreaseswere Boutfrequency(s) 0.16(cid:5)0.035 0.19(cid:5)0.018 5.19E-01 notstatisticallysignificantaftercorrectionformultiplecomparisons. Restlatency(1min) 11.07(cid:5)1.25 15.96(cid:5)3.28 8.13E-01 Adcyap1b Wildtype(n(cid:4)21) Adcyap1b(n(cid:4)26) pvalues Wakingactivity(s/wakingmin) 3.28(cid:5)0.316 2.93(cid:5)0.239 4.16E-01 agelocomotorparametersacrossthedurationoftheexperimentwere Rest(min/10min) 1.71(cid:5)0.382 2.71(cid:5)0.426 2.19E-01 selectedfordisplay. Maximumamplitude/movement(pixels) 9.80(cid:5)1.584 9.58(cid:5)1.618 8.47E-01 Analysisofsensoryresponsiveness.Ondayfiveofdevelopment((cid:2)124 Movementduration(s) 0.13(cid:5)0.003 0.13(cid:5)0.003 6.38E-01 hpf),larvaeofeithersexweredistributedintosinglewellsofa96-well Movementfrequency(Hz) 0.41(cid:5)0.039 0.36(cid:5)0.032 3.04E-01 plate (7701-1651; Whatman), allowing simultaneous tracking of each Boutduration(s) 1.07(cid:5)0.113 1.05(cid:5)0.108 9.83E-01 individual.Locomotoractivitywasmonitoredviaavideotrackingsystem Boutfrequency(s) 0.19(cid:5)0.019 0.18(cid:5)0.021 4.94E-01 using a camera with 1392 (cid:3) 1040-pixel resolution running at 15 Hz Restlatency(1min) 9.15(cid:5)2.42 8.16(cid:5)0.98 9.91E-01 (Scout sca1400-30fm, Basler Vision Technologies). Stimulus delivery Cart Wildtype(n(cid:4)20) Cart(n(cid:4)26) pvalues andquantificationoflarvalmotionwereperformedinMatlab.Forboth thedark-flashandthetapexperiments,stimulusrangesweretestedupon Wakingactivity(s/wakingmin) 3.79(cid:5)0.368 3.38(cid:5)0.358 3.80E-01 wild-typelarvae,andtheapparatuswassettodeliverarangeofstimuli Rest(min/10min) 1.52(cid:5)0.323 1.93(cid:5)0.510 5.54E-01 thatreliablyelicitedarangeofresponses,fromundetectable(nodiffer- Maximumamplitude/movement(pixels) 12.15(cid:5)2.952 11.68(cid:5)3.197 5.99E-01 encefrombaselinemotion)tosaturating(noincreaseofresponseprob- Movementduration(s) 0.14(cid:5)0.004 0.14(cid:5)0.005 8.26E-01 abilitywithstimuliofgreaterstrength). Movementfrequency(Hz) 0.43(cid:5)0.038 0.38(cid:5)0.046 4.30E-01 Boutduration(s) 1.03(cid:5)0.104 0.99(cid:5)0.077 9.30E-01 Fordark-flashexperiments,larvaewereheatshockedat37°Cfrom9:30 Boutfrequency(s) 0.19(cid:5)0.020 0.17(cid:5)0.020 5.99E-01 to10:30P.M.of5dpf((cid:2)131.5–132.5hpf).Beginningat11P.M.,larvae Restlatency(1min) 38.32(cid:5)14.55 36.64(cid:5)20.77 7.09E-01 weresubjectedtorandomizedreductionsinwhitelightintensity,froma slightdimmingtoalmostcompletedarkness.Stimuliweredeliveredby Cck Wildtype(n(cid:4)29) Cck(n(cid:4)17) pvalues computer-controlledchangesinvoltagedeliveredtoacustom-builtar- Wakingactivity(s/wakingmin) 4.50(cid:5)0.362 3.90(cid:5)0.257 4.19E-01 rayof48whiteLEDs.Thesedarkflasheslastedfor10sandoccurredat Rest(min/10min) 1.26(cid:5)0.261 2.20(cid:5)0.467 9.60E-02 60sintervalsfor4h.Fortapexperiments,larvaewereheatshockedat Maximumamplitude/movement(pixels) 13.29(cid:5)2.039 13.22(cid:5)2.983 9.73E-01 37°Cfrom9:30to10:30P.M.of5dpf((cid:2)131.5–132.5hpf).Stimuliwere Movementduration(s) 0.15(cid:5)0.003 0.15(cid:5)0.005 6.41E-01 deliveredbycomputer-controlledincreasesinvoltagetoasolenoid(Al- Movementfrequency(Hz) 0.49(cid:5)0.041 0.42(cid:5)0.033 3.57E-01 liedElectronics24-I-12D)attachedtotheapparatus.Beginningat3:15 Boutduration(s) 1.60(cid:5)0.241 1.57(cid:5)0.258 9.73E-01 A.M.andcontinuingfor4h,thedishcontaininglarvaewassubjectedto Boutfrequency(s) 0.17(cid:5)0.012 0.16(cid:5)0.018 6.74E-01 automated mechanical taps of randomized intensities. These taps oc- Restlatency(1min) 10.19(cid:5)1.65 13.96(cid:5)3.13 7.97E-02 curredat30sintervals.Thetimingofstimulusdelivery((cid:3)30sbetween Cgrp Wildtype(n(cid:4)40) Cgrp(n(cid:4)43) pvalues eachstimulus)hasbeenshowntobesufficienttopreventbehavioral habituationtorepetitivestimuli(BurgessandGranato,2007a).No Wakingactivity(s/wakingmin) 3.46(cid:5)0.276 4.12(cid:5)0.278 5.56E-02 declinesinresponsivenesswereobservedacrossthedurationofthe Rest(min/10min) 2.48(cid:5)0.403 1.64(cid:5)0.337 7.54E-02 Maximumamplitude/movement(pixels) 11.00(cid:5)1.680 12.18(cid:5)1.596 1.11E-01 experiments. Movementduration(s) 0.14(cid:5)0.003 0.14(cid:5)0.003 1.96E-01 Forthedark-flashandtapstimuli,alarvawasscoredasrespondingif Movementfrequency(Hz) 0.40(cid:5)0.035 0.48(cid:5)0.033 3.77E-02 itdisplaced(cid:7)10pixelswithinabrieftimeperiodfollowingthestimulus Boutduration(s) 1.32(cid:5)0.138 1.11(cid:5)0.077 6.95E-01 (3sfordarkflashes,0.6sfortaps).Responsesofeachlarvawereaveraged Boutfrequency(s) 0.18(cid:5)0.018 0.22(cid:5)0.016 9.01E-02 over 40 replicates of each stimulus intensity for dark flashes, and 45 Restlatency(1min) 47.50(cid:5)11.14 45.03(cid:5)9.52 8.26E-01 replicatesofeachstimulusintensityfortaps. Fortheheatstimulusexperiments,larvaewereheatshockedfrom8to Galanin Wildtype(n(cid:4)19) Galanin(n(cid:4)35) pvalues 9A.M.on6dpf((cid:2)142–143hpf).Onehourafterthecompletionofthis Wakingactivity(s/wakingmin) 3.79(cid:5)0.368 3.38(cid:5)0.358 3.80E-01 heatshock((cid:2)144hpf),theresponseofthelarvaetoa5minpulseofwarm Rest(min/10min) 1.52(cid:5)0.323 1.93(cid:5)0.510 5.54E-01 (37°C)waterwasrecorded. Maximumamplitude/movement(pixels) 12.15(cid:5)2.952 11.68(cid:5)3.197 5.99E-01 Correctionforbackgroundlocomotoractivity.Togeneralizeourtestsof Movementduration(s) 0.14(cid:5)0.004 0.14(cid:5)0.005 8.26E-01 sensoryresponsivenessindependentofcircadiantime,wecorrectedour Movementfrequency(Hz) 0.43(cid:5)0.038 0.38(cid:5)0.046 4.30E-01 measurements for differences in basal locomotor activity. The back- Boutduration(s) 1.03(cid:5)0.104 0.99(cid:5)0.077 9.30E-01 groundprobabilityofmotionwascalculatedbydeterminingthenumber Boutfrequency(s) 0.19(cid:5)0.020 0.17(cid:5)0.020 5.99E-01 oflarvaethatdisplaced(cid:7)10pixelswithintheappropriatetimeinterval Restlatency(1min) 9.20(cid:5)0.76 11.66(cid:5)1.86 5.86E-01 aftera“sham”stimulus,whichwas15sbeforeeachlightstimulusor5s Nociceptin Wildtype(n(cid:4)44) Nociceptin(n(cid:4)44) beforeeachtapstimulus.Thesebackgroundmovementdata(320repli- Wakingactivity(s/wakingmin) 2.97(cid:5)0.232 2.78(cid:5)0.207 6.22E-01 catesforlights,540fortaps)wereusedtocalculateanoffsetvalueforeach Rest(min/10min) 2.83(cid:5)0.388 3.69(cid:5)0.323 4.01E-02 larvathatestimateditsaveragebasalprobabilityofmovementanypoint Maximumamplitude/movement(pixels) 9.57(cid:5)1.344 9.74(cid:5)1.146 4.53E-01 intime.Bysubtractingthisbackgroundprobabilityofmotion,themax- Movementduration(s) 0.14(cid:5)0.003 0.14(cid:5)0.003 1.76E-01 imum probability of response (i.e., the level at which responses were (TableContinues.) asymptoticanddidnotincreasewithstimuliofgreaterstrength)was lowered.Tocorrectforthisdecreaseandthustorepresentthefullrange ofresponseinanaveragedpopulation(0tomaximalprobabilityofre- sponse),wedividedby(maximumresponseminusbackgroundoffset), whichrestoredthemaximumresponsetoitsoriginal,asymptoticlevel. 3146•J.Neurosci.,February26,2014•34(9):3142–3160 Woodsetal.•NeuropeptidesandArousalinZebrafish Thus,foreachstimuluslevel,theprobabilityofresponseatagiven stimulusintensitywascalculatedviathefollowingequation: correctedP(response) (cid:4) observedvalue [observedvalue (cid:6) backgroundoffset] (cid:5) [maxobservedvalue (cid:6) backgroundoffset] Themaximumresponseprobabilitywascalculatedineachexperiment foreachgenotype(transgenicandwild-typesiblings)bydeterminingthe averagenumberofindividualsthatrespondedtothetwostrongeststim- ulioverthemanyreplicatesofthesestimuli. Distributions for response latency were obtained by measuring the elapsedtimebetweenstimulusandresponseatthetwohigheststimulus levels.Inourlatencymeasurements,wenormalizedforbackgrounddif- ferencesinbasalmovementfrequencybyexpressinglatencyintermsof thefollowingratio: correctedlatency (cid:4) Timetofirstmovementobservedafterastimulus Timetofirstmovementobserved,independentofastimulus Responsethresholdwascalculatedbyfittingasigmoidcurvetothecor- rectedresponsedata,anddeterminingthestimuluslevelatwhichhalfof themaximumresponsewasreached.Distributionsforresponsethresh- oldweregeneratedbydeterminingtherangeofthresholdvaluesderived fromfittingsigmoidcurvesto200bootstrapreplicatesforeachgenotype. Fortheresponsestoheatpulse,theaverageactivity(pixelspersecond)for eachgenotypewasobtainedfora5minperiodbeforestimulusdelivery,and wassubtractedfromtheobservedvaluesduringtheanalysiswindow. Principalcomponentsanalysisandphenotypicclustering.Datawereag- Figure1. Definitiveparametersofspontaneouslocomotioninzebrafishlarvae.A,Mean gregatedfor17behavioralmeasures(wakingactivity,restbouts,move- activityplotfor80larvaebetween5and6dpf((cid:2)119–157hpf).Lightanddarkboxesrepresent ment amplitude, movement duration, movement frequency, bout theperiodoftimeduringwhichlocomotoractivityisanalyzed(D,day5;N,night5).Thesharp duration, bout frequency, rest latency, tap latency, tap response, tap increaseanddecreaseinactivityimmediatelybeforethefirstboxrepresentstheeffectofa1h threshold,darklatency,darkresponse,darkthreshold,heatmaximum, heatshockat37°C.Eachdatapointrepresentsthenumberofpixelsdisplacedina10mintime heatresponse,heatrecovery)andsevenpeptides(hypocretin,adcyap1b, window,andthewidthofthelinerepresents(cid:5)SEM.B,Tracesshowingaverageprofilesof cart,cck,cgrp,galanin,andnociceptin).Eachdatapointwasdefinedas individualmovements,measuredbypixeldisplacementat15Hzresolutionduringday(light theratiooftheresponseoftransgenicanimalstotheresponseoftheir shading)andnight(darkshading).Theextentofshadingrepresents(cid:5)SD.Daytimemove- wild-typesiblings.Thedatawerethenlog-transformedtoensurethat mentsare(cid:2)25%largerinamplitude(p(cid:6)1(cid:3)10(cid:8)16),and(cid:2)5%shorterinduration(p(cid:4) bothpositiveandnegativeratiometricvalueswerenumericallyequiva- 6(cid:3)10(cid:8)4).C,Tracesshowingstatisticallytypicalpatternsofactivityover60sforday(light lent, and z-transformed (for each peptide) to place all peptides on a shading)andnight(darkshading).Averagevalueswerecompiledforfiveparametersofloco- commonscale.Phenotypicprofilesforthe17behavioralmeasureswere motorbehavior(movementamplitude,movementduration,movementfrequency,boutdura- clusteredbysimilarityinMatlab. tion,boutfrequency)duringeachperiodofanalysis.Theseparameterswereusedinasearch Thedatasetwasthensubjecttoasingularvaluedecompositiontoidentify amongalllarvaetofindthebestfitting1minwindowoflocomotoractivity.Movementbouts theeigenvectorsandtheircorrespondingeigenvalues.Thegeneralityofthe areindicatedbyhorizontalblacklinesaboveeachactivitytrace.Movementfrequencywas(cid:2)7 resultingspacewasevaluatedintwoways.First,ajackknifeanalysisofthe timeshigherduringtheday(p(cid:6)1(cid:3)10(cid:8)16);movementboutswere(cid:2)3timeslonger(p(cid:6) datawasperformed,decomposingadatasetcomprisingeachpossiblesubset 1(cid:3)10(cid:8)16)and(cid:2)3timesmorefrequent(p(cid:6)1(cid:3)10(cid:8)16)duringtheday.D,Movementsare ofsixpeptides.Next,toconstructanulldataset,amatrixconsistingofour clusteredintobouts.Theactivityofasinglelarvaisshownbymeasuringpixeldisplacement datasetwasdecomposedafterithadbeenrandomlyshuffled;thisanalysis sampledat15Hzover10s.Individualmovements(separatedby(cid:2)67ms)areindicatedbyred wasrepeated10,000timestodefinetherelevantdistributionsofpossible linesabovetheactivitytrace,whileclusteredmovements(separatedby(cid:2)1s)aregroupedinto eigenvector values. The eigenvectors and projections from the jackknife boutsofmotionanddelineatedbyblacklinesabovetheplot.E,Themostcommoninterval analysis were compared with those generated from the full dataset, and betweenmovementinitiationis1s,asshownbycomparingprobabilityofmovementwithtime againstthosegeneratedfromrandomdata. elapsedsincethelastmovement,usingdataunderlyingtheday5locomotionshowninA.F, Summaryofstatisticalcomparisonsbetweenday5andnight5locomotordata.Statistically Results significantincreasesareshowninyellow,whilestatisticallysignificantdecreasesareshownin blue.SeeTable1forpvalues.Significancethresholdsatthe0.05levelwerecorrectedfor Analysisofspontaneouslocomotorbehaviors multiplecomparisonswiththeHolm-Bonferronimethod. Animalsinanincreasedstateofarousalhavebeenproposedto exhibitincreasedspontaneouslocomotoractivityandincreased sensoryresponsiveness(Pfaff,2006).Toanalyzespontaneouslo- derlyingdifferencesinlocomotoractivity.Forexample,theydo comotoractivityinlarvalzebrafish,wequantifiedlocomotorbe- not answer the following questions: do differences in activity haviors via a videotracking assay (Prober et al., 2006). As result from changes in the strength or frequency of individual previouslyreported(Proberetal.,2006;Riheletal.,2010),larval movements, in the organization of individual movements into zebrafishafter5dpf(120hpf)exhibitrobustdifferencesinloco- contiguousbouts,orsomecombinationoftheseparameters?To motorbehaviorbetweendayandnight(Fig.1A).Fishwereespe- addressthesequestions,wesampledlocomotoractivityatares- ciallyactiveduringtheday(Table1,Fig.1A);incontrast,periods olution of 15 Hz (Table 1), allowing us to quantify movement ofrestwereincreasedatnight(Table1). frequency (the number of times a movement was initiated per Althoughtheseanalysesaresuitablefordistinguishingovert second), movement duration (the average length of individual behavioraldifferences,theydonotcompletelydescribetheun- movementsbeforereturningtorest),andmovementamplitude Woodsetal.•NeuropeptidesandArousalinZebrafish J.Neurosci.,February26,2014•34(9):3142–3160•3147 Figure2. Effectsofhypocretinonlocomotoractivity.A–D,Meanwakingactivity(A)andrestbout(C)plotsandquantitativecomparisons(B,D)forlarvaebetween5and6dpf.Lightanddark shadingrepresentstheperiodoftimeduringwhichlocomotoractivityisanalyzed(D,day5;N,night5).Hypocretin(red)inducedstrikingincreasesinwakingactivity(A,B)anddecreasesinrestbouts (C,D),comparedwithwild-typesiblings(black).Forthebox-and-whiskerplotsinC,D,andI–M,theanalysistimeframeisindicatedbylightanddarkshadingasin(A),thehorizontallinesshowthe medians,thenotchescorrespondtothe95%confidenceintervalsaroundthemedians,theopenregionsdelineatethe25thand75thquartiles,andthelinesrepresentthemostextremedatapoints withinthedistribution.E,F,Averagesinglemovementtracesareshownforday(E)andnight(F),comparinghypocretin-overexpressinglarvae(red)withtheirwild-typesiblings(black).G,H,Traces showingstatisticallytypicalpatternsofactivityover60sforday(G)andnight(H).I–M,Comparisonsoflocomotorparametersbetweenhypocretin-overexpressinglarvae(red)withtheirwild-type siblings(black).Themoststrikingdifferenceswereinthefrequencyofmovementinitiation:hypocretininduceda(cid:2)40%increaseinmovementfrequencyduringtheday(p(cid:4)4(cid:3)10(cid:8)4)anda (cid:2)70%increaseatnight(p(cid:4)8(cid:3)10(cid:8)12).N,Summaryofstatisticalcomparisonsforlocomotordataduringtheday.Statisticallysignificantincreaseshypocretinlarvaeareshowninyellow,while statisticallysignificantdecreasesareshowninblue.SeeTable2forpvalues.Significancethresholdsatthe0.05levelwerecorrectedformultiplecomparisonswiththeHolm-Bonferronimethod. (the maximum number of pixels displaced per movement). duringcircadiannightinbothconstantdarkandconstantlight Traces indicating average activity profiles of wild-type larvae conditions.Ouranalysisofmovementduration,however,indi- were generated for day and night movement beginning in the catedthatlongermovementswereobservedinconstantdarkand afternoon(2to11P.M.)of5dpf((cid:2)124–133hpf),andduringthe shortermovementsinconstantlight,regardlessofcircadiantime followingnight(Fig.1A,B).Ingeneral,daytimemovementsoc- (Table1).Together,thesedatasuggestthatdifferencesinmove- curredmuchmorefrequently,wereofslightlyhigheramplitude, mentfrequencyandamplitudearisefromcircadianinfluences, and were of shorter duration than nighttime movements (Fig. whereasthedifferenceinmovementdurationreflectsacircadian- 1B,C,F; Fig. 2I–K, wild type; Table 1). Thus, much of the day independentfeatureofmovementindarkness. versus night differences in locomotor activity is driven by the Toexaminethearchitecturalstructureoflocomotion,wede- frequencyofmovementinitiation,withonlyslightchangesinthe terminedhowindividualmovementsareclusteredintoboutsof kinematicpropertiesofindividualmovements. activity.Qualitativeanalysisofactivitytracesofindividuallarvae Todistinguishwhethertheincreaseinaveragemovementdu- indicated that some movements are isolated, whereas other rationatnightreflectedagenuinecircadianinfluenceonloco- movements are organized in bouts of movements in rapid se- motion or was an epiphenomenon of nighttime darkness, we quence(Fig.1D).Aplotofelapsedrestversustheprobabilityof repeatedtheanalysisunderconstantdarkandconstantlightcon- motionofindividuallarvaeduringday5revealedthatlarvaehave ditions after circadian entrainment (Table 1). Both movement thehighestprobabilityofmotionfollowingarestintervalof(cid:2)1s amplitude and movement frequency recapitulated the pattern (Fig.1E).Wethuschose1stodelineatetheboundarybetween observedundernormallight–darkcycling,withhigheractivity movement bouts, and thereby defined a movement bout as a levelsduringcircadianday.Theday–nightdifferencesinmove- continuousgroupofmovementsinterruptedby(cid:2)1sofrest.As mentfrequencywereattenuatedinbothconstantdarkandcon- with the frequency of individual movements, the frequency of stant light treatments compared with normal light cycling movementboutinitiationwasincreasedgreatlyduringtheday. conditions,andweobservedareductioninmovementamplitude In addition, bout duration was much greater during day than 3148•J.Neurosci.,February26,2014•34(9):3142–3160 Woodsetal.•NeuropeptidesandArousalinZebrafish night(Fig.1C;Fig.2L,M,wildtype;Table1).Thus,oncealarva initiated a movement, it tended to remain active for a longer periodoftimeduringthedaytimecomparedwithnight.Together, ourhigh-resolutionanalysisenabledustorepresentcomplexspon- taneouslocomotorbehaviorsbyfivesimpleparameters:movement frequency, movement duration, movement amplitude, bout fre- quency,andboutduration. Totestthepotentialofourhigh-resolutionanalysisindetect- ing neuropeptide-induced behavioral changes, we focused on hypocretin(alsoknownasorexin).Previousworkshowedthat induction of hypocretin expression in stable transgenic larvae stimulates activity and reduces rest (Prober et al., 2006; Fig. 2A–D; Table 2), but these analyses could not determine which aspect(s)ofindividualmovementswereresponsibleforthedif- ferences in overall locomotor activity. On 5 dpf, expression of hypocretinslightlyincreasedtheaveragemaximummovementam- plitude(Fig.2E,I,N;Table2).Theincreaseinmovementfrequency (Fig.2G,K,N)wasmuchmorepronounced,aswereincreasesin movement bout frequency (Fig. 2G,M,N) and duration (Fig. 2G,L,N).Similarincreasesforalloftheseparameterswereobserved onthefollowingnight(Fig.2I–M;Table2).Increasesinallmeasured parametersextendedsimilarlythrough6dpf(Table2).Thus,hypo- cretingreatlyincreasedthefrequencyofmovementinitiationand thelengthofmovementbouts,withminimaleffectsontheampli- tudeanddurationofindividualmovements.Thisanalysishighlights thepowerofourhigh-resolutionassaystouncoverdifferencesin spontaneouslocomotoractivityandtoelucidateneuropeptidergic effectsuponthesebehaviors. Analysisofsensoryresponsiveness Ananimalinanelevatedarousalstateshouldexhibit,inaddition to increases in spontaneous locomotor activity, increased re- sponsiveness to sensory stimuli of multiple modalities (Pfaff, 2006).Toanalyzesensoryresponsiveness,weequippedourvid- eotracking apparatus with computer-controlled delivery of di- versestimuli.Thisnovelparadigmfacilitateddeliveryofchanges in light, sound, and temperature in parallel to multiple larvae, Figure3. Effectsofhypocretinonsensoryresponsiveness.A,B,Overviewofthedark-flash andenabledcollectionoflocomotorresponsedatainrealtime andtapstimulusparadigms.A,B,Averagelocomotorresponsesof96wild-typelarvaeat5dpf (Fig.3A–D). [(cid:2)133–137hpffordarkflashes(A),(cid:2)137.25–141.25hpffortaps(B)]tostimuliofvarying Previous work indicated that sudden onset of darkness in- intensityareshown.C,ResponsecurvesaregeneratedviaanalysisofthelocomotordatafromA ducesrobustlocomotorresponsesinzebrafishlarvae(Proberet andBwithinabriefperiodoftimefollowingthestimuli(A,B,grayboxes;3sfollowingdark al.,2006;BurgessandGranato,2007b).Wefoundthatthemag- flashes,and0.6sfollowingthetaps).Threeresponseparametersarecalculated:(1)responsive- nitudeoftheseresponsescorrelatedwiththestrengthofthestim- ness,orthemaximumprobabilityofresponseatthestrongeststimuli;(2)threshold,orthe ulus (Fig. 3A), where a weak stimulus consisted of a slight stimulusstrengthatwhichthehalf-maximalresponseisreached;and(3)responselatency,or dimmingofambientlightandastrongstimuluswasatransition theaveragetimeelapsedbetweenthestimulusandinitiationofactivity.D,Overviewofthe toalmostcompletedarkness.Varyingthestrengthofsuch“dark- thermalstimulusparadigm.A5minheatpulseisdeliveredtolarvaeon6dpf((cid:2)144hpf).Three flash”stimuliproducedasigmoidalresponsecurve,withasymp- behavioralparametersarerecordedforeachlarva:(1)themaximalactivityduringtheheat exposure,measuredinpixelsdisplacedpersecond;(2)thetotalresponse,measuredintotal totesatthebasalleveloflocomotionwithweakornostimuliand pixelsdisplacedduringtheheatexposure;and(3)therecovery,measuredintotalpixelsdis- the maximal level of response at the strongest stimuli (Fig. placedduringthe2minfollowingheatexposure.E–G,Responseofhypocretin-overexpressing 3A,C,E).Similarly,responsestoautomatedtapsofvariousinten- larvaetosensorystimuli.StatisticalcomparisonsaresummarizedasinFigures1and2.Com- sities(frominaudibletoasymptotic)werecollectedandanalyzed paredwiththeirwild-typesiblings,hypocretin-overexpressinglarvaeshowednochangein in a manner analogous to the dark flashes (Fig. 3B,C,F). To responselatencytodark-flashstimuli(E),butastrikingincreaseinprobabilityofresponse(p(cid:4) analyzetheresponsetoathermalstimulus,webrieflyexposedthe 6.6(cid:3)10(cid:8)11)andadecreaseinresponsethreshold(p(cid:4)1.7(cid:3)10(cid:8)4).Incontrast, larvaetowarm((cid:2)37°C)waterandassessedchangesinlocomotor hypocretin-overexpressinglarvaeshowednochangesinresponsetotap(F)orthermal(G) activity(Proberetal.,2008;Fig.3D,G). stimuli.WidthofthelineinGrepresents(cid:5)SEM.SeeTable4forstatisticalcomparisons.Signif- Weestablishednineindividualcomponentsofresponsiveness icancethresholdsatthe0.05levelwerecorrectedformultiplecomparisonswiththeHolm- oflarvalzebrafishtosensorystimuli.Fromboththedark-flash Bonferronimethod. andtapanalyses,weextractedthreeparametersofresponsebe- haviors:(1)probability(themaximalresponseobservedinterms heat-responseanalyses,weextractedthreeparameters:(1)max- ofpercentageoflarvaeresponding;Fig.3C),(2)threshold(the imalmagnitudeofresponse,(2)totallocomotoractivityexhib- stimulus strength sufficient to induce a response at half of its itedoverthecourseofstimulusapplication,and(3)totalactivity maximal value; Fig. 3C), and (3) latency (the time elapsed be- exhibitedduringtherecoveryperiodastemperaturereturnedto tween a stimulus and the first observed movement). From the normal(Fig.3D). Woodsetal.•NeuropeptidesandArousalinZebrafish J.Neurosci.,February26,2014•34(9):3142–3160•3149 Figure4. Expressionofcckandnociceptinat5dpf,andubiquitousinductionofpeptideexpressionbyheatshock.A–D,Expressionoftheindicatedtranscriptsviainsituhybridizationanalysis, vieweddorsally(A,C)andlaterally(B,D)at5dpf.Cck(A,B)wasexpressedprominentlyinthelefthabenula,whilenociceptin(C,D)wasexpressedinclustersofcellslocalizedsymmetricallywithin thebrain.E–P,Expressionofindicatedtranscriptsintransgenicembryosandtheirwild-typesiblingsat1dpf.Embryoswereheatshockedfor1hat37°C,andwerefixed2hpostheatshockforinsitu hybridization.Uponheatshock,peptideexpressionwasinducedubiquitouslyintransgenicembryos,butnotintheirwild-typesiblings. Totestthepotentialofourhigh-resolutionanalysisindetect- sponsiveness,andtoelucidateneuropeptidergiceffectsonthese ingneuropeptide-inducedchangesinsensoryresponsiveness,we behaviors. exposed heatshock (HS)-hypocretin larvae and their wild-type siblingstodark-flash,mechanoacoustic,andthermalstimuli.Be- Systematiccomparisonofneuropeptidergicregulation causehypocretininduceschangesinbasalmovementfrequency ofarousal (Fig.2),wecorrectedoursensoryresponsivenessmeasurements Todeterminewhetherthepartitioningofarousalbehaviorsob- forbackgrounddifferencesinmovementprobability(seeMate- serveduponhypocretinexpressioncanbeextendedtootherneu- rialsandMethods).Consequently,inourresponsivenessexper- ropeptides, we created stable transgenic zebrafish in which iments, we report the probability that an observed movement candidate neuropeptides could be inducibly expressed upon resultedfromthestimulus,independentfromanydifferencesin heatshock(Fig.4).Wereasonedthatthisapproachwouldfacili- basal locomotor activity. Even after these corrections, HS- tate systematic dissection of arousal behaviors and suggest the hypocretin larvae exhibited strikingly increased overall respon- evolutionarily conserved functions of molecular regulators of sivenesstothedark-flashstimuli,andaconcomitantdecreasein arousal.Peptideswereselectedtomaximizediversitywithrespect theresponsethreshold(Fig.3E).Incontrast,theresponsiveness topeptidefamilyandrolesinarousal-relatedbehaviors,andto ofHS-hypocretinlarvaetoacousticandthermalstimuliwasin- sample peptides known to be expressed within the CNS of ze- distinguishablefromthatoftheirwild-typesiblings(Fig.3F,G). brafishlarvaewithinthefirst5dpf(Altetal.,2006;Blechmanet Thus,althoughhypocretinstronglyelevatedbehaviorsassociated al., 2007; Nishio et al., 2012; Podlasz et al., 2012; Fig. 4A–D). with sensory responsiveness, its effects were surprisingly Basedonthesecriteria,wechosepeptidessuggestedfrommam- modality-specific,demonstratingthatcharacteristicsofrespon- malian studies to promote sleep (galanin), induce (cck, cart, siveness to diverse stimuli can clearly be independent in larval adcyap1b) or alleviate anxiety (nociceptin), regulate locomotor zebrafish.Thisanalysisillustratesthepowerofourassaytoun- activity(adcyap1b,cgrp),ormodulatestress(adcyap1b)forfur- coversubtledifferencesinbehaviorsassociatedwithsensoryre- ther analyses (Crawley and Corwin, 1994; Jenck et al., 1997; 3150•J.Neurosci.,February26,2014•34(9):3142–3160 Woodsetal.•NeuropeptidesandArousalinZebrafish Ko¨ster et al., 1999; Kova´cs et al., 1999; Hashimoto et al., 2001; Reinscheid and Civelli,2002;Saperetal.,2005;Gavioliet al.,2007;Roggeetal.,2008;Hammacket al., 2009; Schorscher-Petcu et al., 2009; Vaudryetal.,2009;Rotzingeretal.,2010; Ressleretal.,2011;Sinketal.,2011).We studied the effects of neuropeptide ex- pressiononarousalbehaviorsinzebrafish larvae(Figs.5–9;Tables2–5). Wechoseagain-of-functionapproach for three reasons. First, classic studies of neuropeptide function have established the power of gain-of-function assays to characterize neuropeptidergic activities viainjectionofpurifiedneuropeptideinto thebrainandanalysisofresultingbehav- iors (Pedersen and Prange, 1979; So¨der- stenetal.,1983;Clarketal.,1984;Sakurai etal.,1998;Nakazatoetal.,2001).Inthis approach, the neuropeptide is expressed atlevelssufficienttooccupyandactivate mostifnotallitsreceptors,resultingin a gain-of-function phenotype indepen- dent of the site of neuropeptide expres- sion. Although such approaches cannot distinguishbetweendirectandindirectef- fects,gain-of-functionassayshaveledto the isolation and characterization of sig- nals that regulate specific behaviors in vertebrates (e.g., NPY, oxytocin, vaso- pressin, ghrelin, hypocretin/orexin; Ped- ersenandPrange,1979;So¨derstenetal., 1983; Clark et al., 1984; Sakurai et al., 1998;Nakazatoetal.,2001).Weemploya similarstrategybyinducingneuropeptide expressionatthegeneticlevel.Second,al- thoughgain-of-functionapproachescan- not establish an essential or endogenous roleforaneuropeptide,theyresultinsig- nalingpathwayactivationthatovercomes theproblemofredundancyfoundinloss- of-functionassays.Third,theconditional induction of peptide expression only during the behavioral assays avoids the earlierdevelopmental,physiological,or compensatory effects that often limit loss-of-function approaches. For example, blockofnociceptinsignalingduringem- bryogenesis leads to defects in placode progenitor formation (Lleras-Forero et al., 2013). Although the conditional in- duction approach cannot uncover func- tions caused by distinct patterns of activity (e.g., tonic vs phasic release of a neuropeptide), it avoids the indirect ef- fectscausedbylong-termlossorgainof Figure5. Neuropeptidergicmodulationoflocomotoractivity.ActivityandrestplotsweregeneratedasinFigure1for neuropeptide expression. Based on this larvaeoverexpressingadcyap1b(A,B,purple),cart(C,D,green),cck(E,F,yellow),cgrp(G,H,aqua),galanin(I,J,brown), rationale,westudiedtheeffectsofcondi- nociceptin(K,L,blue),andtheirrespectivewild-typesiblings(black).Shadingrepresentsmean(cid:5)SEM.Summariesof tional neuropeptide misexpression on comparisonsbetweenpeptide-overexpressingfishandtheirwild-typesiblingsareshowntotherightofthefigure. arousalbehaviorsinzebrafishlarvae(Figs. Statisticallysignificantincreasesinlocomotorbehaviorsforday5depictedinyellow,whilestatisticallysignificantde- 5–9;Tables2–5).Intotal,weobtained119 creasesareshowninblue.SeeTable2forpvalues.Significancethresholdsatthe0.05levelwerecorrectedformultiple different behavioral measurements over comparisonswiththeHolm-Bonferronimethod. Woodsetal.•NeuropeptidesandArousalinZebrafish J.Neurosci.,February26,2014•34(9):3142–3160•3151 Figure6. Comparisonofpeptide-inducedlocomotorphenotypeson5dpfat15Hzresolution.Eachpanelshowsbox-and-whiskerplotsasinFigure2.Themedianwild-typevalueforeach parameterisshownbythehorizontaldashedline.StatisticalcomparisonswereperformedbyKruskal–WallisANOVAandTukey’shonestlysignificantdifferencecriteriaformultiplecomparisons; boldcolordelineatesdifferencefromthewild-typedistributionsat99.9%confidencelevel(p(cid:6)0.001).A,Wakingactivity,asmeasuredbythetotaltimespentmovingin10minintervals.B,Rest bouts,definedasthenumberof1minspansofcontinuousinactivityin10minintervals.C,Movementfrequency,whereamovementisdefinedasapixeldisplacementprecededandfollowedby arestintervalatthetemporallimitofresolution(i.e.,67ms).D,Movementduration,definedastheaveragelengthofpixeldisplacementpermovement,asdefinedinC.E,Movementamplitude, definedbythemeanmaximumamplitudepermovement,asdefinedinC.F,Boutfrequency,whereaboutisdefinedasaclusterofmovementsseparatedby(cid:2)1sofinactivity.G,Boutduration,as definedinF.H,Interboutrest,ortheaverageamountoftimeelapsedbetweenmovementbouts,asdefinedinF.I,Restlatency,definedbytheaveragenumberofminuteselapsedbetweenlights outon5dpfandthefirst1minperiodofinactivity.J–O,Statisticallytypicalmovementprofileson5dpffortheindicatedgenotypes,basedonthe1minwindowofdatathatmostcloselymatches measuredvaluesformovementfrequency,movementamplitude,movementduration,boutfrequency,andboutduration.Movementboutsaredelineatedbyhorizontalblacklinesaboveeach activitytrace. thecourseofourexperiments(7peptides(cid:3)17measurements). peptideinducedareductioninrest(Fig.5H;Table2),whereasgala- Results of all measurements and peptides are summarized as a ninandnociceptinincreasedrest(Fig.5J,L;Table2). heatmapinFigure9A. Todeterminewhetheractivityandrestareinterdependent aspects of locomotor behavior, we compared the rest/wake Neuropeptidergicregulationofspontaneous profilesinducedbyneuropeptides.Althoughsomeneuropep- locomotoractivity tides(e.g.,cgrpandgalanin)inducedphenotypesinwhichrest Totestwhetherneuropeptidesinfluencedspontaneouslocomo- andactivitywerealteredinoppositedirections,rest/wakebe- toractivity,weplacedtransgeniclarvaeandtheirwild-typesib- haviorswerenotalwaysinverselycorrelated.Forexample,cck lingsintoavideotrackingdeviceintheafternoonof4dpf((cid:2)100 hadnoeffectonrestbouts(Figs.5F,6B;Table2),incontrast hpf), and induced neuropeptide expression via heatshock at toitsstrongenhancementofwakingactivity(Figs.5E,6A).In noonon5dpf.Locomotorbehaviorwasanalyzedthrough6dpf. addition,themovementarchitectureinducedbycckwasdis- Peptideexpressioninducedawiderangeofphenotypes(Fig.5; tinct:cckinducedlongermovementbouts(Fig.6G)atalower Table2).Forexample,cckandcgrpinducedincreasesinwaking frequency(Fig.6F)thanotheractivatingpeptides(hypocretin activityond5,similartohypocretin(Fig.5E,G;Table2),whereas andcgrp),yetrestintervalsbetweenboutswereequivalentto oppositeeffectswereinducedbygalaninandnociceptin(Fig.5I,K; thoseofwild-typesiblings(Fig.6H;Table2).Thus,thecom- Table 2). In addition, cgrp was similar to hypocretin in that this parisonoflocomotorbehaviorsacrossthepanelofneuropep-
Description: