ebook img

Neural Circuits for Cognitive Appetite Control in Healthy and Obese Individuals PDF

16 Pages·2015·4.82 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neural Circuits for Cognitive Appetite Control in Healthy and Obese Individuals

RESEARCHARTICLE Neural Circuits for Cognitive Appetite Control in Healthy and Obese Individuals: An fMRI Study JetroJ.Tuulari1*,HenryK.Karlsson1,JussiHirvonen1,2,PaulinaSalminen3, PirjoNuutila1,4,LauriNummenmaa1,5,6 1 TurkuPETCentre,UniversityofTurku,Turku,Finland,2 DepartmentofRadiology,TurkuUniversity Hospital,Turku,Finland,3 DepartmentofSurgery,TurkuUniversityHospital,Turku,Finland,4 Department ofEndocrinology,TurkuUniversityHospital,Turku,Finland,5 DepartmentofBiomedicalEngineeringand ComputationalScience,SchoolofScience,AaltoUniversity,Aalto,Finland,6 BrainResearchUnit,O.V. LounasmaaLaboratory,SchoolofScience,AaltoUniversity,Aalto,Finland * [email protected] Abstract OPENACCESS Themeresightoffoodsmayactivatethebrain’srewardcircuitry,andhumansoftenexperi- Citation:TuulariJJ,KarlssonHK,HirvonenJ, SalminenP,NuutilaP,NummenmaaL(2015)Neural encedifficultiesininhibitingurgestoeatuponencounteringvisualfoodsignals.Imbalance CircuitsforCognitiveAppetiteControlinHealthyand betweentherewardcircuitandthosesupportinginhibitorycontrolmayunderlieobesity,yet ObeseIndividuals:AnfMRIStudy.PLoSONE10(2): braincircuitssupportingvolitionalcontrolofappetiteandtheirpossibledysfunctionthatcan e0116640.doi:10.1371/journal.pone.0116640 leadtoobesityremainpoorlyspecified.Herewedelineatedthebrainbasisofvolitionalap- AcademicEditor:XiaWu,BeijingNormalUniversity, petitecontrolinhealthyandobeseindividualswithfunctionalmagneticresonanceimaging Beijing100875,CHINA (fMRI).Twenty-sevenmorbidlyobesewomen(meanBMI=41.4)andfourteenage- Received:June9,2014 matchednormal-weightwomen(meanBMI=22.6)werescannedwith1.5TeslafMRIwhile Accepted:December11,2014 viewingfoodpictures.Theywereinstructedtoinhibittheirurgetoeatthefoods,viewthesti- Published:February6,2015 mulipassivelyorimagineeatingthefoods.Acrossallsubjects,afrontalcorticalcontrolcir- cuitwasactivatedduringappetiteinhibitionversuspassiveviewingofthefoods.Inhibition Copyright:©2015Tuularietal.Thisisanopen accessarticledistributedunderthetermsofthe minusimaginedeating(appetitecontrol)activatedbilateralprecuneiandparietalcortices CreativeCommonsAttributionLicense,whichpermits andfrontalregionsspanninganteriorcingulateandsuperiormedialfrontalcortices.During unrestricteduse,distribution,andreproductioninany appetitecontrol,obesesubjectshadlowerresponsesinthemedialfrontal,middlecingulate medium,providedtheoriginalauthorandsourceare anddorsalcaudatenuclei.Functionalconnectivityofthecontrolcircuitwasincreasedin credited. morbidlyobeseversuscontrolsubjectsduringappetitecontrol,whichmightreflectimpaired DataAvailabilityStatement:Thepatientdatafrom integrativeandexecutivefunctioninobesity. theSleevePET2study(NCT01373892)arestoredon PETCentreserverandanonymized1stlevelcontrast dataareavailableintermswiththeinformed consentsandprivacyregulationsuponrequestfrom HumanEmotionSystemslaboratoryatTurkuPET CentreandUniversityHospitalofTurku.Requests [email protected]. Introduction Funding:Thisstudywasfinanciallysupportedbythe Inourmodernsocietyhumansaresurroundedbyfoodadvertisementandpalatablevisual AcademyofFinland(grants#256147and#251125to foodcuesarereadilyavailableandondisplayinsupermarketsandrestaurants.Despitecom- LN),theSigridJuseliusFoundation,theUniversity plexhomeostaticmechanismsthatgoverneatingandappetite[1],themerevisualcuesofpalat- HospitalofTurkuandtheUniversityofTurku(grant 10463toJJT).Thefundershadnoroleinstudy ablefoodsmaytriggerastrongurgetoeatnotwithstandingcurrentnutritionalstate,thus PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 1/16 BrainCircuitforAppetiteControl design,datacollectionandanalysis,decisionto momentarilyoverridinghomeostaticcontrolandpreviousconsciousdecisionsregardingeat- publish,orpreparationofthemanuscript. ingbehavior[2].Asvisualandolfactoryfoodcuesareomnipresentinoureverydayenviron- CompetingInterests:Theauthorshavedeclared ment,theymayplayakeyroleindrivingincreasedfoodconsumptionbytriggeringappetitive thatnocompetinginterestsexist. behavior.Thismayalsocontributetotheincreasingprevalenceofobesityintheindustrialized world[3].Consequently,understandingthephysiologicalandpsychologicalmechanismsun- derlyingvolitionalrestraintofenergyintakeiscriticalinfightingthe‘obesityepidemic’. Thesightoffoodcuesengagesthebrain’srewardcircuitanditshowsgreateractivationen- counteringpalatableversusblandfoods[2],especiallyinobeseindividuals[4,5].Ithasbeen suggestedthat,inadditiontoahypersensitiverewardcircuit,animbalancebetweenthereward circuitryandfrontalbrainsystemssupportinginhibitorycontrolmaybeafeatureofobesity [2,4–6].Itiswidelyacceptedthat,thepre-supplementalmotorarea(preSMA)andanterior cingulatecortexformthekeyregionsinthebrain’scognitiveinhibitionnetwork[7–9],typical- lymeasuredbyGo/No-Gotask[10].However,theseregionsmayalsosupportmoregeneral cognitiveprocessesinvolvedininhibitoryprocesses,suchasmemoryretrievalandworking memory[11].Astheaforementionedfrontalregionsareanatomicallyconnectedtobasalgan- gliaandthustothestriatalrewardcircuit[11]–knowntobehyperactiveinobeseindividuals [2]–itispossiblethattheycouldservecognitiveappetitecontrolaswell.Inlinewiththis, priorstudiesoncognitiveappetitecontrolwhileviewingfoodpictureshaveindeedimplicated thefrontalbrainregions’involvementwhenthinkingoflong-termcostsandbenefitsofeating thepresentedfoods[12]andfronto-striatalactivationsduringcognitivereappraisaltasks[13]. Theevidenceoftheinfluenceofobesityonthefunctioningofthefrontocorticalappetite controlsystemsremainsmixed,nevertheless.SomestudieshavereportednoeffectsofBody MassIndex(BMI)oncorticalinhibitorycircuits[12],whilesomehaveobservedsmaller[14] andotherslarger[13]responsesinthiscircuitinobeseindividuals.Althoughpriorstudies haverevealedthatobesityaltersfunctionalconnectivityoftherewardcircuit[2],ourunder- standingofhowobesitycouldinfluencefunctionalconnectivityofthecognitivecontrolnet- worksandtherewardcircuithasremainedelusive.Itisindeedpossiblethatthepreviously reportedelevatedrewardcircuitresponsestopalatablefoodsinobeseindividuals[4–6]could reflectalteredinhibitoryconnectionsfromthefrontalcognitivecontrolregions,ratherthan meredifferencesinregionalhemodynamicresponses. Here,weusedfunctionalmagneticresonanceimaging(fMRI)tostudybraincircuitssupport- ingcognitiveappetitecontrolinnormal-weightandmorbidlyobeseindividuals.Participants viewedpicturesoffoods,whiletheirtaskwastoeitherinhibittheirurgestoeat,imagineeating thefoodsorwatchthefoodspassively.Wehypothesizedthatvolitionalcontrolofappetitewould engagethefronto-corticalcircuits,andthatobeseindividualswouldhavelowerfrontalactiva- tionsreflectingfailuretovolitionallyinhibittheirurgestoeat.Inlinewiththis,wealsopredicted thatfunctionalconnectivityofthecontrolcircuitwouldbeloweredinobeseindividuals. MaterialsandMethods ThestudywasconductedinaccordancewiththeDeclarationofHelsinkiandapproved bytheEthicalCommitteeoftheHospitalDistrictofSouth-WesternFinland(SleevePET2 NCT01373892,http://www.clinicaltrials.gov).Allparticipantssignedanethicalcommittee- approved,informedconsentformpriortoscans. 2.1.Participants Twenty-sevenneurologicallyintactmorbidlyobesesubjects(M =41.4,SD =3.9)were BMI BMI recruitedforthestudy(Table1).Fourteenneurologicallyintactandage-matchednormal- weightvolunteersubjects(M =22.6,SD =2.7)wererecruitedasacontrolgroup BMI BMI PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 2/16 BrainCircuitforAppetiteControl Table1.Thecharacteristicsofstudyparticipants. MorbidlyObesen=27 Mean SD HealthyControlsn=14 Mean SD Independentsamplet-test females females p-values Age(years) 42.1 9.3 44.9 11.9 0.47 Height(cm) 165.2 6.3 165.5 6.4 0.89 Weight(kg) 113.5 14.4 61.8 6.9 <0.001 BMI(kg/m2) 41.4 3.9 22.6 2.7 <0.001 Subjectivehungerratingbeforethe 4.3 2.4 3.9 2.3 0.63 MRIscan(1–9) doi:10.1371/journal.pone.0116640.t001 (Table1).Eatingdisorders,severementaldisordersandsubstanceabusewereexclusioncriteria forallparticipants.InFinlandca.85%ofpatientsundergoingbariatricsurgeryarefemale. Consequently,thestudywasconductedwithfemaleparticipantswhomatchedthecharacteris- ticsofthenationaltargetpopulation. 2.2.ExperimentalDesignforfMRI Participantswereinstructedtorefrainfromeatingandtodrinkonlywaterfor3–4hourspriorto scanning.BeforetheMRIscans,participantsratedtheirfeelingsofhunger(usingascaleranging from1=I’mnotfeelinghungryatallto9=I’mstarving)toassessthenutritionalstate[15]. StimulianddesignaresummarizedinFig.1.Thestimuliwere80digitizedfull-colorimages offoods[2].DuringfMRIacquisition,foodstimuliwerepresentedatthecenterofthescreen in16sblocksintermixedwith1.75srestperiodsbetweenblocks.Duringeachblock, Fig1.Experimentaldesignandtrialstructure. doi:10.1371/journal.pone.0116640.g001 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 3/16 BrainCircuitforAppetiteControl participantssawfourfoodpicturesshownfor4seach.Acoloredrectanglearoundthepicture denotedthetasktheparticipanthadtoperformthroughouteachblock.Duringinhibitioncon- dition,theyhadtoinhibiturgestoeatthefood,duringpassiveviewingconditiontheyhadto viewthefoodspassively,andduringimaginaryeatingconditiontheyhadtoimagineeatingthe foods.Theblockswerepresentedinafixed,pseudo-randomizedorder,whichwascounterbal- ancedacrossparticipants.Altogetherthereweretwentyblocksofeachcondition,andtotal scanningtimewasapproximately19minutes.Participantsweregivenwrittenandspokenin- structionsbeforeenteringthescanner,andtheypracticedthetaskinthescannerbeforetheex- perimentbegan.Theparticipantswerealsointerviewedaftertheexperimenttoassurethatthey hadfinishedthetaskasinstructed. ThestimuluspresentationandbehavioraldatacollectionwerecontrolledwithPresentation software(NeurobehavioralSystems,Inc.).StimuliwereprojectedfromanLCDprojectoronto anon-magneticscreenmountedatthefootofthebore,andanangledmirrorreflectedimages ontothescreenintotheparticipants’fieldofvision. 2.3.fMRIAcquisitionandAnalysis MRimagingwasperformedwithPhilipsGyroscanIntera1.5TCVNovaDualscannerat TurkuPETcentre.Whole-brainfunctionaldatawereacquiredwithT2(cid:1)weightedecho-planar imaging(EPI)sequence,sensitivetotheblood-oxygen-level-dependent(BOLD)signalcon- trast(TR=2987ms,TE=50ms,90°flipangle,192mmFOV,64×64reconstructionmatrix, 62.5kHzbandwidth,4.0mmslicethickness,withnogapsbetweenslices,30interleavedslices acquiredinascendingorder).High-resolutionanatomicalimages(1mm3resolution)were acquiredusingaT1-weightedsequence(TR25ms,TE4.6ms,flipangle30°,280mmFOV, 256x256reconstructionmatrix). Altogether380functionalvolumeswereacquired.Furthermore,four‘dummy’volumes wereacquiredanddiscardedatthebeginningtoallowforequilibrationeffects.Thedummy volumeswerenotincludedintheanalysis.Datawerepre-processedandanalyzedusingSPM8 software(http://www.fil.ion.ucl.ac.uk/spm/)runningonMatlab2011b.TheEPIimageswere realignedtothefirstscanimagebyrigidbodytransformationstocorrectforheadmovements. Echoplanarandstructuralimageswereco-registeredandnormalizedtotheT1standardtem- plateinMNIspace(MontrealNeurologicalInstitute–InternationalConsortiumforBrain Mapping)usinglinearandnon-lineartransformations,andsmoothedwithaGaussiankernel of8mmfullwidthathalfmaximum—FWHM8mm. 2.4.Analysisofregionaleffects Awhole-brainrandomeffectsmodelwasused.Thistwo-stageprocess(firstandsecondlevel) assesseseffectsonthebasisofinter-subjectvarianceandthusallowsinferencesaboutthepopu- lationthattheparticipantsaredrawnfrom.Foreachparticipant,weusedagenerallinear model(GLM)toassessregionaleffectsoftaskparametersonbrainactivation.Thefirstlevel modelincludedallthreeexperimentalconditions(inhibition,passiveviewingandimaginary eating)aswellasthesixrealignmentparametersaseffectsofnointerest.Low-frequencysignal driftwasremovedusingahigh-passfilter(cut-off128s)andweappliedautoregressiveAR(1) modelingoftemporalautocorrelations.Theindividualcontrastimagesweregeneratedusing thet-contrastsi)inhibitionminusviewing,ii)imaginaryeatingminusviewing,andiii)inhibi- tionminusimaginaryeating,aswellastheoppositecontrasts.Thecontrastimagesofthe voxel-wisedifferenceinbetaestimatesforthecontrastsofinterest.Thesecond-levelanalysis usedthesecontrastimagesinanewGLMfromwhichgeneratedstatisticalimages,thatis,SPM t-mapsacrossallsubjectsandbetweensubjectgroups.Whenthesecond-levelanalysishas PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 4/16 BrainCircuitforAppetiteControl balanceddesignsatfirstlevelwithsimilarnumbersofsimilareventsforeachsubjectitclosely approximatesatruemixed-effectsdesign,exhibitingwithin-andbetween-subjectvariance.In addition,second-levelanalysisinSPMisconsideredtoberobustagainstunequalgroupsizes, whenunequalvariancesareassumed.Theinhibitionminuspassiveviewingandimaginaryeat- ingversuspassiveviewingcontrastswereusedtodelineatethebrainregionsinvolvedincogni- tivecontrolofappetiteandmentalprocessingofthehedonicvalueofthefoods.Theappetite controlcontrast(inhibitionminusimaginaryeating)wasconsideredthemaincontrastofin- terestforrevealingtheneuralbasisofappetitecontrol,asthisenabledcontrastingthetwoac- tivefood-relatedtasksdirectlyagainsteachother,thusaccountingforeffectsofincreasing taskcomplexityintheactiveversuspassiveviewingconditions[11].Datawerethresholdedat p<0.05,falsediscoveryrate(FDR)correctedattheclusterlevel. 2.5.Psychophysiologicalinteractions(PPI)inthegenerallinearmodel (GLM) Theconnectivitybetweenbrainregionscanvaryasafunctionofthepsychologicalcontext [16].ThisisknownasaPsychophysiologicalInteraction(PPI).PPIsdonotrequireaspecific anatomicalmodel.Rather,theyrevealcontext-dependentconnectivityofthesourceregion withanypossibletargetregion(s).ThismeansthatPPIsindicatetask-dependentinteractions betweenregionalbrainsystems;thusthePPIrevealswhichregionshavemoreorlesssimilar activitypattern(‘connectivity’)withthesourceregionasafunctionofaspecificcontrast.Asis trueforotherconnectivitymethodssuchasdynamiccausalmodeling,PPIsdonotindicatethe directionofcausalinfluencesbetweensourceandtargetregions,norwhethertheconnectivity ismediatedbymono-orpoly-synapticconnections,norchangesinstructuralneuroplasticity fromepochtoepoch[17]. Sourceregionsforthebrain’sinhibitionnetworkwereselectedfromapreviousmeta-analy- sisoninhibitoryprocessinginGo/No-Gotasks[10,11]andcaudatenucleus,givenitskeyrole inanticipatoryfoodreward[2](seeTable2forMNIcoordinates).Aspherical8-mmregionof interest(ROI)wasdrawnattheselocationsininhibitionminuspassiveviewingcontrasttofur- therdelineateconnectivitychangesinthecognitivecontrolnetwork.Thetime-seriesforeach participantwascomputedbyusingthefirsteigenvariatefromallvoxeltimeseriesinthede- finedROI,andde-convolvedusingthePPI-deconvolutionparameterdefaultsinSPM8[18]. ThePPItermwasthencalculatedastheelement-by-elementproductoftheROIin“neuronal time-series”andavectorcodingfortheselectedcontrast(1forinhibitionand-1forpassive viewing).Thisproductwasthenre-convolvedbythecanonicalhemodynamicresponsefunc- tion(hrf).First-levelPPIswereruntogenerateSPMcontrastimagessimilartothefirstlevel Table2.SeedregionsusedinthePPIanalysis. Region Hemisphere X Y Z MiddleCingulum R 6 21 38 Precuneus R 11 -72 58 preSMA R 4 25 38 preSMA L -2 16 67 Insula R 36 19 -7 Caudatenucleus R 15 22 13 Middle(lateral)frontalcortex L -42 14 42 Orbitofrontalcortex R 40 40 -2 doi:10.1371/journal.pone.0116640.t002 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 5/16 BrainCircuitforAppetiteControl GLMmodel,andthesecontrastimageswereanalyzedandthresholdedinthesecond-level modelasdescribedabove. Results 3.1.Task-evokedBOLDresponsesacrossallsubjects Contrastingtheinhibitionconditionwithpassiveviewingrevealedwidespreadactivationin fronto-corticalregions(Fig.2A,Table3).Theseincludedbilateralsuperior,superiormedial- andmiddlefrontalgyri,middlecingulatecortexandprecentralgyrusbilaterally.Increasedacti- vationwasalsoobservedintheleftinferiorfrontalgyrusandtemporalpole.Supplemental motorarea(SMA),thalamusandcerebellumwereactivatedbilaterally.Additionalactivations wereobservedintheearlyvisualareasintheoccipitalcortex.Whenimaginaryeatingwascon- trastedwithpassiveviewing,similarbrainareaswereactivated,suchasintheinhibitionminus passiveviewingcontrast(Fig.2B,Table3).Viewingversusinhibitionandviewingversusimag- inaryeatingconditionsalsobothactivatedasimilarpatternofbrainregions:superior/middle frontalgyri,superiormiddletemporalgyriandprecuneus(Table4).Finally,wecontrastedthe inhibitionandimaginaryeatingconditionsdirectlywitheachother(appetitecontrol).The areasshowingincreasedactivationduringinhibitionversusimaginaryeatingincludedrightin- feriorfrontalgyrus,bilateralmiddlefrontalcortices,middlecingulatecortex,precuneus, cuneus,righthippocampusandparietallobes(Fig.2C,Table3).Thereversecomparison (imaginaryeating>inhibition)showedincreasedactivationininferiortemporalandsuperior parietallobes(Table3). 3.2.Comparisonsbetweennormal-weightandmorbidlyobesesubjects Ininhibitionminusimaginaryeatingcomparison,normal-weightsubjectsshowedstrongerac- tivationsthanobesesubjectsinbilateraldorsalcaudatenucleiandanteriorcingulatecortex (Fig.3C,Table5).Correspondingly,obesesubjectshadgreateractivationsinthebilateralpos- teriorcingulum(Table5).Othercontrastsofinterestrevealednosignificantactivationsatour aprioristatisticalthreshold.Usingaslightlymorelenientstatisticalthreshold(p<0.005,un- correctedascomparedtoapriorithresholdofp<0.05,FDRcorrected),wefoundthatininhi- bitionvs.passiveviewingcomparison,normal-weightsubjectshadstrongerresponsesinthe leftmiddleandinferiorfrontalgyri,andrightorbitofrontalcortex(OFC),andobesesubjects hadgreateractivationofbilateralposteriorcingulum(Fig.3A,Table5).Whencontrasting imaginaryeatingminuspassiveviewing,healthysubjectsshowedstrongerright-hemispheric insularactivation(Fig.3B,Table5). 3.3.Psychophysiologicalinteractions Acrossallsubjects,therightcaudatenucleusshowedincreasedtask-driven(inhibitionversus passiveviewing)connectivitywithbilateralprecuneiandcuneiandparietalcortices(Fig.4).In- feriorparietalgyruswasthepeakareaofactivation(Table6).TheleftpreSMAshowedde- creasedconnectivityacrossallsubjectswithbilateralcerebellum,leftsuperiorparietalgyrus (Table6).Theclusterextendedtoleftinsula,thalamusandcaudate(Fig.4).Therightinsula showeddecreasedconnectivityacrossallsubjectswiththeleftpre-centralgyrusandparacen- trallobule(Table6),withanextendingclustertopreSMA(Fig.4). Between-groupcomparisonsrevealedthatobesesubjectshadstrongerfunctionalconnectiv- itybetweenmiddlefrontalcortexandbilateralsupplementalmotorarea(SMA),rightputamen andrightmiddletemporalgyrus(Fig.5,Table6).Obeseversusnormal-weightsubjectsalso showedstrongerconnectivitybetweentherightprecuneusandbilateralsupplementalmotor PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 6/16 BrainCircuitforAppetiteControl Fig2.Regionalbrainactivationsacrossallsubjects.Brainregionsshowingstrongerresponsesduringinhibitionminuspassiveviewingcondition(A), imaginaryeatingminuspassiveviewingcondition(B)andinhibitionconditionminusimaginaryeating(C).Thedataarethresholdedatp<0.05,FDR correctedatclusterlevel. doi:10.1371/journal.pone.0116640.g002 area,bilateralthalamus,bilateralpre-centralgyriandrightinferiorfrontalgyrus(Table6)ex- tendingtorightinsula(Fig.5).Inaddition,obeseversusnormal-weightsubjectsshowedstron- gerconnectivitybetweenpreSMAandbilateralmiddlecingulatecortex,bilateralmedialand lateralsuperiorfrontalcortices,thalamus,rightinferiorparietallobuleandrightangulargyrus (Fig.5,Table6). Hungerratings(Table1)didnotdifferbetweengroups.Nevertheless,allsecond-levelmod- elswererunseparatelywithhungerratingasaregressorofnointerest.Thisrevealedthathun- gerdidnotsignificantlyinfluencetheresultsoftheanalysesreportedinthemanuscript. PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 7/16 BrainCircuitforAppetiteControl Table3.Brainregionsshowingincreasedresponsesinallsubjectsduringinhibitionandimaginaryeatingversuspassiveviewingand inhibitionversusimaginaryeating. Peaklocation Hemisphere X Y Z T Inhibition>Passiveviewing Superiorfrontalgyrus L -18 52 32 6.59 Supplementalmotorarea L -2 6 60 6.40 -8 2 74 6.28 Inhibition>Imaginaryeating Inferiorfrontalgyrus(p.Triangularis) R 50 24 6 5.54 Superiortemporalgyrus L -46 -36 18 4.84 Superiortemporalgyrus R 64 -32 18 4.25 Cuneus R 8 -74 32 4.50 Hippocampus R 40 -16 -10 3.97 Angulargyrus R 48 -62 40 3.93 ImaginaryEating>Passiveviewing Cerebellum R 27 -72 -24 5.39 Supplementalmotorarea L -12 4 72 6.02 ImaginaryEating>Inhibition Inferiortemporallobe L -50 -34 48 3.96 Superiorparietallobe L -24 -72 42 3.55 Dataarethresholdedatp<0.05,FDRcorrectedatclusterlevel. doi:10.1371/journal.pone.0116640.t003 Table4.Brainregionsshowingincreasedresponsesinallsubjectsduringpassiveviewingversusinhibitionandimaginaryeating. Peaklocation Hemisphere X Y Z T Passiveviewing>Inhibition Middlecingulatecortex R 6 -38 40 5.61 Middletemporalgyrus R 44 -74 26 5.45 Middlefrontalgyrus R 40 8 46 4.08 36 14 62 4.06 Superiorfrontalgyrus R 30 20 62 4.05 Passiveviewing>ImaginaryEating Hemisphere X Y Z T Superiortemporalgyrus R 56 -52 24 8.57 Middletemporalgyrus R 52 -62 22 6.87 Precuneus R 6 -76 38 6.47 Superiorfrontalgyrus R 24 16 48 6.19 R 38 52 24 5.25 R 30 20 62 4.76 Superiortemporalgyrus L -50 28 8 4.40 Middletemporalgyrus L -66 -28 8 3.72 L -60 -16 -2 3.69 Dataarethresholdedatp<0.05,FDRcorrectedatclusterlevel. doi:10.1371/journal.pone.0116640.t004 PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 8/16 BrainCircuitforAppetiteControl Fig3.Regionaldifferencesinbrainactivationsbetweennormal-weightandobesesubjects.Brainregionsshowingstrongeractivationinnormal- weightversusmorbidlyobesesubjectsininhibitionminuspassiveviewing(A),imaginaryeatingminuspassiveviewing(B)andinhibitionminusversus imaginaryeating(C)contrasts.ThedatainCarethresholdedatp<0.05,FDRcorrectedatclusterlevel(p<0.005,uncorrectedatAandB). doi:10.1371/journal.pone.0116640.g003 Discussion Hereweshowthatvolitionalappetitecontrolwhileviewingvisualfoodcuesactivatesanet- workofprefrontal,frontalandparietalandinferiorcerebellarcorticalregions.Thisconfirms thatthefrontocorticalcontrolsystem–wellknownforinhibitionanderrormonitoring[8,9] isalsoengagedduringvolitionalappetitecontrol.Moreover,regionalresponsesandconnectiv- ityprofilesofthisnetworkwasinfluencedbyobesity.Duringappetitecontrol,obeseindividu- alsshoweddiminishedresponsesinthefrontalcorticesaswellasinthedorsalstriatum, whereasduringimaginaryeatingtheirresponseswerediminishedintheinsularcortex.Func- tionalconnectivityanalysisfurtherrevealeddissociationbetweentheregionalresponsiveness andinterconnectivityofthecognitivecontrolnetworkinobeseversusnormal-weightindividu- als:connectivityofthecontrolnetwork,particularlyofpreSMAandprecuneus,withregions PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 9/16 BrainCircuitforAppetiteControl Table5.Brainregionsshowingsignificantbetween-groupdifferencesinthetask-evokedBOLDresponses. Contrastsandcomparisons Hemisphere X Y Z T Inhibition>Passiveviewing* Healthy>Obese Middleorbitalgyrus R 28 32 -6 4.18 Inferiorfrontalgyrus(p.Orbitalis) R 44 38 -2 3.26 Inferiorfrontalgyrus(p.Triangularis) R 44 22 26 3.30 Obese>Healthy Posteriorcingulatecortex R 6 -38 12 5.16 L -4 -32 12 4.52 ImaginaryEating>Passiveviewing* Healthy>Obese Insula R 38 14 -10 3.74 Inhibition>ImaginaryEating Healthy>Obese Anteriorcingulatecortex L -14 16 30 3.74 Caudatenucleus R 20 6 22 2.99 Dataarethresholdedatp<0.05,FDR-correctedattheclusterlevel.Note:*p<0.005andclusterleveluncorrected. doi:10.1371/journal.pone.0116640.t005 involvedinconflictmonitoring(anteriorcingulatecortex)andarousalcontrol(thalamus)was strongerinobeseversusnormal-weightindividuals. 4.1.Brainbasisofcognitiveappetitecontrol Eatingandappetitearecontrolledbycomplexhomeostaticmechanisms[1].Inreal-lifesitua- tions,asuddenurgetoeatmaybetriggeredbymerepicturesoffoodsinadvertisements,super- marketsandonTV;thustheseimpulsesneedtobeinhibitedtopreventexcessivefoodintake. Wefoundthatfrontalandprefrontalregionsarereliablyactivatedwhenindividualsengage volitionallyinsuchinhibition.Theseareasarelikelythekeycomponentsresponsibleforvoli- tionalappetitecontrol,andarealsoimpliedinpreviousstudiesonresponseinhibition[8–11, 19–21].However,asubsetoftheseregionssuchasBroca’sareaandleftlateralfrontalcortices werealsoengagedduringimaginaryeating.Bothvolitionalinhibitionofappetiteandimagi- naryeatingtasksrequireworkingmemoryinretrievingthetaskandsomeverbalinstructions aswell,soactivationintheseregionscanbeexpectedinbothtasks[10].Observedcerebellar activationcouldreflectengagementofafronto-cerebellarnetwork,whichconstantlyupdates anticipatorycontrolmechanisms[22]. Thesefindingsfromthetask-evokedBOLDresponsestocognitiveappetitecontrolaccord withthosemadebyYokumetal.Theycomparedtheneuralresponsesofthreecognitivereap- praisalstrategieswhenadolescentsubjectsviewedvisualfoodcuesandthoughtofthelong-term costsorbenefitsofnoteatingthefoodandsuppressingcravingsforthefood.Theyfoundin- creasedactivationininhibitoryprefrontalandsuperiorfrontalregionsduringthesementaltasks, yetinthatstudyparticipants’BMIdidnotmodulatetheintensityofbrainactivation[12].Fur- thermore,Yokumetalreporteddecreasedactivationoftheprecuneusandposteriorcingulate gyrusduringtaskperformanceandmoresoduringthinkingofthelong-termbenefitsfornot eatingthefoodascomparedtoothertasks[12].Inanotherrecentstudyparticipantshadtoeither increaseordecreaseappetitewhileviewingfoodpictures[13].Intheappetitedecreasecondition thesubjectswereaskedtoreappraisethepresentedstimulii.e.givenewmeaningtothefood PLOSONE|DOI:10.1371/journal.pone.0116640 February6,2015 10/16

Description:
brain circuits supporting volitional control of appetite and their possible (fMRI). Twenty-seven morbidly obese women (mean BMI = 41.4) and fourteen age- involved in inhibitory processes, such as memory retrieval and working.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.