ebook img

Neuroinflammatory Alterations via CD-36 in Traumatic Brain Injury PDF

134 Pages·2015·2.85 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neuroinflammatory Alterations via CD-36 in Traumatic Brain Injury

UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa DDiiggiittaall CCoommmmoonnss @@ UUnniivveerrssiittyy ooff SSoouutthh FFlloorriiddaa USF Tampa Graduate Theses and Dissertations USF Graduate Theses and Dissertations January 2015 NNeeuurrooiinnflflaammmmaattoorryy AAlltteerraattiioonnss vviiaa CCDD--3366 iinn TTrraauummaattiicc BBrraaiinn IInnjjuurryy Diana G. Hernandez-Ontiveros University of South Florida, [email protected] Follow this and additional works at: https://digitalcommons.usf.edu/etd Part of the Neurosciences Commons SScchhoollaarr CCoommmmoonnss CCiittaattiioonn Hernandez-Ontiveros, Diana G., "Neuroinflammatory Alterations via CD-36 in Traumatic Brain Injury" (2015). USF Tampa Graduate Theses and Dissertations. https://digitalcommons.usf.edu/etd/5699 This Dissertation is brought to you for free and open access by the USF Graduate Theses and Dissertations at Digital Commons @ University of South Florida. It has been accepted for inclusion in USF Tampa Graduate Theses and Dissertations by an authorized administrator of Digital Commons @ University of South Florida. For more information, please contact [email protected]. Neuroinflammatory Alterations via CD-36 in Traumatic Brain Injury by Diana G. Hernandez-Ontiveros A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy of Medical Sciences Department of Molecular Pharmacology and Physiology with a Concentration in Neurosciences Morsani College of Medicine University of South Florida Major Professor: Paula C. Bickford, Ph.D. Andreas G. Seyfang, Ph.D. Dominic P. D’Agostino, Ph.D. Daniel Kay-Pong Yip, Ph.D. Date of Approval: July 8, 2015 Keywords: Fatty acid translocase, inflammation, oxidized low density lipoprotein, macrophages, soluble receptor of advanced end glycation Copyright © 2015, Diana G. Hernandez-Ontiveros DEDICATION I would like to dedicate this work to my parents and family members who have been a propelling force and anchor throughout my entire professional education in the USA. In addition to my parents, Francisco and Carmen, I would like to also give recognition to my grandparents, Paca and Rogelio, for their love, and for playing an active role in my education, and encouragement to pursue my academic goals. At the same time, to my brother Cesar for his friendship, constant protection and optimism since we left our hometown. I am deeply thankful to my husband Anthony, and the “Russo-Scaglione clan” for their love, affection, help, and motivation to continue moving forward with my life aspirations. I am very grateful and fortunate for being able to find friends who have helped me along the road: “Muchísimas gracias Coqui P., el Deland G., el Kentucky G., Amanda G., Drashti, and M. Li.” My profound admiration and appreciation to all these significant people in my life, who in one way or another have contributed to my professional education. ACKNOWLEDGMENTS I would like to state my sincere gratitude to my mentor Dr. Paula C. Bickford, for allowing me to learn under her mentorship, for her continuous advice and patience to mentor me throughout my graduate studies in order to piece together this dissertation and doctorate degree. This academic endeavor was possible through a common effort from many collaborators. Thus, I would like to acknowledge every lab member with whom I have teamed up over the past five years to acquire research experience in the field of neuroscience. Their contribution has been very valuable in all activities related to this dissertation project. I would like to thank: faculty, post-docs, graduate and undergraduate students, USF lab technicians and staff, and all volunteers who have dedicated their time and effort to help complete my dissertation, in particular Arum Yoo, Lyanne M. Suarez, Jenny Kim, Christian Cerecedo, Daniela Aguirre Raigoza, Diego Lozano, and Stephanny Reyes. My special thanks to Dr. Mibel Pabon, Dr. Jared Ehrhart, Dr. Josh Morganti, Dr. Naoki Tajiri, Dr. Byeong Cha, and Amanda Garces for being there throughout my graduate school, for cheering and encouraging me to improve myself in my studies and scientific skills. Finally, I particularly would like to thank all faculty members of my committee: Dr. Dominic P. D’Agostino, Dr. Andreas G. Seyfang, Dr. Daniel K.P. Yip, and Dr. Stanley M. Stevens Jr., who kindly steered me in the right direction with their useful criticism in order to improve my knowledge in this field and the quality of this dissertation. My special thanks to Dr. Eric S. Bennett and Dr. Christopher C. Combie for their support and concern on the final stages of my dissertation. All of these individuals inspire me to continue expanding my scientific knowledge and my research abilities in the medical and neurosciences fields. i TABLE OF CONTENTS List of Figures ............................................................................................................................ iv Abstract...................................................................................................................................... vi Chapter 1: Introduction ................................................................................................................ 1 1.1 Traumatic Brain Injury (TBI) ....................................................................................... 1 1.1.1 Societal Burden Costs ............................................................................... 10 1.1.2 Gaps in Basic Science Knowledge of TBI ................................................. 10 1.1.3 Gaps in Translational and Clinical Knowledge in TBI ................................ 11 1.2 Cell Death Mechanisms Associated with Secondary Damage in TBI ...................... 13 1.2.1 Neuroinflammation .................................................................................... 17 1.3 CD-36, Fatty Acid Translocase ................................................................................ 21 1.4 Role of CD-36 in Atherosclerosis ............................................................................ 22 1.5 Role of CD-36 in Stroke .......................................................................................... 24 1.6 Role of CD-36 in TBI ............................................................................................... 27 1.7 Role of CD-36 in Other Neurodegenerative Diseases ............................................. 29 1.7.1 Alzheimer’s Disease .................................................................................. 29 1.7.2 Cerebral Amyloid Angiopathy .................................................................... 31 1.7.3 Parkinson’s Disease ............................................................................................ 32 Chapter 2: Materials and Methods ............................................................................................ 34 2.1 Animals ................................................................................................................... 35 2.2 Surgical Procedures ............................................................................................... 35 2.3 Histology.................................................................................................................. 36 2.4 Tissue Collection for Protein Analysis ...................................................................... 37 2.5 Immunohistochemistry ............................................................................................. 38 2.5.1 CD-36/MCP-1 immunohistochemistry in Brain .......................................... 38 2.5.2 CD-36/Iba-1 immunohistochemistry in Brain ............................................. 38 2.5.3 CD-36/NeuN immunohistochemistry in Brain ............................................ 39 2.5.4 CD-36/GFAP immunohistochemistry in Brain ............................................ 39 2.5.5 CD-36 immunohistochemistry in Spleen .................................................... 40 2.6 Laser Scanning Confocal Microscopy ..................................................................... 40 2.7 Fluorescencent Microscopy ..................................................................................... 40 2.8 Statistical Analysis on Indirect Immunofluorescence in Brain .................................. 41 2.9 Statistical Analysis on Fluorescence Intensity in Spleen .......................................... 41 2.10 Tissue Processing ................................................................................................ 41 2.11 Western Blot ......................................................................................................... 42 2.12 Statistical Analysis on Western Blot ...................................................................... 42 2.13 Cell Culture ........................................................................................................... 43 2.13.1 Measurement of Cell Viability: Calcein-AM Fluorescence Dye ................ 43 2.13.2 Measurement of Mitochondrial Activity: MTT Assay ................................ 44 ii 2.14 Preliminary in vitro Experiments............................................................................. 44 2.14.1 In Vitro study CD-36 and sRAGE expression .......................................... 44 2.14.2 CD-36, Spleen and TBI ........................................................................... 44 2.14.3 TBI and CD-36 Immune Response in Neonatal Rats .............................. 45 2.14.4 sRAGE Modulates CD-36 Expression in Neonatal Spleen and Brain after TBI ........................................................................................ 45 Chapter 3: Inflammatory Role of CD-36 in an Animal Model of TBI .......................................... 46 3.1 Introduction ........................................................................................................... 46 3.1.1 Why CD-36 as a Biomarker of Inflammation? ........................................... 46 3.1.2 Inflammatory Pathways Related to CD-36 ................................................. 47 3.1.3 Neuroinflammation in TBI Accompanied by CD-36 Expression in Brain and Spleen ...................................................................................... 48 3.2 Specific Materials and Methods ............................................................................. 49 3.2.1 Surgical Procedures ................................................................................. 49 3.2.2 Immunohistochemistry of Brain ................................................................ 50 3.2.3 Immunohistochemistry of Spleen ............................................................. 51 3.2.4 Statistical Analysis on Indirect Immunofluorescence in Brain .................... 52 3.2.5 Statistical Analysis of Fluorescence Intensity in Spleen ............................ 53 3.2.6 Western Blot ............................................................................................. 53 3.2.7 Statistical Analysis on Western Blot .......................................................... 54 3.3 Results .................................................................................................................. 55 3.3.1 CD-36 Expression in the TBI Brain ........................................................... 55 3.3.2 CD-36 in the TBI Spleen .......................................................................... 61 3.3.3 Western Blot ............................................................................................ 67 3.3.3.1 Protein Detection in the Brain Cortex ......................................... 67 3.3.3.2 Protein Detection in the Spleen ................................................. 67 3.4 Discussion ............................................................................................................. 72 Chapter 4: Pharmacological Interventions Designed to Abrogate TBI Related Inflammation May Improve Functional Outcome ................................................................................. 78 4.1 Introduction ............................................................................................................ 78 4.2 Specific Materials and Methods .............................................................................. 79 4.2.1 Measurement of Cell Viability: Calcein-AM fluorescence dye .................... 80 4.2.2 Measurement of mitochondrial activity: MTT assay .................................. 80 4.2.3 Data Analysis ........................................................................................... 81 4.3 Results .................................................................................................................. 81 4.4 Discussion ............................................................................................................. 82 Chapter 5: Stem Cell Therapy in Combination with sRAGE May Ameliorate Neuroinflammation in an In-Vitro Cell Model of TBI ............................................................. 88 5.1 Introduction ........................................................................................................... 88 5.2 Specific Materials and Methods .............................................................................. 90 5.2.1 Measurement of Cell Viability: Calcein-AM Fluorescence Dye .................. 91 5.2.2 Measurement of Mitochondrial Activity: MTT Assay ................................. 91 5.2.3 Data Analysis ............................................................................................ 92 5.3 Results .................................................................................................................. 92 5.4 Discussion ............................................................................................................. 93 Chapter 6: Discussion ............................................................................................................... 98 6.1 Relevance of CD-36 ................................................................................................ 98 iii 6.2 Inflammation and TBI............................................................................................... 98 6.3 Effects of sRAGE in an in Vitro Cell Model of Inflammation .................................. 102 6.4 Therapeutic Effects of Combination Stem Cell Therapy and sRAGE ..................... 103 References ............................................................................................................................ 107 Appendix A: Publications ........................................................................................................ 120 Appendix B: Publisher’s Permission to use Figure 1 ............................................................... 122 About the Author ....................................................................................................... END PAGE iv LIST OF FIGURES Figure 1: Mechanisms associated with secondary damage in TBI ......................................... 15 Figure 2: Co-localization of CD-36/MCP-1, CD-36/Iba-1 at the cortical core of impact at 24 hours post-TBI ................................................................................................ 56 Figure 3: Co-localization of CD-36/MCP-1, CD-36/Iba-1 at the cortical core of impact at 48 hours post-TBI ................................................................................................ 57 Figure 4: Co-localization of CD-36/MCP-1, CD-36/Iba-1 at the cortical core of impact at 7 days post-TBI.................................................................................................... 58 Figure 5: Co-localization of CD-36/MCP-1, CD-36/Iba-1 at the cortical core of impact at 60 days post-TBI .................................................................................................. 59 Figure 6: A-D Co-localization of CD-36/NeuN at 24 hours after TBI ....................................... 60 Figure 7: A-D Minimal co-localization of CD-36/ GFAP at 24 hours after TBI ....................... 62 Figure 8: Spleen CD-36 immunodetection at 24 hours post TBI ............................................ 63 Figure 9: Spleen CD-36 immunodetection at 48 hours post TBI ............................................ 64 Figure 10: Spleen CD-36 immunodetection at 7 days post TBI. ............................................... 65 Figure 11: Spleen CD-36 immunodetection at 60 days post TBI .............................................. 66 Figure 12: CD-36 brain cortex protein expression at 24 hours post-TBI ................................... 68 Figure 13: CD-36 brain protein expression 48 hours post-TBI .................................................. 69 Figure 14: CD-36 protein expression in spleen 24 hours post-TBI ........................................... 70 Figure 15: CD-36 protein expression in spleen of 48 hours post-TBI ........................................ 71 Figure 16: CD-36 protein expression in spleen of 7 days post-TBI. .......................................... 72 Figure 17: In Vitro hNP1 cells relative cell viability Calcein assay using sRAGE. ..................... 83 Figure 18: In Vitro hNP1 cells relative metabolic activity MTT assay using sRAGE. ................. 84 Figure 19: In Vitro hNP1 cells relative cell viability Calcein assay using stem cells. ................. 94 v Figure 20: In Vitro hNP1 cells relative metabolic activity MTT assay using stem cells .............. 95 vi ABSTRACT Traumatic brain injury (TBI) has become an increasingly unmet clinical need due to intense military conflicts worldwide. Directly impacted brain cells suffer massive death, with neighboring cells succumbing to progressive neurodegeneration accompanied by inflammatory and other secondary cell death events. Subsequent neurodegenerative events may extend to normal areas beyond the core of injury, thereby exacerbating the central nervous system’s inflammatory response to TBI. Recently CD-36 (cluster of differentiation 36/fatty acid translocase (FAT), a class B scavenger receptor of modified low-density lipoproteins (mLDLs) in macrophages, has been implicated in lipid metabolism, atherosclerosis, oxidative stress, and tissue injury in cerebral ischemia, and in certain neurodegenerative diseases. Accordingly, we proposed that CD-36 has a pivotal role in the neuroinflammatory cascade that further contributes to the pathology of TBI. First, we explored the neuroinflammatory role of CD-36 after acute and chronic stages of TBI. Second, we employed a neuroinflammatory model to test the therapeutic effect of the soluble receptor of advanced end- glycation product (sRAGE); previously shown to abrogate increased CD-36 expression in stroke. Third, we further examined ameliorating TBI related inflammation as a therapeutic pathway by combination of stem cell therapy and sRAGE. At acute stages of TBI, we observed brain co-localization of CD-36, monocyte chemoattractant protein 1 (MCP-1) and ionized calcium-binding adapter molecule 1 (Iba-1) on impacted cortical areas, significant increases of CD-36 and MCP-1 positive cells in the ipsilateral vs. contralateral hemispheres of TBI animals in acute, but no significant increases of Iba-1 expressing cells over time. In early acute stages of TBI immunoblotting showed overexpression of CD-36 in brain cortex when comparing ipsilateral

Description:
2.13.1 Measurement of Cell Viability: Calcein-AM Fluorescence Dye . to the head causing cognitive, psychological, neurological, and anatomical
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.