ebook img

Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition PDF

590 Pages·2014·10.166 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition

NEURONAL DYNAMICS Whathappensinourbrainwhenwemakeadecision?Whattriggersaneurontosendout asignal?Whatistheneuralcode? This textbook for advanced undergraduate and beginning graduate students provides a thoroughandup-to-dateintroductiontothefieldsofcomputationalandtheoreticalneuro- science.Itcoversclassicaltopics,includingtheHodgkin–HuxleyequationsandHopfield model,aswellasmoderndevelopmentsinthefieldsuchasGeneralizedLinearModelsand decisiontheory.Conceptsareintroducedusingclearstep-by-stepexplanationssuitablefor readerswithonlyabasicknowledgeofdifferentialequationsandprobabilities,andrichly illustratedbyfiguresandworked-outexamples. End-of-chapter summaries and classroom-tested exercises make the book ideal for coursesorforself-study.Theauthorsalsogivepointerstotheliteratureandanextensive bibliography,whichwillproveinvaluabletoreadersinterestedinfurtherstudy. WulframGerstnerisDirectoroftheLaboratoryofComputationalNeuroscienceanda ProfessorofLifeSciencesandComputerScienceattheE´colePolytechniqueFe´de´ralede Lausanne(EPFL)inSwitzerland.HestudiedphysicsinTu¨bingenandMunichandholdsa PhDfromtheTechnicalUniversityofMunich.Hisresearchincomputationalneuroscience concentrates on models of spiking neurons and synaptic plasticity. He teaches computa- tionalneurosciencetophysicists,computerscientists,mathematicians,andlifescientists. Heisco-authorofSpikingNeuronModels(CambridgeUniversityPress,2002). WernerM.KistlerreceivedaMaster’sandPhDinphysicsfromtheTechnicalUniver- sity of Munich. He previously worked as Assistant Professor in Rotterdam for computa- tional neuroscience and he is co-author of Spiking Neuron Models. He is now working in Munich as a patent attorney. His scientific contributions are related to spiking neuron models,synapticplasticity,andnetworkmodelsofthecerebellumandtheinferiorolive. RichardNaudholdsaPhDincomputationalneurosciencefromtheEPFLinSwitzerland and a Bachelor’s degree in Physics from McGill University, Canada. He has published severalscientificarticlesandbookchaptersonthedynamicsofneurons.Heisnowapost- doctoralresearcher. LiamPaninskiisaProfessorinthestatisticsdepartmentatColumbiaUniversityandco- director of the Grossman Center for the Statistics of Mind. He is also a member of the CenterforTheoreticalNeuroscience,theKavliInstituteforBrainScienceandthedoctoral program in neurobiology and behavior. He holds a PhD in neuroscience from New York UniversityandaBachelor’sfromBrownUniversity.Hisworkfocusesonneuronmodels, estimationmethods,neuralcodingandneuraldecoding.Heteachescoursesoncomputa- tionalstatistics,inference,andstatisticalanalysisofneuraldata. NEURONAL DYNAMICS From Single Neurons to Networks and Models of Cognition WULFRAM GERSTNER WERNER M. KISTLER RICHARD NAUD LIAM PANINSKI UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107060838 ©CambridgeUniversityPress2014 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2014 PrintedintheUnitedKingdombyTJInternationalLtd.PadstowCornwall AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloging-in-PublicationData Gerstner,Wulfram. Neuronaldynamics:fromsingleneuronstonetworksandmodelsofcognition/WulframGerstner, WernerM.Kistler,RichardNaud,LiamPaninski. pages cm ISBN978-1-107-06083-8(Hardback:alk.paper) ISBN978-1-107-63519-7(Paperback:alk.paper) 1. Neurobiology. 2. Neuralnetworks(Neurobiology). 3. Cognitiveneuroscience. I. Kistler,WernerM.,1969– II. Naud,Richard. III. Paninski,Liam. IV. Title. QP363.G4742014 612.8–dc23 2013047693 ISBN978-1-107-06083-8Hardback ISBN978-1-107-63519-7Paperback Additionalresourcesforthispublicationatwww.cambridge.org/gerstner CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix PARTONE FOUNDATIONSOFNEURONALDYNAMICS 1 1 Introduction:neuronsandmathematics 3 1.1 Elementsofneuronalsystems 3 1.2 Elementsofneuronaldynamics 7 1.3 Integrate-and-firemodels 10 1.4 Limitationsoftheleakyintegrate-and-firemodel 19 1.5 Whatcanweexpectfromintegrate-and-firemodels? 23 1.6 Summary 25 2 IonchannelsandtheHodgkin–Huxleymodel 28 2.1 Equilibriumpotential 28 2.2 Hodgkin–Huxleymodel 31 2.3 Thezooofionchannels 42 2.4 Summary 56 3 Dendritesandsynapses 58 3.1 Synapses 58 3.2 Spatialstructure:thedendritictree 64 3.3 Spatialstructure:axons 72 3.4 Compartmentalmodels 75 3.5 Summary 79 4 Dimensionalityreductionandphaseplaneanalysis 81 4.1 Thresholdeffects 81 4.2 Reductiontotwodimensions 84 4.3 Phaseplaneanalysis 91 4.4 TypeIandtypeIIneuronmodels 96 4.5 Thresholdandexcitability 103 4.6 Separationoftimescalesandreductiontoonedimension 108 4.7 Summary 111 vi Contents PARTTWO GENERALIZEDINTEGRATE-AND-FIRENEURONS 115 5 Nonlinearintegrate-and-firemodels 119 5.1 Thresholdsinanonlinearintegrate-and-firemodel 120 5.2 Exponentialintegrate-and-firemodel 124 5.3 Quadraticintegrateandfire 129 5.4 Summary 132 6 Adaptationandfiringpatterns 136 6.1 Adaptiveexponentialintegrate-and-fire 136 6.2 Firingpatterns 140 6.3 Biophysicaloriginofadaptation 149 6.4 SpikeResponseModel(SRM) 154 6.5 Summary 165 7 Variabilityofspiketrainsandneuralcodes 168 7.1 Spike-trainvariability 169 7.2 Meanfiringrate 172 7.3 Intervaldistributionandcoefficientofvariation 178 7.4 Autocorrelationfunctionandnoisespectrum 179 7.5 Renewalstatistics 181 7.6 Theproblemofneuralcoding 190 7.7 Summary 199 8 Noisyinputmodels:barrageofspikearrivals 202 8.1 Noiseinput 202 8.2 Stochasticspikearrival 207 8.3 Subthresholdvs.superthresholdregime 212 8.4 DiffusionlimitandFokker–Planckequation(*) 215 8.5 Summary 221 9 Noisyoutput:escaperateandsoftthreshold 224 9.1 Escapenoise 224 9.2 Likelihoodofaspiketrain 229 9.3 RenewalapproximationoftheSpikeResponseModel 232 9.4 Fromnoisyinputstoescapenoise 235 9.5 Summary 241 10 Estimatingparametersofprobabilisticneuronmodels 243 10.1 Parameteroptimizationinlinearandnonlinearmodels 244 10.2 Statisticalformulationofencodingmodels 249 10.3 Evaluatinggoodness-of-fit 255 10.4 Closed-loopstimulusdesign 263 10.5 Summary 264 Contents vii 11 Encodinganddecodingwithstochasticneuronmodels 267 11.1 Encodingmodelsforintracellularrecordings 268 11.2 Encodingmodelsinsystemsneuroscience 273 11.3 Decoding 278 11.4 Summary 285 PARTTHREE NETWORKSOFNEURONSAND POPULATIONACTIVITY 287 12 Neuronalpopulations 291 12.1 Columnarorganization 293 12.2 Identicalneurons:amathematicalabstraction 297 12.3 Connectivityschemes 300 12.4 Frommicroscopictomacroscopic 309 12.5 Summary 322 13 ContinuityequationandtheFokker–Planckapproach 325 13.1 Continuityequation 326 13.2 Stochasticspikearrival 328 13.3 Fokker–Planckequation 332 13.4 Networksofleakyintegrate-and-fireneurons 335 13.5 Networksofnonlinearintegrate-and-fireneurons 341 13.6 Neuronaladaptationandsynapticconductance 347 13.7 Summary 353 14 Quasi-renewaltheoryandtheintegral-equationapproach 357 14.1 Populationactivityequations 358 14.2 Recurrentnetworksandinteractingpopulations 367 14.3 Linearresponsetotime-dependentinput 375 14.4 Densityequationsvs.integralequations 381 14.5 Adaptationinpopulationequations 386 14.6 Heterogeneityandfinitesize 390 14.7 Summary 392 15 Fasttransientsandratemodels 395 15.1 Howfastarepopulationresponses? 397 15.2 Fasttransientsvs.slowtransientsinmodels 399 15.3 Ratemodels 408 15.4 Summary 414 viii Contents PARTFOUR DYNAMICSOFCOGNITION 417 16 Competingpopulationsanddecisionmaking 421 16.1 Perceptualdecisionmaking 422 16.2 Competitionthroughcommoninhibition 426 16.3 Dynamicsofdecisionmaking 428 16.4 Alternativedecisionmodels 433 16.5 Humandecisions,determinism,andfreewill 436 16.6 Summary 439 17 Memoryandattractordynamics 442 17.1 Associationsandmemory 442 17.2 Hopfieldmodel 446 17.3 Memorynetworkswithspikingneurons 458 17.4 Summary 464 18 Corticalfieldmodelsforperception 467 18.1 Spatialcontinuummodel 468 18.2 Input-drivenregimeandsensorycortexmodels 472 18.3 Bumpattractorsandspontaneouspatternformation 484 18.4 Summary 488 19 Synapticplasticityandlearning 491 19.1 Hebbruleandexperiments 492 19.2 ModelsofHebbianlearning 495 19.3 Unsupervisedlearning 505 19.4 Reward-basedlearning 516 19.5 Summary 519 20 Outlook:dynamicsinplasticnetworks 524 20.1 Reservoircomputing 524 20.2 Oscillations:goodorbad? 529 20.3 Helpingpatients 541 20.4 Summary 544 References 547 Index 573 Preface This textbook for advanced undergraduate and beginning graduate students provides a systematicintroductionintothefieldsofneuronmodeling,neuronaldynamics,neuralcod- ing, and neural networks. It can be used as a text for introductory courses on Computa- tionalandTheoreticalNeuroscienceorasmaintextforamorefocusedcourseonNeural DynamicsandNeuralModelingatthegraduatelevel.Thebookisalsoausefulresourcefor researchersandstudentswhowanttolearnhowdifferentmodelsofneuronsanddescrip- tionsofneuralactivityarerelatedtoeachother. Allmathematicalconceptsareintroducedthepedestrianway:stepbystep.Allchapters are richly illustrated by figures and worked examples. Each chapter closes with a short summaryandaseriesofmathematicalExercises.Ontheauthors’webpagePythonsource codeisprovidedfornumericalsimulationsthatillustratethemainideasandmodelsofthe chapter(http://lcn.epfl.ch/∼gerstner/NeuronalDynamics.html). Thebookisorganizedintofourpartswithatotalof20chapters.PartIprovidesageneral introductiontothefoundationsofcomputationalneuroscienceanditsmathematicaltools. ItcoversclassicmaterialsuchastheHodgkin–Huxleymodel,ionchannelsanddendrites, or phase plane analysis of two-dimensional systems of differential equations. A special focusisputonthefiringthresholdforthegenerationofactionpotentials,intheHodgkin– Huxleymodels,aswellasinreducedtwo-dimensionalneuronmodelssuchastheMorris– Lecarmodel. Part II focuses on simplified models for the dynamics of a single neuron. It covers nonlinearintegrate-and-firemodelswithandwithoutadaptation,inparticularthequadratic and exponential integrate-and-fire model, as well as the Izhikevich model and adaptive exponentialintegrate-and-firemodel.Thequestionofnoiseintheneuraldynamicsisposed andtwoclassicdescriptionsofnoisearepresented.First,stochasticityarisingfromrandom spikearrival:thisapproachleadstoanoiseterminthedifferentialequationofthevoltage, and can be formulated as a Langevin equation. Second, intrinsic stochasticity of neurons leading to an “escape” across the firing threshold even when the neuron is in the sub- threshold regime: this approach leads to the framework of a Generalized Linear Model which is systematically introduced and discussed in applications of neuronal coding and decoding. The relation between the neuron models of Part II and biological data is highlightedandsystematicparameteroptimizationalgorithmsarepresented.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.