ebook img

Neurodegeneration in accelerated aging PDF

190 Pages·2016·41.55 MB·Italian
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neurodegeneration in accelerated aging

Neurodegeneration in accelerated aging Morten Scheibye-Knudsen Doctoral dissertation th October 15 2014 The Faculty of Health and Medical Sciences at the University of Copenhagen has accepted this dissertation for public defence for the doctoral degree in medicine. Copenhagen, December 11th 2015. Ulla M. Wewer, Dean, Faculty of Health Sciences, University of Copenhagen The oral defense will take place on January 14th 2016. Neurodegeneration in accelerated aging © Morten Scheibye-Knudsen, 2015 Printed in Denmark 2015 ISBN 978-87-998807-0-6 2 Contents Preface ......................................................................................................................................................... 4 Summary ...................................................................................................................................................... 6 Dansk resumé .............................................................................................................................................. 7 Publications forming the basis of the thesis ................................................................................................ 8 Introduction ................................................................................................................................................. 9 Accelerated aging ...................................................................................................................................... 12 Werner syndrome .............................................................................................................................. 13 Hutchinson-Gilford progeria syndrome ............................................................................................. 13 Nestor-Guillermo progeria syndrome ................................................................................................ 14 Bloom syndrome ................................................................................................................................ 14 Rothmund-Thomson syndrome ......................................................................................................... 15 Dyskeratosis congenita ...................................................................................................................... 15 Fanconi anemia .................................................................................................................................. 16 Ataxia-Telangiectasia ......................................................................................................................... 17 Cockayne syndrome ........................................................................................................................... 17 Xeroderma pigmentosum .................................................................................................................. 18 Mitochondria ............................................................................................................................................. 20 Mitochondrial theory of aging ............................................................................................................... 22 Mitochondrial maintenance ...................................................................................................................... 25 Uncoupling proteins .............................................................................................................................. 25 Antioxidants ........................................................................................................................................... 27 DNA repair ............................................................................................................................................. 28 Mitophagy .............................................................................................................................................. 36 What is a mitochondrial disease? .............................................................................................................. 40 Metabolic and mitochondrial alterations in Cockayne syndrome ............................................................. 42 Defective mitophagy in accelerated aging disorders ................................................................................. 45 Dietary interventions in Cockayne syndrome ............................................................................................ 47 Looking ahead ............................................................................................................................................ 49 Conclusion ................................................................................................................................................. 53 Appendix .................................................................................................................................................... 70 3 Preface The work herein represents my investigation into aspects of mitochondrial maintenance in health and aging. More specifically, this dissertation attempts to explain the potential involvement of the mitochondria, in several DNA repair disorders. The work has been conducted over the last 6 years in the Laboratory of Molecular Gerontology at the National Institute on Aging, NIH, USA in the lab of Dr. Vilhelm A, Bohr. First I would like to thank Dr. Vilhelm Bohr. Through the years I have been continuously guided and challenged by Dr. Vilhelm A. Bohr. He has provided invaluable feedback to all the projects and without him the science presented herein and this dissertation would certainly never have happened. For this I offer my deepest gratitude and respect. I wish to thank Dr. Rafael de Cabo who early on decided to put his faith in me on the off chance that a particular mouse model might have a metabolic phenotype. This fruitful collaboration has been instrumental in my continuous development as a scientist. I must thank all the people in the Laboratory of Molecular Gerontology, NIA, for the fantastic research environment and friendly atmosphere. In particular, Dr. Evandro Fei Fang should be highlighted for his immense contribution to the research that forms the basis of this thesis. Dr. Sarah Mitchell, from the Translational Gerontology Branch, should also be mentioned for tirelessly helping with previous and ongoing projects. I wish to acknowledge my collaborators, Drs. Marcus Cooper, Richard Spencer, Hilde Nilsen, James R. Mitchell, Aswin Mangerich, Mark P. Mattson, Linda H. Bergersen, David G. Le Couteur, Ruin Moaddel, David Wilson 3rd and Deborah L. Croteau for their important contributions and support of the research. 4 I owe thanks to my brother, Dr. Karsten Scheibye-Alsing, who was my greatest inspiration during my childhood and who has helped me in too many ways to mention. I am deeply grateful for the fantastic experience it has been to continue our scientific journey together and I look forward to many more years of shared research. To my wife, Dr. Pia Steen Petersen, who was close to me despite being separated by the Atlantic Ocean, who has blessed me with two beautiful daughters, Frida and Anna-My, and who has given me invaluable scientific feedback on all my manuscripts, thank you. 5 Summary The growing proportion of elderly people represents an increasing economic burden, not least because of age-associated diseases that pose a significant cost to the health service. Finding possible interventions to age associated disorders therefore have wide ranging implications. A number of genetically defined accelerated aging diseases have been characterized that can aid in our understanding of aging. Interestingly, all these diseases are associated with defects in the maintenance of our genome. A subset of these disorders, Cockayne syndrome, Xeroderma pigmentosum group A and ataxia-telangiectasia, show neurological involvement reminiscent of what is seen in primary human mitochondrial diseases. Mitochondria are the power plants of the cells converting energy stored in oxygen, sugar, fat, and protein into ATP, the energetic currency of our body. Emerging evidence has linked this organelle to aging and finding mitochondrial dysfunction in accelerated aging disorders thereby strengthens the mitochondrial theory of aging. This theory states that an accumulation of damage to the mitochondria may underlie the process of aging. Indeed, it appears that some accelerated aging disorders that show neurodegeneration also have mitochondrial dysfunction. The mitochondrial alterations may be secondary to defects in nuclear DNA repair. Indeed, nuclear DNA damage may lead to increased energy consumption, alterations in mitochondrial ATP production and defects in mitochondrial recycling, a term called mitophagy. These changes may be caused by activation of poly-ADP-ribose-polymerase 1 (PARP1), an enzyme that responds to DNA damage. Upon activation PARP1 utilizes key metabolites that attenuate pathways that are normally protective for the cell. Notably, pharmacological inhibition of PARP1 or reconstitution of the metabolites rescues the changes caused by PARP1 hyperactivation and in many cases reverse the phenotypes associated with accelerated aging. This implies that modulation of PARP1 or the downstream metabolites may be a therapeutic strategy for treating accelerated aging disorders and potentially age associated neurological decline seen in the normal population. 6 Dansk resumé Den stigende andel af ældre i befolkningen udgør en voksende samfundsøkonomisk byrde, ikke mindst på grund af alders-associerede sygdomme, der udgør en betydelig udgift for sundhedsvæsnet. Det har derfor stor samfundsmæssig værdi at finde interventioner for aldersbetingede lidelser. En række genetisk definerede sygdomme udviser accelereret aldring, hvilket giver os enestående muligheder for at studere og forstå aldringsprocessen. Disse sygdomme er forårsaget af fejl i vedligeholdelse af vores arvemateriale, DNAet. Af disse udviser patienter der lider af Cockayne syndrom, Xeroderma pigmentosum gruppe A og ataxia-telangiectasia neurologiske symptomer, der minder om, hvad der observeres i primære mitokondrielle sygdomme. Mitokondrierne er cellernes kraftværk, der omdanner oplagret energi i ilt, sukker, fedt og protein til ATP, vores krops energivaluta. En række observationer har knyttet dette organel til aldring, og muligheden for at finde mitokondriel dysfunktion i lidelser der udviser accelereret aldring vil derved styrke den mitokondrielle aldringsteori. Det har vist sig, at de accelererede aldringslidelser der udviser væsentlig neurologisk involvering , også har mitokondriel dysfunktion. De mitokondrielle ændringer er muligvis en sekundær effekt af dysfunktion i reparationen af vores arvemateriale i cellekernen. Faktisk ser det ud til, at skade på arvematerialet kan føre til øget stofskifte, samt ændringer i mitokondriel energiproduktion og i nedbrydning af mitokondrier, en process kaldet mitophagy. Disse ændringer kan være forårsaget af aktivering af et enzym, poly-ADP-ribose- polymerase 1 (PARP1), der aktiveres af DNA-skader. Ved aktivering af PARP1 forbruges vigtige metabolitter, der normalt er beskyttende for cellen. Farmakologisk hæmning af PARP1 eller genetablering af metabolitterne har vist sig at være gavnlig i forskellige modeller af accelereret aldring. Dette betyder, at regulering af PARP1, eller metabolitter der forbruges af PARP1, kan være i stand til at behandle lidelser karakteriseret ved accelereret aldring og potentielt aldersassocieret neurologisk tilbagegang. 7 Publications forming the basis of the thesis • Scheibye-Knudsen M, Mitchell S, Fang EF, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan M, Mangerich A, Wilson M, Mattson MP, Bergersen LH, Cogger V, Moaddel R, Croteau DL, de Cabo R, Bohr VA; A High Fat Diet and NAD+ Rescue Premature Aging in Cockayne Syndrome; Cell Metabolism, In press • Scheibye-Knudsen M*, Fang EF*, Croteau DL, Bohr VA; Contribution of defective mitophagy to the neurodegeneration in DNA repair-deficient disorders; Autophagy, 2014 July [*equal authorship] • Fang EF*, Scheibye-Knudsen M*, Brace L, Mitchell JR, Nilsen H, Croteau DL, Bohr VA; Defective Mitophagy in Xeroderma Pigmentosum Group A via Attenuation of the NAD+/SIRT1 Pathway; Cell, 2014 May [*equal authorship] • Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau DL, Bohr VA; A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging; Aging 2013 Mar • Scheibye-Knudsen M, Croteau DL, Bohr VA; Mitochondrial deficiency in Cockayne syndrome; Mechanisms of Ageing and Development, 2013 Feb • Scheibye-Knudsen M, Ramamoorthy M, Sykora P, Maynard S, Lin PC, Minor RK, Wilson III DM, Cooper M, Spencer R, de Cabo R, Croteau DL, Bohr VA; Cockayne syndrome group B protein prevents the accumulation of damaged mitochondria by promoting mitochondrial autophagy; The Journal of Experimental Medicine, 2012 Apr • Scheibye-Knudsen M; Rapamycin – Current and future uses; Chapter 16 in Antitumor Potential and Other Emerging Medicinal Properties of Natural Compounds by Evandro Fei Fang and Tzi Bun Ng, Springer 2013 [Book chapter] 8 Introduction The global elderly population has been progressively increasing throughout the 20th century and this growth is projected to persist into the late 21st century resulting in 20% of the total world population being aged 65 or more by the year 2100 (Figure 1). 80% of the total cost of health care is accrued after 40 years of age where chronic diseases become prevalent 1, 2. With an exponential increase in health care costs, it follows that the chronic diseases that accumulate in an aging population poses a serious socioeconomic problem. Finding treatments to age 15 Aged >85 (%) 25 related diseases, therefore becomes increasingly more Aged 75-84 (%) 20 Billions) 10 APogpedu l6am5-o7n4 (%) 15 mon (%) pertinent as the population ages. Even more so since amon ( 5 10 on frac there appears to be a continuous increase in the opul 5 ulam prevalence of chronic diseases in the aging population 3. P p o P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 In other words it seems that the aging population is not 5678901234567890 9999900000000001 1111122222222222 only growing larger it is also becoming increasingly Figure 1 Recorded and projected population growth and age demographics (source: United Nations) unhealthy compared to the elderly population decades ago. Research into the mechanisms of aging and age related diseases is therefore imperative. Recent decades have brought a wealth of knowledge about aging in various organisms. Genetic studies in yeast and worms have shown several conserved and overlapping molecular pathways that appear to regulate the aging process 4, 5. These include the insulin and IGF-1 signaling cascades 4, protein synthesis and quality control 6, regulation of cell proliferation through factors such as mTOR 7, stem cell maintenance 8 as well as mitochondrial preservation 9. Most of these pathways are conserved through evolution and appear to regulate aging in many lower organisms. In humans, the discovery of a number of inherited disorders characterized by accelerated aging and defects in DNA repair has underscored the 9

Description:
Strabismus. +. Telangiectasia. + Palmerini T, Biondi-Zoccai G, Della RD, Stettler C, Sangiorgi D, D'Ascenzo F, Kimura T,. Briguori C, Sabate M,
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.