RESEARCHARTICLE Neural Circuits for Cognitive Appetite Control in Healthy and Obese Individuals: An fMRI Study JetroJ.Tuulari1*,HenryK.Karlsson1,JussiHirvonen1,2,PaulinaSalminen3, PirjoNuutila1,4,LauriNummenmaa1,5,6 1 TurkuPETCentre,UniversityofTurku,Turku,Finland,2 DepartmentofRadiology,TurkuUniversity Hospital,Turku,Finland,3 DepartmentofSurgery,TurkuUniversityHospital,Turku,Finland,4 Department ofEndocrinology,TurkuUniversityHospital,Turku,Finland,5 DepartmentofBiomedicalEngineeringand ComputationalScience,SchoolofScience,AaltoUniversity,Aalto,Finland,6 BrainResearchUnit,O.V. LounasmaaLaboratory,SchoolofScience,AaltoUniversity,Aalto,Finland * [email protected] Abstract OPENACCESS Themeresightoffoodsmayactivatethebrain’srewardcircuitry,andhumansoftenexperi- Citation:TuulariJJ,KarlssonHK,HirvonenJ, SalminenP,NuutilaP,NummenmaaL(2015)Neural encedifficultiesininhibitingurgestoeatuponencounteringvisualfoodsignals.Imbalance CircuitsforCognitiveAppetiteControlinHealthyand betweentherewardcircuitandthosesupportinginhibitorycontrolmayunderlieobesity,yet ObeseIndividuals:AnfMRIStudy.PLoSONE10(2): braincircuitssupportingvolitionalcontrolofappetiteandtheirpossibledysfunctionthatcan e0116640.doi:10.1371/journal.pone.0116640 leadtoobesityremainpoorlyspecified.Herewedelineatedthebrainbasisofvolitionalap- AcademicEditor:XiaWu,BeijingNormalUniversity, petitecontrolinhealthyandobeseindividualswithfunctionalmagneticresonanceimaging Beijing100875,CHINA (fMRI).Twenty-sevenmorbidlyobesewomen(meanBMI=41.4)andfourteenage- Received:June9,2014 matchednormal-weightwomen(meanBMI=22.6)werescannedwith1.5TeslafMRIwhile Accepted:December11,2014 viewingfoodpictures.Theywereinstructedtoinhibittheirurgetoeatthefoods,viewthesti- Published:February6,2015 mulipassivelyorimagineeatingthefoods.Acrossallsubjects,afrontalcorticalcontrolcir- cuitwasactivatedduringappetiteinhibitionversuspassiveviewingofthefoods.Inhibition Copyright:©2015Tuularietal.Thisisanopen accessarticledistributedunderthetermsofthe minusimaginedeating(appetitecontrol)activatedbilateralprecuneiandparietalcortices CreativeCommonsAttributionLicense,whichpermits andfrontalregionsspanninganteriorcingulateandsuperiormedialfrontalcortices.During unrestricteduse,distribution,andreproductioninany appetitecontrol,obesesubjectshadlowerresponsesinthemedialfrontal,middlecingulate medium,providedtheoriginalauthorandsourceare anddorsalcaudatenuclei.Functionalconnectivityofthecontrolcircuitwasincreasedin credited. morbidlyobeseversuscontrolsubjectsduringappetitecontrol,whichmightreflectimpaired DataAvailabilityStatement:Thepatientdatafrom integrativeandexecutivefunctioninobesity. theSleevePET2study(NCT01373892)arestoredon PETCentreserverandanonymized1stlevelcontrast dataareavailableintermswiththeinformed consentsandprivacyregulationsuponrequestfrom HumanEmotionSystemslaboratoryatTurkuPET CentreandUniversityHospitalofTurku.Requests [email protected]. Introduction Funding:Thisstudywasfinanciallysupportedbythe Inourmodernsocietyhumansaresurroundedbyfoodadvertisementandpalatablevisual AcademyofFinland(grants#256147and#251125to foodcuesarereadilyavailableandondisplayinsupermarketsandrestaurants.Despitecom- LN),theSigridJuseliusFoundation,theUniversity plexhomeostaticmechanismsthatgoverneatingandappetite[1],themerevisualcuesofpalat- HospitalofTurkuandtheUniversityofTurku(grant 10463toJJT).Thefundershadnoroleinstudy ablefoodsmaytriggerastrongurgetoeatnotwithstandingcurrentnutritionalstate,thus PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 1/16 BrainCircuitforAppetiteControl design,datacollectionandanalysis,decisionto momentarilyoverridinghomeostaticcontrolandpreviousconsciousdecisionsregardingeat- publish,orpreparationofthemanuscript. ingbehavior[2].Asvisualandolfactoryfoodcuesareomnipresentinoureverydayenviron- CompetingInterests:Theauthorshavedeclared ment,theymayplayakeyroleindrivingincreasedfoodconsumptionbytriggeringappetitive thatnocompetinginterestsexist. behavior.Thismayalsocontributetotheincreasingprevalenceofobesityintheindustrialized world[3].Consequently,understandingthephysiologicalandpsychologicalmechanismsun- derlyingvolitionalrestraintofenergyintakeiscriticalinfightingthe‘obesityepidemic’. Thesightoffoodcuesengagesthebrain’srewardcircuitanditshowsgreateractivationen- counteringpalatableversusblandfoods[2],especiallyinobeseindividuals[4,5].Ithasbeen suggestedthat,inadditiontoahypersensitiverewardcircuit,animbalancebetweenthereward circuitryandfrontalbrainsystemssupportinginhibitorycontrolmaybeafeatureofobesity [2,4–6].Itiswidelyacceptedthat,thepre-supplementalmotorarea(preSMA)andanterior cingulatecortexformthekeyregionsinthebrain’scognitiveinhibitionnetwork[7–9],typical- lymeasuredbyGo/No-Gotask[10].However,theseregionsmayalsosupportmoregeneral cognitiveprocessesinvolvedininhibitoryprocesses,suchasmemoryretrievalandworking memory[11].Astheaforementionedfrontalregionsareanatomicallyconnectedtobasalgan- gliaandthustothestriatalrewardcircuit[11]–knowntobehyperactiveinobeseindividuals [2]–itispossiblethattheycouldservecognitiveappetitecontrolaswell.Inlinewiththis, priorstudiesoncognitiveappetitecontrolwhileviewingfoodpictureshaveindeedimplicated thefrontalbrainregions’involvementwhenthinkingoflong-termcostsandbenefitsofeating thepresentedfoods[12]andfronto-striatalactivationsduringcognitivereappraisaltasks[13]. Theevidenceoftheinfluenceofobesityonthefunctioningofthefrontocorticalappetite controlsystemsremainsmixed,nevertheless.SomestudieshavereportednoeffectsofBody MassIndex(BMI)oncorticalinhibitorycircuits[12],whilesomehaveobservedsmaller[14] andotherslarger[13]responsesinthiscircuitinobeseindividuals.Althoughpriorstudies haverevealedthatobesityaltersfunctionalconnectivityoftherewardcircuit[2],ourunder- standingofhowobesitycouldinfluencefunctionalconnectivityofthecognitivecontrolnet- worksandtherewardcircuithasremainedelusive.Itisindeedpossiblethatthepreviously reportedelevatedrewardcircuitresponsestopalatablefoodsinobeseindividuals[4–6]could reflectalteredinhibitoryconnectionsfromthefrontalcognitivecontrolregions,ratherthan meredifferencesinregionalhemodynamicresponses. Here,weusedfunctionalmagneticresonanceimaging(fMRI)tostudybraincircuitssupport- ingcognitiveappetitecontrolinnormal-weightandmorbidlyobeseindividuals.Participants viewedpicturesoffoods,whiletheirtaskwastoeitherinhibittheirurgestoeat,imagineeating thefoodsorwatchthefoodspassively.Wehypothesizedthatvolitionalcontrolofappetitewould engagethefronto-corticalcircuits,andthatobeseindividualswouldhavelowerfrontalactiva- tionsreflectingfailuretovolitionallyinhibittheirurgestoeat.Inlinewiththis,wealsopredicted thatfunctionalconnectivityofthecontrolcircuitwouldbeloweredinobeseindividuals. MaterialsandMethods ThestudywasconductedinaccordancewiththeDeclarationofHelsinkiandapproved bytheEthicalCommitteeoftheHospitalDistrictofSouth-WesternFinland(SleevePET2 NCT01373892,http://www.clinicaltrials.gov).Allparticipantssignedanethicalcommittee- approved,informedconsentformpriortoscans. 2.1.Participants Twenty-sevenneurologicallyintactmorbidlyobesesubjects(M =41.4,SD =3.9)were BMI BMI recruitedforthestudy(Table1).Fourteenneurologicallyintactandage-matchednormal- weightvolunteersubjects(M =22.6,SD =2.7)wererecruitedasacontrolgroup BMI BMI PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 2/16 BrainCircuitforAppetiteControl Table1.Thecharacteristicsofstudyparticipants. MorbidlyObesen=27 Mean SD HealthyControlsn=14 Mean SD Independentsamplet-test females females p-values Age(years) 42.1 9.3 44.9 11.9 0.47 Height(cm) 165.2 6.3 165.5 6.4 0.89 Weight(kg) 113.5 14.4 61.8 6.9 <0.001 BMI(kg/m2) 41.4 3.9 22.6 2.7 <0.001 Subjectivehungerratingbeforethe 4.3 2.4 3.9 2.3 0.63 MRIscan(1–9) doi:10.1371/journal.pone.0116640.t001 (Table1).Eatingdisorders,severementaldisordersandsubstanceabusewereexclusioncriteria forallparticipants.InFinlandca.85%ofpatientsundergoingbariatricsurgeryarefemale. Consequently,thestudywasconductedwithfemaleparticipantswhomatchedthecharacteris- ticsofthenationaltargetpopulation. 2.2.ExperimentalDesignforfMRI Participantswereinstructedtorefrainfromeatingandtodrinkonlywaterfor3–4hourspriorto scanning.BeforetheMRIscans,participantsratedtheirfeelingsofhunger(usingascaleranging from1=I’mnotfeelinghungryatallto9=I’mstarving)toassessthenutritionalstate[15]. StimulianddesignaresummarizedinFig.1.Thestimuliwere80digitizedfull-colorimages offoods[2].DuringfMRIacquisition,foodstimuliwerepresentedatthecenterofthescreen in16sblocksintermixedwith1.75srestperiodsbetweenblocks.Duringeachblock, Fig1.Experimentaldesignandtrialstructure. doi:10.1371/journal.pone.0116640.g001 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 3/16 BrainCircuitforAppetiteControl participantssawfourfoodpicturesshownfor4seach.Acoloredrectanglearoundthepicture denotedthetasktheparticipanthadtoperformthroughouteachblock.Duringinhibitioncon- dition,theyhadtoinhibiturgestoeatthefood,duringpassiveviewingconditiontheyhadto viewthefoodspassively,andduringimaginaryeatingconditiontheyhadtoimagineeatingthe foods.Theblockswerepresentedinafixed,pseudo-randomizedorder,whichwascounterbal- ancedacrossparticipants.Altogetherthereweretwentyblocksofeachcondition,andtotal scanningtimewasapproximately19minutes.Participantsweregivenwrittenandspokenin- structionsbeforeenteringthescanner,andtheypracticedthetaskinthescannerbeforetheex- perimentbegan.Theparticipantswerealsointerviewedaftertheexperimenttoassurethatthey hadfinishedthetaskasinstructed. ThestimuluspresentationandbehavioraldatacollectionwerecontrolledwithPresentation software(NeurobehavioralSystems,Inc.).StimuliwereprojectedfromanLCDprojectoronto anon-magneticscreenmountedatthefootofthebore,andanangledmirrorreflectedimages ontothescreenintotheparticipants’fieldofvision. 2.3.fMRIAcquisitionandAnalysis MRimagingwasperformedwithPhilipsGyroscanIntera1.5TCVNovaDualscannerat TurkuPETcentre.Whole-brainfunctionaldatawereacquiredwithT2(cid:1)weightedecho-planar imaging(EPI)sequence,sensitivetotheblood-oxygen-level-dependent(BOLD)signalcon- trast(TR=2987ms,TE=50ms,90°flipangle,192mmFOV,64×64reconstructionmatrix, 62.5kHzbandwidth,4.0mmslicethickness,withnogapsbetweenslices,30interleavedslices acquiredinascendingorder).High-resolutionanatomicalimages(1mm3resolution)were acquiredusingaT1-weightedsequence(TR25ms,TE4.6ms,flipangle30°,280mmFOV, 256x256reconstructionmatrix). Altogether380functionalvolumeswereacquired.Furthermore,four‘dummy’volumes wereacquiredanddiscardedatthebeginningtoallowforequilibrationeffects.Thedummy volumeswerenotincludedintheanalysis.Datawerepre-processedandanalyzedusingSPM8 software(http://www.fil.ion.ucl.ac.uk/spm/)runningonMatlab2011b.TheEPIimageswere realignedtothefirstscanimagebyrigidbodytransformationstocorrectforheadmovements. Echoplanarandstructuralimageswereco-registeredandnormalizedtotheT1standardtem- plateinMNIspace(MontrealNeurologicalInstitute–InternationalConsortiumforBrain Mapping)usinglinearandnon-lineartransformations,andsmoothedwithaGaussiankernel of8mmfullwidthathalfmaximum—FWHM8mm. 2.4.Analysisofregionaleffects Awhole-brainrandomeffectsmodelwasused.Thistwo-stageprocess(firstandsecondlevel) assesseseffectsonthebasisofinter-subjectvarianceandthusallowsinferencesaboutthepopu- lationthattheparticipantsaredrawnfrom.Foreachparticipant,weusedagenerallinear model(GLM)toassessregionaleffectsoftaskparametersonbrainactivation.Thefirstlevel modelincludedallthreeexperimentalconditions(inhibition,passiveviewingandimaginary eating)aswellasthesixrealignmentparametersaseffectsofnointerest.Low-frequencysignal driftwasremovedusingahigh-passfilter(cut-off128s)andweappliedautoregressiveAR(1) modelingoftemporalautocorrelations.Theindividualcontrastimagesweregeneratedusing thet-contrastsi)inhibitionminusviewing,ii)imaginaryeatingminusviewing,andiii)inhibi- tionminusimaginaryeating,aswellastheoppositecontrasts.Thecontrastimagesofthe voxel-wisedifferenceinbetaestimatesforthecontrastsofinterest.Thesecond-levelanalysis usedthesecontrastimagesinanewGLMfromwhichgeneratedstatisticalimages,thatis,SPM t-mapsacrossallsubjectsandbetweensubjectgroups.Whenthesecond-levelanalysishas PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 4/16 BrainCircuitforAppetiteControl balanceddesignsatfirstlevelwithsimilarnumbersofsimilareventsforeachsubjectitclosely approximatesatruemixed-effectsdesign,exhibitingwithin-andbetween-subjectvariance.In addition,second-levelanalysisinSPMisconsideredtoberobustagainstunequalgroupsizes, whenunequalvariancesareassumed.Theinhibitionminuspassiveviewingandimaginaryeat- ingversuspassiveviewingcontrastswereusedtodelineatethebrainregionsinvolvedincogni- tivecontrolofappetiteandmentalprocessingofthehedonicvalueofthefoods.Theappetite controlcontrast(inhibitionminusimaginaryeating)wasconsideredthemaincontrastofin- terestforrevealingtheneuralbasisofappetitecontrol,asthisenabledcontrastingthetwoac- tivefood-relatedtasksdirectlyagainsteachother,thusaccountingforeffectsofincreasing taskcomplexityintheactiveversuspassiveviewingconditions[11].Datawerethresholdedat p<0.05,falsediscoveryrate(FDR)correctedattheclusterlevel. 2.5.Psychophysiologicalinteractions(PPI)inthegenerallinearmodel (GLM) Theconnectivitybetweenbrainregionscanvaryasafunctionofthepsychologicalcontext [16].ThisisknownasaPsychophysiologicalInteraction(PPI).PPIsdonotrequireaspecific anatomicalmodel.Rather,theyrevealcontext-dependentconnectivityofthesourceregion withanypossibletargetregion(s).ThismeansthatPPIsindicatetask-dependentinteractions betweenregionalbrainsystems;thusthePPIrevealswhichregionshavemoreorlesssimilar activitypattern(‘connectivity’)withthesourceregionasafunctionofaspecificcontrast.Asis trueforotherconnectivitymethodssuchasdynamiccausalmodeling,PPIsdonotindicatethe directionofcausalinfluencesbetweensourceandtargetregions,norwhethertheconnectivity ismediatedbymono-orpoly-synapticconnections,norchangesinstructuralneuroplasticity fromepochtoepoch[17]. Sourceregionsforthebrain’sinhibitionnetworkwereselectedfromapreviousmeta-analy- sisoninhibitoryprocessinginGo/No-Gotasks[10,11]andcaudatenucleus,givenitskeyrole inanticipatoryfoodreward[2](seeTable2forMNIcoordinates).Aspherical8-mmregionof interest(ROI)wasdrawnattheselocationsininhibitionminuspassiveviewingcontrasttofur- therdelineateconnectivitychangesinthecognitivecontrolnetwork.Thetime-seriesforeach participantwascomputedbyusingthefirsteigenvariatefromallvoxeltimeseriesinthede- finedROI,andde-convolvedusingthePPI-deconvolutionparameterdefaultsinSPM8[18]. ThePPItermwasthencalculatedastheelement-by-elementproductoftheROIin“neuronal time-series”andavectorcodingfortheselectedcontrast(1forinhibitionand-1forpassive viewing).Thisproductwasthenre-convolvedbythecanonicalhemodynamicresponsefunc- tion(hrf).First-levelPPIswereruntogenerateSPMcontrastimagessimilartothefirstlevel Table2.SeedregionsusedinthePPIanalysis. Region Hemisphere X Y Z MiddleCingulum R 6 21 38 Precuneus R 11 -72 58 preSMA R 4 25 38 preSMA L -2 16 67 Insula R 36 19 -7 Caudatenucleus R 15 22 13 Middle(lateral)frontalcortex L -42 14 42 Orbitofrontalcortex R 40 40 -2 doi:10.1371/journal.pone.0116640.t002 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 5/16 BrainCircuitforAppetiteControl GLMmodel,andthesecontrastimageswereanalyzedandthresholdedinthesecond-level modelasdescribedabove. Results 3.1.Task-evokedBOLDresponsesacrossallsubjects Contrastingtheinhibitionconditionwithpassiveviewingrevealedwidespreadactivationin fronto-corticalregions(Fig.2A,Table3).Theseincludedbilateralsuperior,superiormedial- andmiddlefrontalgyri,middlecingulatecortexandprecentralgyrusbilaterally.Increasedacti- vationwasalsoobservedintheleftinferiorfrontalgyrusandtemporalpole.Supplemental motorarea(SMA),thalamusandcerebellumwereactivatedbilaterally.Additionalactivations wereobservedintheearlyvisualareasintheoccipitalcortex.Whenimaginaryeatingwascon- trastedwithpassiveviewing,similarbrainareaswereactivated,suchasintheinhibitionminus passiveviewingcontrast(Fig.2B,Table3).Viewingversusinhibitionandviewingversusimag- inaryeatingconditionsalsobothactivatedasimilarpatternofbrainregions:superior/middle frontalgyri,superiormiddletemporalgyriandprecuneus(Table4).Finally,wecontrastedthe inhibitionandimaginaryeatingconditionsdirectlywitheachother(appetitecontrol).The areasshowingincreasedactivationduringinhibitionversusimaginaryeatingincludedrightin- feriorfrontalgyrus,bilateralmiddlefrontalcortices,middlecingulatecortex,precuneus, cuneus,righthippocampusandparietallobes(Fig.2C,Table3).Thereversecomparison (imaginaryeating>inhibition)showedincreasedactivationininferiortemporalandsuperior parietallobes(Table3). 3.2.Comparisonsbetweennormal-weightandmorbidlyobesesubjects Ininhibitionminusimaginaryeatingcomparison,normal-weightsubjectsshowedstrongerac- tivationsthanobesesubjectsinbilateraldorsalcaudatenucleiandanteriorcingulatecortex (Fig.3C,Table5).Correspondingly,obesesubjectshadgreateractivationsinthebilateralpos- teriorcingulum(Table5).Othercontrastsofinterestrevealednosignificantactivationsatour aprioristatisticalthreshold.Usingaslightlymorelenientstatisticalthreshold(p<0.005,un- correctedascomparedtoapriorithresholdofp<0.05,FDRcorrected),wefoundthatininhi- bitionvs.passiveviewingcomparison,normal-weightsubjectshadstrongerresponsesinthe leftmiddleandinferiorfrontalgyri,andrightorbitofrontalcortex(OFC),andobesesubjects hadgreateractivationofbilateralposteriorcingulum(Fig.3A,Table5).Whencontrasting imaginaryeatingminuspassiveviewing,healthysubjectsshowedstrongerright-hemispheric insularactivation(Fig.3B,Table5). 3.3.Psychophysiologicalinteractions Acrossallsubjects,therightcaudatenucleusshowedincreasedtask-driven(inhibitionversus passiveviewing)connectivitywithbilateralprecuneiandcuneiandparietalcortices(Fig.4).In- feriorparietalgyruswasthepeakareaofactivation(Table6).TheleftpreSMAshowedde- creasedconnectivityacrossallsubjectswithbilateralcerebellum,leftsuperiorparietalgyrus (Table6).Theclusterextendedtoleftinsula,thalamusandcaudate(Fig.4).Therightinsula showeddecreasedconnectivityacrossallsubjectswiththeleftpre-centralgyrusandparacen- trallobule(Table6),withanextendingclustertopreSMA(Fig.4). Between-groupcomparisonsrevealedthatobesesubjectshadstrongerfunctionalconnectiv- itybetweenmiddlefrontalcortexandbilateralsupplementalmotorarea(SMA),rightputamen andrightmiddletemporalgyrus(Fig.5,Table6).Obeseversusnormal-weightsubjectsalso showedstrongerconnectivitybetweentherightprecuneusandbilateralsupplementalmotor PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 6/16 BrainCircuitforAppetiteControl Fig2.Regionalbrainactivationsacrossallsubjects.Brainregionsshowingstrongerresponsesduringinhibitionminuspassiveviewingcondition(A), imaginaryeatingminuspassiveviewingcondition(B)andinhibitionconditionminusimaginaryeating(C).Thedataarethresholdedatp<0.05,FDR correctedatclusterlevel. doi:10.1371/journal.pone.0116640.g002 area,bilateralthalamus,bilateralpre-centralgyriandrightinferiorfrontalgyrus(Table6)ex- tendingtorightinsula(Fig.5).Inaddition,obeseversusnormal-weightsubjectsshowedstron- gerconnectivitybetweenpreSMAandbilateralmiddlecingulatecortex,bilateralmedialand lateralsuperiorfrontalcortices,thalamus,rightinferiorparietallobuleandrightangulargyrus (Fig.5,Table6). Hungerratings(Table1)didnotdifferbetweengroups.Nevertheless,allsecond-levelmod- elswererunseparatelywithhungerratingasaregressorofnointerest.Thisrevealedthathun- gerdidnotsignificantlyinfluencetheresultsoftheanalysesreportedinthemanuscript. PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 7/16 BrainCircuitforAppetiteControl Table3.Brainregionsshowingincreasedresponsesinallsubjectsduringinhibitionandimaginaryeatingversuspassiveviewingand inhibitionversusimaginaryeating. Peaklocation Hemisphere X Y Z T Inhibition>Passiveviewing Superiorfrontalgyrus L -18 52 32 6.59 Supplementalmotorarea L -2 6 60 6.40 -8 2 74 6.28 Inhibition>Imaginaryeating Inferiorfrontalgyrus(p.Triangularis) R 50 24 6 5.54 Superiortemporalgyrus L -46 -36 18 4.84 Superiortemporalgyrus R 64 -32 18 4.25 Cuneus R 8 -74 32 4.50 Hippocampus R 40 -16 -10 3.97 Angulargyrus R 48 -62 40 3.93 ImaginaryEating>Passiveviewing Cerebellum R 27 -72 -24 5.39 Supplementalmotorarea L -12 4 72 6.02 ImaginaryEating>Inhibition Inferiortemporallobe L -50 -34 48 3.96 Superiorparietallobe L -24 -72 42 3.55 Dataarethresholdedatp<0.05,FDRcorrectedatclusterlevel. doi:10.1371/journal.pone.0116640.t003 Table4.Brainregionsshowingincreasedresponsesinallsubjectsduringpassiveviewingversusinhibitionandimaginaryeating. Peaklocation Hemisphere X Y Z T Passiveviewing>Inhibition Middlecingulatecortex R 6 -38 40 5.61 Middletemporalgyrus R 44 -74 26 5.45 Middlefrontalgyrus R 40 8 46 4.08 36 14 62 4.06 Superiorfrontalgyrus R 30 20 62 4.05 Passiveviewing>ImaginaryEating Hemisphere X Y Z T Superiortemporalgyrus R 56 -52 24 8.57 Middletemporalgyrus R 52 -62 22 6.87 Precuneus R 6 -76 38 6.47 Superiorfrontalgyrus R 24 16 48 6.19 R 38 52 24 5.25 R 30 20 62 4.76 Superiortemporalgyrus L -50 28 8 4.40 Middletemporalgyrus L -66 -28 8 3.72 L -60 -16 -2 3.69 Dataarethresholdedatp<0.05,FDRcorrectedatclusterlevel. doi:10.1371/journal.pone.0116640.t004 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 8/16 BrainCircuitforAppetiteControl Fig3.Regionaldifferencesinbrainactivationsbetweennormal-weightandobesesubjects.Brainregionsshowingstrongeractivationinnormal- weightversusmorbidlyobesesubjectsininhibitionminuspassiveviewing(A),imaginaryeatingminuspassiveviewing(B)andinhibitionminusversus imaginaryeating(C)contrasts.ThedatainCarethresholdedatp<0.05,FDRcorrectedatclusterlevel(p<0.005,uncorrectedatAandB). doi:10.1371/journal.pone.0116640.g003 Discussion Hereweshowthatvolitionalappetitecontrolwhileviewingvisualfoodcuesactivatesanet- workofprefrontal,frontalandparietalandinferiorcerebellarcorticalregions.Thisconfirms thatthefrontocorticalcontrolsystem–wellknownforinhibitionanderrormonitoring[8,9] isalsoengagedduringvolitionalappetitecontrol.Moreover,regionalresponsesandconnectiv- ityprofilesofthisnetworkwasinfluencedbyobesity.Duringappetitecontrol,obeseindividu- alsshoweddiminishedresponsesinthefrontalcorticesaswellasinthedorsalstriatum, whereasduringimaginaryeatingtheirresponseswerediminishedintheinsularcortex.Func- tionalconnectivityanalysisfurtherrevealeddissociationbetweentheregionalresponsiveness andinterconnectivityofthecognitivecontrolnetworkinobeseversusnormal-weightindividu- als:connectivityofthecontrolnetwork,particularlyofpreSMAandprecuneus,withregions PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 9/16 BrainCircuitforAppetiteControl Table5.Brainregionsshowingsignificantbetween-groupdifferencesinthetask-evokedBOLDresponses. Contrastsandcomparisons Hemisphere X Y Z T Inhibition>Passiveviewing* Healthy>Obese Middleorbitalgyrus R 28 32 -6 4.18 Inferiorfrontalgyrus(p.Orbitalis) R 44 38 -2 3.26 Inferiorfrontalgyrus(p.Triangularis) R 44 22 26 3.30 Obese>Healthy Posteriorcingulatecortex R 6 -38 12 5.16 L -4 -32 12 4.52 ImaginaryEating>Passiveviewing* Healthy>Obese Insula R 38 14 -10 3.74 Inhibition>ImaginaryEating Healthy>Obese Anteriorcingulatecortex L -14 16 30 3.74 Caudatenucleus R 20 6 22 2.99 Dataarethresholdedatp<0.05,FDR-correctedattheclusterlevel.Note:*p<0.005andclusterleveluncorrected. doi:10.1371/journal.pone.0116640.t005 involvedinconflictmonitoring(anteriorcingulatecortex)andarousalcontrol(thalamus)was strongerinobeseversusnormal-weightindividuals. 4.1.Brainbasisofcognitiveappetitecontrol Eatingandappetitearecontrolledbycomplexhomeostaticmechanisms[1].Inreal-lifesitua- tions,asuddenurgetoeatmaybetriggeredbymerepicturesoffoodsinadvertisements,super- marketsandonTV;thustheseimpulsesneedtobeinhibitedtopreventexcessivefoodintake. Wefoundthatfrontalandprefrontalregionsarereliablyactivatedwhenindividualsengage volitionallyinsuchinhibition.Theseareasarelikelythekeycomponentsresponsibleforvoli- tionalappetitecontrol,andarealsoimpliedinpreviousstudiesonresponseinhibition[8–11, 19–21].However,asubsetoftheseregionssuchasBroca’sareaandleftlateralfrontalcortices werealsoengagedduringimaginaryeating.Bothvolitionalinhibitionofappetiteandimagi- naryeatingtasksrequireworkingmemoryinretrievingthetaskandsomeverbalinstructions aswell,soactivationintheseregionscanbeexpectedinbothtasks[10].Observedcerebellar activationcouldreflectengagementofafronto-cerebellarnetwork,whichconstantlyupdates anticipatorycontrolmechanisms[22]. Thesefindingsfromthetask-evokedBOLDresponsestocognitiveappetitecontrolaccord withthosemadebyYokumetal.Theycomparedtheneuralresponsesofthreecognitivereap- praisalstrategieswhenadolescentsubjectsviewedvisualfoodcuesandthoughtofthelong-term costsorbenefitsofnoteatingthefoodandsuppressingcravingsforthefood.Theyfoundin- creasedactivationininhibitoryprefrontalandsuperiorfrontalregionsduringthesementaltasks, yetinthatstudyparticipants’BMIdidnotmodulatetheintensityofbrainactivation[12].Fur- thermore,Yokumetalreporteddecreasedactivationoftheprecuneusandposteriorcingulate gyrusduringtaskperformanceandmoresoduringthinkingofthelong-termbenefitsfornot eatingthefoodascomparedtoothertasks[12].Inanotherrecentstudyparticipantshadtoeither increaseordecreaseappetitewhileviewingfoodpictures[13].Intheappetitedecreasecondition thesubjectswereaskedtoreappraisethepresentedstimulii.e.givenewmeaningtothefood PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 10/16
Description: