ebook img

Neurons: A Mathematical Ignition PDF

231 Pages·2014·2.49 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neurons: A Mathematical Ignition

9263_9789814618618_TP.indd 1 18/8/14 10:21 am Series on Number Theory and Its Applications ISSN 1793-3161 Series Editor: Shigeru Kanemitsu (Kinki University, Japan) Editorial Board Members: V. N. Chubarikov (Moscow State University, Russian Federation) Christopher Deninger (Universität Münster, Germany) Chaohua Jia (Chinese Academy of Sciences, PR China) Jianya Liu (Shangdong University, PR China) H. Niederreiter (National University of Singapore, Singapore) Advisory Board: A. Schinzel (Polish Academy of Sciences, Poland) M. Waldschmidt (Université Pierre et Marie Curie, France) Published Vol. 1 Arithmetic Geometry and Number Theory edited by Lin Weng & Iku Nakamura Vol. 2 Number Theory: Sailing on the Sea of Number Theory edited by S. Kanemitsu & J.-Y. Liu Vol. 4 Problems and Solutions in Real Analysis by Masayoshi Hata Vol. 5 Algebraic Geometry and Its Applications edited by J. Chaumine, J. Hirschfeld & R. Rolland Vol. 6 Number Theory: Dreaming in Dreams edited by T. Aoki, S. Kanemitsu & J.-Y. Liu Vol. 7 Geometry and Analysis of Automorphic Forms of Several Variables Proceedings of the International Symposium in Honor of Takayuki Oda on the Occasion of His 60th Birthday edited by Yoshinori Hamahata, Takashi Ichikawa, Atsushi Murase & Takashi Sugano Vol. 8 Number Theory: Arithmetic in Shangri-La Proceedings of the 6th China–Japan Seminar edited by S. Kanemitsu, H.-Z. Li & J.-Y. Liu Vol. 9 Neurons: A Mathematical Ignition by Masayoshi Hata LaiFun - Neurons.A Mathematical Ignition.indd 1 25/8/2014 3:09:20 PM World Scientific 9263_9789814618618_TP.indd 2 18/8/14 10:21 am Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Series on Number Theory and Its Applications — Vol. 9 NEURONS A Mathematical Ignition Copyright © 2015 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-4618-61-8 Printed in Singapore LaiFun - Neurons.A Mathematical Ignition.indd 2 25/8/2014 3:09:20 PM August12,2014 16:54 9263-Neurons:AMathematicalIgnition 9789814618618 pagev Preface Thepresentbookisaconsiderablyrevisedversionofmaterialsgivenbytheauthor in some intensive courses at Hokkaido University, the University of Tokyo and OsakaCityUniversityin1996,andatYamaguchiUniversityin2010. Itissaidthatourbrainconsistsofmorethanahundredbillionneurons,which are connectedmutuallybysynapsesandbehavetremendouslyin its complexity, and that, if one connectsall the axonsand dendritesin a brain end to end, then itattainsalengthinexcessofamillionkilometers. In1961E.R.Caianiellopub- lishedamonumentalpaperentitled“Outlineofatheoryofthought-processesand thinkingmachines”inJournalof TheoreticalBiology,inwhichhehadstrength- ened the convictionthat the human brain yet obeysdynamicallaws that are not necessarilycomplicated,ifonelooksattheoperationofindividualneurons. This book deals with two mathematicalsides of Caianiello’s neuronic equa- tions; one is from the point of view of dynamical systems and the other from thenumber-theoreticpointofview.Inparticular,thelattershowsthatCaianiello’s equationsarecloselyrelatedtosometopicsinelementarynumbertheoryandeven intranscendentalnumbertheory. TheauthorhascomefullcirclebacktoCaianiello’sneuronicequations,which were the first research theme in his career. The author expresses deep gratitude to the late Professor Masaya Yamaguti, his supervisorat KyotoUniversity, who broughthimtothissubjectofresearchandhandedhisfirstpapertothelatePro- fessorCaianiellodirectlyattheUniversityofSalernointhelate1980s. EachchapterexceptforChapter2endswithsomeinstructiveandmostlyorig- inal exercises at various levels. Some contain examples, additional results and related topics, whichwouldprovidea sense ofperspective,andseveralare used in thetext. Foralmostallexercisesthe detailedsolutionsaregiveninHintsand Solutionsattheendofthebook.Thetableoftheassociatedpolynomialswillhelp forreaderstoverifyandinvestigatetheirrelations. v August12,2014 16:54 9263-Neurons:AMathematicalIgnition 9789814618618 pagevi vi Neurons:AMathematicalIgnition Allthefiguresinthebookweredrawnbyusing“Grapher2.1”bundledwith MacOSX. WerefertothewebsiteofI.I.A.S.S.(http://www.iiassvietri.it)fortheprofile andhistoricalnotesaboutProfessorCaianiello. TheauthorcordiallyappreciatesProfessorShigeruKanemitsuwhoprovided uninterruptedencouragementand the exquisite title of this book with a twofold significance.TheauthorisalsodeeplyindebtedtoProfessorMichelWaldschmidt for his careful reading of the manuscript and for giving detailed comments and suggestions. Also thanksare due to the staff of World Scientific Publishing Co. fortheexcellenthelpandcooperation. This work is supported by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for World-Leading Innovative R&D on ScienceandTechnology(FIRSTProgram)”. Kyoto, JAPAN M.Hata August12,2014 16:54 9263-Neurons:AMathematicalIgnition 9789814618618 pagevii Contents Preface v SymbolsandNotations xi 1. BasicsofDiscreteDynamicalSystems 1 1.1 OrbitsandPeriodicPoints . . . . . . . . . . . . . . . . . . . . 1 1.2 OrbitsintheSenseofKuratowski . . . . . . . . . . . . . . . . 3 1.3 PiecewiseLinearMaps . . . . . . . . . . . . . . . . . . . . . . 4 1.4 InvariantPropertiesunderIterations . . . . . . . . . . . . . . . 6 1.5 TopologicalConjugacy . . . . . . . . . . . . . . . . . . . . . . 7 1.6 SymbolicDynamics. . . . . . . . . . . . . . . . . . . . . . . . 8 ExercisesinChapter1 . . . . . . . . . . . . . . . . . . . . . . . 9 2. Caianiello’sEquations 11 2.1 BriefHistory . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Caianiello’sNeuronicEquations . . . . . . . . . . . . . . . . . 12 2.3 Nagumo-Sato’sEquation . . . . . . . . . . . . . . . . . . . . . 14 2.4 Higher-DimensionalAnalogy . . . . . . . . . . . . . . . . . . 15 3. RotationNumbers 19 3.1 SetB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 DiscontinuityPointsof fn . . . . . . . . . . . . . . . . . . . . 20 3.3 Itineraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4 RotationNumbers. . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 InvariantCoordinates . . . . . . . . . . . . . . . . . . . . . . . 28 ExercisesinChapter3 . . . . . . . . . . . . . . . . . . . . . . . 30 vii August12,2014 16:54 9263-Neurons:AMathematicalIgnition 9789814618618 pageviii viii Neurons:AMathematicalIgnition 4. Classificationof B 33 4.1 NumberofSubintervals. . . . . . . . . . . . . . . . . . . . . . 33 4.2 FundamentalProperties . . . . . . . . . . . . . . . . . . . . . . 34 4.3 PeriodicBehaviorfor f ∈B . . . . . . . . . . . . . . . . . . . 36 q 4.4 ClassificationofB . . . . . . . . . . . . . . . . . . . . . . . . 38 q 4.5 Classificationof E(p/q) . . . . . . . . . . . . . . . . . . . . . 39 4.6 BasicPropertiesof f ∈B∞ . . . . . . . . . . . . . . . . . . . . 42 4.7 CharacterizationofEφ andE0 . . . . . . . . . . . . . . . . . . 42 ExercisesinChapter4 . . . . . . . . . . . . . . . . . . . . . . . 44 5. FareySeries 45 5.1 FareySeries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 FareyIntervals . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 Predecessors . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 5.4 FloorandCeilingFunctions . . . . . . . . . . . . . . . . . . . 49 5.5 TailInversionSequences . . . . . . . . . . . . . . . . . . . . . 51 5.6 ApproximationSequences . . . . . . . . . . . . . . . . . . . . 52 5.7 ContinuedFractionExpansions. . . . . . . . . . . . . . . . . . 57 ExercisesinChapter5 . . . . . . . . . . . . . . . . . . . . . . . 60 6. FurtherInvestigationof f ∈B∞ 63 6.1 Cases (a)and (b) . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2 BehaviorinCase (a) . . . . . . . . . . . . . . . . . . . . . . . 64 6.3 DiscontinuationofCase (b) . . . . . . . . . . . . . . . . . . . 67 6.4 Cases (A)and (B) . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.5 InvariantCoordinatesfor f ∈B∞ . . . . . . . . . . . . . . . . 69 ExercisesinChapter6 . . . . . . . . . . . . . . . . . . . . . . . 73 7. LimitSets Ω and ω (x) 75 f f 7.1 Definitionof Ω . . . . . . . . . . . . . . . . . . . . . . . . . 75 f 7.2 AperiodicBehavior . . . . . . . . . . . . . . . . . . . . . . . . 77 7.3 ω-LimitSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4 Recurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.5 ComplexityofItineraries . . . . . . . . . . . . . . . . . . . . . 82 ExercisesinChapter7 . . . . . . . . . . . . . . . . . . . . . . . 84 8. PiecewiseLinearMaps 85 8.1 BasicFormulaeoftheFirstKind . . . . . . . . . . . . . . . . . 85 August12,2014 16:54 9263-Neurons:AMathematicalIgnition 9789814618618 pageix Contents ix 8.2 LimitSets Ωψ . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 8.3 BasicFormulaeoftheSecondKind . . . . . . . . . . . . . . . 92 8.4 HausdorffDimensionof Ωψ . . . . . . . . . . . . . . . . . . . 95 ExercisesinChapter8 . . . . . . . . . . . . . . . . . . . . . . . 99 9. OrbitalandItineraryFunctions 103 9.1 OrbitalFunctionsu andv . . . . . . . . . . . . . . . . . . . . 103 n n 9.2 u-andv-DiscontinuityPoints . . . . . . . . . . . . . . . . . . 105 9.3 ItineraryFunctionsU andV . . . . . . . . . . . . . . . . . . . 107 n n ExercisesinChapter9 . . . . . . . . . . . . . . . . . . . . . . . 111 10. FareyStructure 113 10.1 Constructionwhenra,b =1 . . . . . . . . . . . . . . . . . . . . 113 10.2 Constructionwhenra,b <1 . . . . . . . . . . . . . . . . . . . . 118 10.3 ResidualSets . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 10.4 LengthofΔ(p/q) . . . . . . . . . . . . . . . . . . . . . . . . . 124 10.5 DistancebetweenTwoΔ’s . . . . . . . . . . . . . . . . . . . . 125 10.6 SomePropertieswhenra,b <1 . . . . . . . . . . . . . . . . . . 128 10.7 Proofof |Γa,b|=0whena<1 . . . . . . . . . . . . . . . . . . 130 10.8 Proofof |Γa,b|=0whena≥1 . . . . . . . . . . . . . . . . . . 133 10.9 SummationFormulae . . . . . . . . . . . . . . . . . . . . . . . 134 10.10 HausdorffDimensionofΓa,b . . . . . . . . . . . . . . . . . . . 137 10.11 RotationNumberFunctions . . . . . . . . . . . . . . . . . . . 139 ExercisesinChapter10 . . . . . . . . . . . . . . . . . . . . . . 142 11. α-and β-Leaves 143 11.1 DefinitionofLeaves . . . . . . . . . . . . . . . . . . . . . . . 143 11.2 Limitsofα-Leaves . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3 Limitsof β-Leaves . . . . . . . . . . . . . . . . . . . . . . . . 152 ExercisesinChapter11 . . . . . . . . . . . . . . . . . . . . . . 160 12. ApproximationstoHecke-MahlerSeries 161 12.1 MinimalIndices. . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.2 ApproximationstoMμandHμ . . . . . . . . . . . . . . . . . . 162 12.3 IrrationalityExponents . . . . . . . . . . . . . . . . . . . . . . 166 12.4 LeavesoutsideFirstQuadrant . . . . . . . . . . . . . . . . . . 171 12.5 InfiniteOscillationofH1/ϕ . . . . . . . . . . . . . . . . . . . . 178 12.6 SumsinvolvingFibonacciNumbers . . . . . . . . . . . . . . . 181

Description:
This unique volume presents a fruitful and beautiful mathematical world hidden in Caianiello's neuronic equations, which describe the instantaneous behavior of a model of a brain or thinking machine. The detailed analysis from a viewpoint of dynamical systems , even in a single neuron case, enables
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.