ebook img

Neural networks for robotics: an engineering perspective PDF

229 Pages·2019·7.605 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neural networks for robotics: an engineering perspective

Neural Networks for Robotics: An Engineering Perspective Neural Networks for Robotics: An Engineering Perspective Nancy Arana-Daniel Alma Y. Alanis Carlos Lopez-Franco CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2019 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper Version Date: 20180810 International Standard Book Number-13: 978-0-8153-7868-6 (Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Library of Congress Cataloging-in-Publication Data Names: Arana-Daniel, Nancy, author. | Lopez-Franco, Carlos, author. | Alanis, Alma Y., author. Title: Neural networks for robotics : an engineering perspective / Nancy Arana-Daniel, Carlos Lopez-Franco, Alma Y. Alanis. Description: Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.” | Includes bibliographical references and index. Identifiers: LCCN 2018017262| ISBN 9780815378686 (hardback : acid-free paper) | ISBN 9781351231794 (ebook) Subjects: LCSH: Robots--Control systems. | Neural networks (Computer science) Classification: LCC TJ211.35 .A73 2018 | DDC 629.8/92632--dc23 LC record available at https://lccn.loc.gov/2018017262 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Nancy Arana-Daniel dedicates this book to her husband, Angel, and her children, Ana, Sara and Angel, as well as her parents, Maria y Trinidad, and her brothers and sisters, Rodolfo, Claudia, Nora, Carlos, Ernesto, Gerardo and Paola. Alma Y. Alanis dedicates this book to her husband, Gilberto, her mother, Yolanda, and her children, Alma Sofia and Daniela Monserrat. Carlos Lopez-Franco dedicates this book to his wife, Paty, and his children, Carlos Alejandro, Fernando ´ Yhael and Iker Mateo Contents Preface xi Abbreviations xvii 1 Recurrent High Order Neural Networks for Rough Terrain Cost Mapping 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 Mapping background . . . . . . . . . . . . . . . . . . . 3 1.2 Recurrent High Order Neural Networks, RHONN . . . . . . 5 1.2.1 RHONN order . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Neural network training . . . . . . . . . . . . . . . . . 8 1.2.2.1 Kalman filter . . . . . . . . . . . . . . . . . . 8 1.2.2.2 Kalman filter training . . . . . . . . . . . . . 8 1.2.2.3 Extended Kalman filter-based training algorithm, EKF . . . . . . . . . . . . . . . . 8 1.3 Experimental Results: Identification of Costs Maps Using RHONNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.1 Synthetic dynamic environments . . . . . . . . . . . . 11 1.3.1.1 Synthetic dynamic random environment number 1 . . . . . . . . . . . . . . . . . . . . 12 1.3.1.2 Synthetic dynamic random environment number 2 . . . . . . . . . . . . . . . . . . . . 18 1.3.1.3 Synthetic dynamic random environment number 3 . . . . . . . . . . . . . . . . . . . . 18 1.3.2 Experiments using real terrain maps . . . . . . . . . . 27 1.3.2.1 Real terrain map: grove environment . . . . 27 1.3.2.2 Real terrain map: golf course . . . . . . . . 29 1.3.2.3 Real terrain map: forest . . . . . . . . . . . . 29 1.3.2.4 Real terrain map: rural area . . . . . . . . . 33 1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2 Geometric Neural Networks for Object Recognition 37 2.1 Object Recognition and Geometric Representations of Objects 37 2.1.1 Geometric representations and descriptors of real objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 Geometric Algebra: An Overview . . . . . . . . . . . . . . . 41 vii viii Contents 2.2.1 The geometric algebra of n-D space . . . . . . . . . . 42 2.2.2 The geometric algebra of 3-D space . . . . . . . . . . 44 2.2.3 Conformal geometric algebra . . . . . . . . . . . . . . 45 2.2.4 Hyperconformal geometric algebra . . . . . . . . . . . 47 2.2.5 Generalization of G into G . . . . . . . . . . . . 48 6,3 2n,n 2.3 Clifford SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.3.1 Quaternion valued support vector classifier . . . . . . 53 2.3.2 Experimental results . . . . . . . . . . . . . . . . . . . 53 2.4 Conformal Neuron and Hyper-Conformal Neuron . . . . . . 55 2.4.1 Hyperellipsoidal neuron . . . . . . . . . . . . . . . . . 55 2.4.2 Experimental results . . . . . . . . . . . . . . . . . . . 57 2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3 Non-Holonomic Robot Control Using RHONN 61 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 3.2 RHONN to Identify Uncertain Discrete-Time Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Neural Identification . . . . . . . . . . . . . . . . . . . . . . . 63 3.4 Inverse Optimal Neural Control . . . . . . . . . . . . . . . . 64 3.5 IONC for Non-Holonomic Mobile Robots . . . . . . . . . . . 66 3.5.1 Robot model . . . . . . . . . . . . . . . . . . . . . . . 66 3.5.2 Wheeled robot . . . . . . . . . . . . . . . . . . . . . . 68 3.5.2.1 Controller design . . . . . . . . . . . . . . . . 68 3.5.2.2 Neural identification of a wheeled robot . . . 69 3.5.2.3 Inverse optimal control of a wheeled robot . 70 3.5.2.4 Experimental results . . . . . . . . . . . . . . 71 3.5.3 Tracked robot . . . . . . . . . . . . . . . . . . . . . . . 71 3.5.3.1 Controller design . . . . . . . . . . . . . . . . 75 3.5.3.2 Results . . . . . . . . . . . . . . . . . . . . . 75 3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 4 NN for Autonomous Navigation on Non-Holonomic Robots 123 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4.2 Simultaneous Localization and Mapping . . . . . . . . . . . . 124 4.2.1 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.2.2 Observations . . . . . . . . . . . . . . . . . . . . . . . 126 4.2.3 Status update . . . . . . . . . . . . . . . . . . . . . . . 126 4.3 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 127 4.4 Inverse Optimal Neural Controller . . . . . . . . . . . . . . . 129 4.4.1 Planning-Identifier-Controller . . . . . . . . . . . . . . 129 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 131 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Contents ix 5 Holonomic Robot Control Using Neural Networks 151 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 5.2 Optimal Control . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.3 Inverse Optimal Control . . . . . . . . . . . . . . . . . . . . 156 5.4 Holonomic Robot . . . . . . . . . . . . . . . . . . . . . . . . 159 5.4.1 Motor dynamics . . . . . . . . . . . . . . . . . . . . . 159 5.4.2 Neural identification design . . . . . . . . . . . . . . . 160 5.4.3 Control design . . . . . . . . . . . . . . . . . . . . . . 161 5.4.4 Omnidirectional mobile robot kinematics . . . . . . . 162 5.5 Visual Feedback . . . . . . . . . . . . . . . . . . . . . . . . . 162 5.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 6 Neural Network-Based Controller for Unmanned Aerial Ve- hicles 169 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 6.2 Quadrotor Dynamic Modeling . . . . . . . . . . . . . . . . . 170 6.3 Hexarotor Dynamic Modeling . . . . . . . . . . . . . . . . . 172 6.4 Neural Network-Based PID . . . . . . . . . . . . . . . . . . . 175 6.5 Visual Servo Control . . . . . . . . . . . . . . . . . . . . . . 176 6.5.1 Control of hexarotor . . . . . . . . . . . . . . . . . . . 177 6.6 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 178 6.6.1 Quadrotor simulation results . . . . . . . . . . . . . . 178 6.6.2 Hexarotor simulation results. . . . . . . . . . . . . . . 178 6.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 180 6.7.1 Quadrotor experimental results . . . . . . . . . . . . . 180 6.7.2 Hexarotor experimental results . . . . . . . . . . . . . 183 6.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 Bibliography 195 Index 209

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.