ebook img

Networks, Second Edition [2nd Ed] (Instructor Solution Manual, Solutions) PDF

34 Pages·2018·0.363 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Networks, Second Edition [2nd Ed] (Instructor Solution Manual, Solutions)

Networks, 2nd Edition MarkNewman Solutions to Exercises Ifyoufinderrorsinthesesolutions,pleaselettheauthorknow. Suggestionsforimprovementsarealsowelcome. Pleaseemail MarkNewman,[email protected]. PleasedonotpostthesesolutionsontheWeborelsewhereinelectronicform. Copyright©2018 MarkNewman. 6 Mathematicsofnetworks 1 0 1 0 0 (cid:169)0 1 1 0 0(cid:170) b) B(cid:3)(cid:173) (cid:174) Exercise6.1: (cid:173)(cid:173)0 0 0 1 0(cid:174)(cid:174) 0 1 1 1 1 (cid:171) (cid:172) a)Undirected b)Directed,approximatelyacyclic 0 0 1 0 0 c)Planar, tree, directed or undirected depending on the (cid:169)0 0 1 1 1(cid:170) representation c) BTB(cid:3)(cid:173)(cid:173)1 1 0 1 1(cid:174)(cid:174) d)Undirected,approximatelyplanar (cid:173)(cid:173)0 1 1 0 1(cid:174)(cid:174) e)Directedorundirecteddependingonthenetwork 0 1 1 1 0 (cid:171) (cid:172) f)Citationnetworks,foodwebs g)The web, the network of who says they’re friends with whom Exercise6.4: h)Arivernetwork,aplantoratreeortheirrootsystem a)k(cid:3)A1 i)Aroadnetwork,thenetworkofadjacenciesofcountries j)Any affiliation network, recommender networks, key- b)m(cid:3) 211TA1 wordindices c)N(cid:3)A2 k)Awebcrawler l)Drawdatafromaprofessionallycuratedindexsuchasthe d) 1TrA3 6 ScienceCitationIndexorScopus,orfromanautomated citationcrawlersuchasGoogleScholar Exercise6.5: m)Aliteraturesearch a)A3-regulargraphhasthreeendsofedgespernode,and n)Questionnairesorinterviews hence3nendstotal. Butthetotalnumberofendsofedges o)Anappropriatemap isalsoequalto2m, whichisanevennumber. Hence n mustbeeven. Exercise6.2: The maximum number of edges is (cid:0)n(cid:1) because thereare (cid:0)n(cid:1) distinctplacestoputanedgeandeach2 canhave b)A tree with n nodes has m (cid:3) n −1 edges. Hence the only one e2dge in a simple network. The minimum is n −1 averagedegreeis2m/n(cid:3)2(n−1)/n <2. becausewerequirethatthenetworkbeconnectedandn−1is c)TheconnectivityofAandCmustbeatleasty,becauseif theminimumnumberofedgesthatwillachievethis—seethe thereareypathsfromBtoCandx > ypathsfromAtoB, discussionatthetopofpage123. thenthereareatleast y pathsallthewayfromAtoC. OntheotherhandtheconnectivityofAandCcannotbe Exercise6.3: Thematricesareasfollows: greaterthanybythesameargument: ifthereweremore than y paths from A to C and more than y paths from B to A, then there would be more than y paths from B 0 1 0 0 1 toC(viaA).HencetheconnectivityofAandCmustbe (cid:169)0 0 1 0 0(cid:170) exactlyy. a) A(cid:3)(cid:173)(cid:173)1 0 0 0 1(cid:174)(cid:174) (cid:173) (cid:174) Exercise6.6: Let the eigenvector element at the central node (cid:173)0 1 1 0 0(cid:174) 0 0 0 0 0 be x1. Bysymmetrytheelementsattheperipheralnodesall (cid:171) (cid:172) have the same value. Let us denote this value x2. Then the 1 Networks(2ndEdition) eigenvalueequationlookslikethis: Exercise6.8: Thetotalnumberofedgesattachedtonodesof type1isn1c1. Thetotalnumberattachedtonodesoftype2is 0 1 1 1 ··· x1 x1 n2c2. Buteachedgeisattachedtoonenodeofeachtypeand (cid:169)(cid:173)1 0 0 0 ··· (cid:170)(cid:174)(cid:169)(cid:173)x2(cid:170)(cid:174) (cid:169)(cid:173)x2(cid:170)(cid:174) hencethesetwonumbersmustbeequaln1c1(cid:3)n2c2. (cid:173)(cid:173)1 0 0 0 ··· (cid:174)(cid:174)(cid:173)(cid:173)x2(cid:174)(cid:174)(cid:3)λ(cid:173)(cid:173)x2(cid:174)(cid:174), (cid:173)(cid:173)1 0 0 0 ··· (cid:174)(cid:174)(cid:173)(cid:173)x2(cid:174)(cid:174) (cid:173)(cid:173)x2(cid:174)(cid:174) Exercise6.9: ThenetworkcontainsanexpansionofUG,and (cid:173) ... ... ... ... ... (cid:174)(cid:173) ... (cid:174) (cid:173) ... (cid:174) henceisnonplanarbyKuratowski’stheorem: (cid:171) (cid:172)(cid:171) (cid:172) (cid:171) (cid:172) whereλistheleadingeigenvalue. Thisimpliesthat(n−1)x2(cid:3) λx1andx1(cid:3)λx2√. Eliminatingx1andx2fromtheseequations wefindthatλ (cid:3) n−1. Theequationx1 (cid:3) λx2 thenimplies thatx1andx2havethesamesign,whichmeansthatthismust betheleadingeigenvalue(bythePerron–Frobeniustheorem— seethediscussiononpage160andthefootnoteonpage161). Exercise6.7: a) r (Thefive-foldsymmetricappearanceofthenetworkmightlead (cid:213) Totalingoingedges(cid:3) kin, oneatfirsttohypothesizethatitcontainsanexpansionofK5, i i(cid:3)1 butuponreflectionweseethatthisisclearlyimpossible,since r every node has degree 3, whereas every node in K5 has de- (cid:213) Totaloutgoingedges(cid:3) kout. gree4. Thusifthenetworkistobenonplanaritmustcontain i i(cid:3)1 anexpansionofUG.) b)Thenumberofedgesrunningtonodes1...rfromnodes Exercise6.10: Theedgeconnectivityistwo. Toprovethiswe r+1...n isequaltothetotalnumberofedgesrunning displaytwoedge-independentpathsandacutsetofsizetwo to nodes 1...r minus the number originating at nodes thus: 1...r. Inotherwords,itisequaltothedifferenceofthe twoexpressionsabove: Numberofedges(cid:3)(cid:213)r (cid:0)kin−kout(cid:1). A B A B i i i(cid:3)1 c)Alloutgoingedgesatnoder+1mustattachtonodesin therange1...randhencethenumberofedgesoutgoing fromnoder+1canbenogreaterthanthetotalnumber Thisconstitutesaproofbecausetheexistenceoftwoindepen- fromnodesr+1...ntonodes1...r. Thus dent paths proves that the connectivity must be at least two, whiletheexistenceofthecutsetprovesthattheconnectivity r kro+u1t ≤(cid:213)(cid:0)kiin−kiout(cid:1). canbenogreaterthantwo. i(cid:3)1 Exercise6.11: Similarly,alledgesingoingatnodermustoriginatefrom a)n(cid:3)1,m(cid:3)0, f (cid:3)1. nodesintheranger+1...nandhencethetotalnumber b)n→n(cid:48)(cid:3)n+1,m→m(cid:48)(cid:3)m+1, f → f(cid:48)(cid:3) f. finrogmoinngodatesnord+e1r.c.a.nnbteonnoodgreesa1te.r..thr.anThthuestotalnumber c)n→n(cid:48)(cid:3)n,m→m(cid:48)(cid:3)m+1, f → f(cid:48)(cid:3) f +1. d)Therelationis f+n−m(cid:3)2. Clearlyitistrueforcase(a), kin ≤(cid:213)r (cid:0)kin−kout(cid:1). whichcanbeconvenientlyusedasastartingpointforin- r i i duction.Therelationisalsopreservedby(b)and(c).And i(cid:3)1 anyconnectedplanargraphcanbebuiltupbyaddingits Notingthatthetotalnumberofedgesism (cid:3)(cid:205)ni(cid:3)1kiin (cid:3) nmoodveessa(bn)daenddg(ecs).oHneenbcyeobnyei,nid.eu.,ctbioynafc+omnb−inmati(cid:3)on2oisf (cid:205)ni(cid:3)1kiout,thiscanalsobewrittenas trueforallsuchgraphs. e)Inasimplegraphallfaceshaveatleastthreeedges,except n kin ≤ (cid:213) (cid:0)kout−kin(cid:1). for the “outside” face that extends to infinity, and each r i i edge has two sides. Therefore the number of edges m i(cid:3)r+1 2 Solutionstoexercises times two is at least as great as f −1 times three, or 7 Measuresandmetrics f ≤ 2m/3+1. Substitutingthisinequalityintotherela- tionfrompart(d)wegetm ≤3n−3,andcombiningthis Exercise7.1: withtherelationfortheaveragedegreec(cid:3)2m/nweget a)Wenotethat[A1]i (cid:3)(cid:205)jAij (cid:3)ki (cid:3)kandhenceA1(cid:3)k1. 6 b)ThevectorxofKatzcentralitiesisgivenby c ≤6− <6. n x(cid:3)(I−αA)−11(cid:3)(I+αA+α2A2+...)1. Exercise6.12: a)The number of paths from s to t of length r is [Ar]st Noting,asabove,thatA1(cid:3)k1fortheregulargraph,this andeachhasweightαr. Thusthesumoftheweightsfor thenbecomes pathsoflengthris[(αA)r]st andthesumforpathsofall lengths(includinglengthzero)is x(cid:3)(1+αk+α2k2+...)1(cid:3) 1 , 1−αk ∞ Zst (cid:3)(cid:213)[(αA)r]st (cid:3)[(I−αA)−1]st. andhencexi (cid:3)1/(1−αk)foralli. r(cid:3)0 c)Betweenness centrality and closeness centrality are the b)Thesumconvergesif|α| < 1/κ1,whereκ1isthelargest obviouschoices. eigenvalueofA(whichisalwayspositive,aconsequence ofthePerron–Frobeniustheorem). Exercise7.2: Starting at any node, there is one node at dis- c)Thederivativeintheproblemisgivenby tance0,twoatdistance1,twoatdistance2,andsoforthupto amaximumdistanceof 1(n−1). Sothemeandistanceis ∂∂lologgZαst (cid:3) Zαst ∂∂Zαst (cid:3) Zαst (cid:213)r rαr−1[Ar]st 2 (n(cid:213)−1)/2 22 1 n2−1 1 (cid:213) k(cid:3) × (n2−1)(cid:3) . (cid:3) Zst r r[(αA)r]st. n k(cid:3)1 n 8 4n Let m bethenumberofpathsfrom s to t oflength (cid:96)st. Andtheclosenessisthereciprocalofthis,or4n/(n2−1). ThentheleadingtermsinZst andthesumaboveare Exercise7.3: Zst (cid:3)(cid:213)[(αA)r]st (cid:3)mα(cid:96)st +O(α(cid:96)st+1), a)The equivalence is most easily demonstrated in the re- (cid:213)rr[(αA)r]st (cid:3)m(cid:96)stα(cid:96)st +O(α(cid:96)st+1). tvheersnedirection. Wewritetheseriesasx (cid:3) (cid:205)∞k(cid:3)0(αA)k1, r ∞ ∞ (cid:213) (cid:213) Substitutingintothepreviousresultwethenget αAx+1(cid:3)αA (αA)k1+1(cid:3)1+ (αA)k1 ∂∂lologgZαst (cid:3) mm(cid:96)sαtα(cid:96)s(cid:96)ts+t +OO(α(α(cid:96)s(cid:96)t+st1+)1) (cid:3)(cid:96)st+O(α). (cid:3)(cid:213)∞(kα(cid:3)A0)k1(cid:3)x. k(cid:3)1 Takingthelimitα→0thengivestherequiredresult. r(cid:3)0 Exercise6.13: Alternatively,wecanrearrangethedefinitionofxaccord- a)There are kin incoming edges at node i and the sum of ingtoEq.(7.7)asx (cid:3) (I−αA)−11andthenexpandthe the trophicilevels at their other ends is (cid:205)jAijxj. Thus matrixinverseasageometricseries. tfohleloawvesr.agetrophiclevelis(1/kiin)(cid:205)jAijxjandtheresult b)bIneythonedlimthietfiorfsstmtwaolltαogweetxca(cid:39)n1n+egαleAc1twterhmicshiinmtphleiessetrhieast b)For species with no prey, kiin (cid:3) 0 and so xi is undeter- thecentralityofnodeiisxi (cid:3)1+αki,whichislinearinthe mined. Wecanfixthisbyartificiallysetting kin (cid:3) 1for degrees. HenceinthislimittheKatzcentralityis,apart i fromadditiveandmultiplicativeconstants, thesameas autotrophs (or indeed setting it to any nonzero value). thedegreecentrality—higherdegreeimplieshigherKatz Thentheequationforxi canberewritteninvectorform centrality. as x(cid:3)D−1Ax+1, c)Let us express 1 as a linear combination of the eigen- whereDisthematrixwiththein-degreesdownthediag- vectorsvr oftheadjacencymatrix1(cid:3)(cid:205)kckvk forsome choiceofcoefficientsc . (Foradirectednetwork,weuse onalor1fornodeswithzeroin-degree,and1isthevector k (1,1,1,...). Rearranging this expression then gives the therighteigenvectors.) Then requiredresult. (cid:213) (cid:213) (αA)k1(cid:3)(αA)k crvr (cid:3) cr(ακr)kvr, r r 3 Networks(2ndEdition) where κr is the eigenvalue corresponding to eigenvec- Exercise7.7: torvr. Summingoverkwenowhave a)Becausethenetworkisatreethereisonlyasingleshort- ∞ ∞ estpathbetweenanypairofnodes. Theparticularnode x(cid:3)(cid:213)k(cid:3)0(αA)k1(cid:3)(cid:213)r cr(cid:213)k(cid:3)0(ακr)kvr (cid:3)(cid:213)r 1−crvαrκr, onfoidnetsereexsctelpietspoanirtshwehsheroertbeostthpamthembebtewrseefanllevinertyhepasairmoef saollltoernmgsaisnαtκhers<um1.rNemowainasfiwnietetaekxecetphtethliemtietrαm→inr1/(cid:3)κ11,, dinistjootianlt,rseogxio(cid:3)n.nT2h−er(cid:205)eianre2i.(cid:205)in2i suchpairs,andn2pairs whichdiverges. Hencethistermdominatesinthelimit b)Theremovalofthe ithnodedividesthelinegraphinto andxbecomesproportionaltotheleadingeigenvectorv1. two disjoint regions of sizes n1 (cid:3) i−1 and n2 (cid:3) n−i. Applyingtheformulawethenfindthatthebetweenness Exercise7.4: Every node in this network is symmetry- oftheithnodeis2(n−i+1)i−1. equivalent,soweonlyhavetocalculatetheclosenessofoneof them. Startingatanynodethereisonenodeatdistance0,three Exercise7.8: atdistance1, andtheremainingsixareatdistance2. Sothe a)Thefourleftmostnodesforma3-core. meandistanceis(0+3+12)/10(cid:3) 3andtheclosenesscentrality 2 b)Thereareeightedges, ofwhichsixarereciprocated, so isthereciprocal 23. r (cid:3) 3. 4 Exercise7.5: The vector x of PageRank scores is given by c)The two nodes have two common neighbors and they Eq. (7.11) to be x (cid:3) (I−αAD−1)−11. In this network, how- havedegrees4and5respectively,sotheircosinesimilar- ever,allout-degreesare1andhenceD(cid:3)D−1(cid:3)Iand ityis 2 1 x(cid:3)(I−αA)−11(cid:3)(I+αA+α2A2+...)1. σ(cid:3) √4×5 (cid:3) √5. (Thecentralnodehasout-degreezerobut,asdiscussedinSec- Exercise7.9: tion7.4,weconventionallysettheout-degreetoonetoavoid a)Every node in the first network is connected to at least dividingbyzero,andthischangehasnoeffectonthePageR- threeoftheothers,sotheentirenetworkisa3-core. In ank values.) But recall now that the matrix element [Ad]ij thesecondnetwork,however,thereisonenodewithonly countsthenumberofpathsoflengthd from j toi andhence n(id) (cid:3) (cid:205)j[Ad]ij (cid:3) [Ad1]i is the number of paths of length d trwemoonveiingghbaollrssu.bRseemquoevnintgnothdiessnwoidtheatwndoothrefnewiteerranteivigehly- fromallnodestonodei. Sincethenetworkisadirectedtree, bors, we end up removing the entire network. Hence however,thereisatmostonepathbetweeneachpairofnodes, thereisno3-coreinthesecondnetwork,despiteitsclose (d) andhencen isalsothenumberofnodesthathavedistance similaritytothefirst. i exactlydfromi. Thus,ifthecentralnodeisnode1,then b)If you consider single nodes to be strongly connected n(d)(cid:3)(cid:213)δ , componentsthentherearethreesuchcomponentsinthis 1 did network: i where δmn istheKroneckerdelta. NowthePageRankofthe centralnodeis ∞ ∞ ∞ x (cid:3)(cid:213)αd(cid:2)Ad1(cid:3) (cid:3)(cid:213)αdn(d)(cid:3)(cid:213)αd(cid:213)δ 1 1 1 did d(cid:3)0 d(cid:3)0 d(cid:3)0 i ∞ (cid:213) (cid:213) (cid:213) (cid:3) αdδ (cid:3) αdi. did i d(cid:3)0 i Exercise7.6: LetL1andR1bethesumsofthedistancesfrom node1tonodesintheleftandrightshadedregionsandsimi- (Dependingonwhoyouask,asinglenodemayormay larlyforL2andR2withnode2. Thenwenotethatthedistance notbeconsideredastronglyconnectedcomponent.) fromnode2toanynodeintheleftshadedregionis1greater c)Toptobottomandlefttorightthelocalclusteringcoeffi- thanthecorrespondingdistancefromnode1tothesamenode andhenceL2(cid:3)L1+n1. SimilarlyR1(cid:3)R2+n2. Addingthese cientsofthenodesare0,1, 31,1,and 23. twoexpressionsgives d)Intermsofthequantitieser andar definedonpage205 L1+R1+n1(cid:3)L2+R2+n2. Tofhtehnetbhoeomk,owduelharaivteyeis1 (cid:3) 130,e2 (cid:3) 12,a1 (cid:3) 25,anda2 (cid:3) 35. NotingthattheclosenesscentralitiesaregivenbyC1(cid:3)n/(L1+ 7 R1)andC2(cid:3)n/(L2+R2),wethenrecovertherequiredresult. Q(cid:3)e11−a12+e22−a22(cid:3) 25. 4 Solutionstoexercises e)Therearen2pathstotalandallofthemstart,end,orpass Exercise7.14: AssumethenetworksatisfiesDavis’scriterion throughthecentralnodeexceptforthosethatstartand ofhavingnoloopswithexactlyonenegativeedge. Performing endatthesameperipheralnode,ofwhichtherearen−1. the coloring as described and then adding back in the nega- Hencethebetweennessofthecentralnodeisn2−(n−1). tive edges, we see that a negative edge will fall between two nodesof thesame colorif andonly ifthose nodesare inthe Exercise7.10: Therearethreeindependentpathsbetweenev- samecomponent,meaningthattheyareconnectedbyapath erypairofnodesina3-component. Anodeina3-core,onthe of positive edges. That path plus the newly added negative otherhand,needonlyhaveedgesconnectingittothreeother edgethenformaloopwithexactlyonenegativeedge. Butby membersofthe3-core,whichisaweakercondition. Thisnet- hypothesistherearenosuchloopsinthenetworkandhence work,forexample,isasingle3-core,buthastwo3-components: nonegativeedgescanfallbetweennodesinthesamecompo- nent: they only fall between nodes in different components. Hencealledgesbetweencomponentsarenegative. Giventhat alledgeswithincomponentsarebydefinitionpositive(since thisishowweconstructedthecomponentsinthefirstplace), the graph is therefore clusterable and the components of the positive-edgenetworkaretheclusters. Exercise7.11: Onethirdoftheedgesarenotreciprocatedand Exercise7.15: Thisquestionismostsimplyansweredinvector twothirdsare,sor (cid:3) 2. 3 notation. Summingover j isequivalenttomultiplyingbythe uniformvector1(cid:3)(1,1,1,...),whichgives: Exercise7.12: a)Itisbalanced,asonecanshowbyexhaustivelyverifying σ1(cid:3)(D−αA)−11(cid:3)[(I−αAD−1)D]−11 thatallloopscontainanevennumberofminussigns. (cid:3)D−1(I−αAD−1)1(cid:3)D−1x, b)Allbalancedgraphsareclusterableandhencethisoneis too. Herearetheclusters: wherex(cid:3)(I−αAD−1)1isthevectorofPageRankscores(see Eq.(7.11)). NotingthatD−1isthediagonalmatrixwiththere- ciprocalsofthedegreesalongitsdiagonal,thisthencompletes theproof. Exercise7.16: a)The numbers er are simple—they are just the diagonal entriesinthetable. Togetthearweneedtoaddthefrac- tionofcouplesinwhichthewomanisingrouprandthe fractioninwhichthemanisingroup r, thendivideby two(sincearisdefinedasthefractionofendsofedgesin groupr andtheedgecorrespondingtoeachcouplehas twoends). Thuswehavea1 (cid:3)(0.323+0.289)/2(cid:3)0.306, Exercise7.13: The number of times the color changes as we and similarly a2 (cid:3) 0.226, a3 (cid:3) 0.400, and a4 (cid:3) 0.068. go around a loop is equal to the number of minus signs. If Thenthemodularityis thisnumberisodd,thenwechangeanoddnumberoftimes, meaningthatweendupwiththeoppositecolorfromtheone Q(cid:3)0.258+0.157+0.306+0.016 westartedwithwhenwegetbacktothestartingnode. Thus −0.3062−0.2262−0.4002−0.0682 thelastedgearoundtheloopwillnotbesatisfied: eitheritis (cid:3)0.428. positiveandjoinsunlikecolorsoritisnegativeandjoinslike ones. Ifallloopshaveaevennumberofminussigns,onthe b)Applying the same approach to the second set of data other hand, we never run into problems, and the entire net- gives a1 (cid:3) 0.345, a2 (cid:3) 0.250, and a3 (cid:3) 0.395, and the workcanbecoloredinthisway. Thenwesimplydividethe modularitywithrespecttopoliticalalignmentis networkintocontiguousgroupsoflike-colorednodes. Bydef- initionalledgeswithinsuchaclusterarepositiveandalledges Q(cid:3)0.25+0.15+0.30−0.3452−0.2502−0.3952 betweendifferent-coloredclustersarenegative. Thereareno (cid:3)0.362. edgesbetweenclustersofthesamecolor,becauseiftherewere theclusterswouldbeconsideredonelargeone,nottwosmaller c)Both of these modularity values are quite high as such ones. Hencethenetworkisclusterableinthesensedefinedby things go—values above Q (cid:3) 0.3 are often considered Harary. significant—sothereseemstobesubstantialhomophily inthesepopulations,meaningthatcouplestendtohave similarethnicityandsimilarpoliticalviewssignificantly moreoftenthanonewouldexpectbyrandomchance. 5 Networks(2ndEdition) 8 Thelarge-scalestructureofnetworks withthedegrees ki asitselements. Whenwemultiply anarbitraryvectorvbythismatrixweget Exercise8.1: k a)If you double the area of the carpet it will take about Bv(cid:3)Av− kTv. twiceaslongtovacuum,sothecomplexityisO(n). 2m b)One finds words in a dictionary, roughly speaking, by The first term can be evaluated in time O(m +n) as in binarysearch—openthebookatarandompoint,decide part(b). TheinnerproductkTvinthesecondtermtakes whetherthewordyouwantisbackwardorforwardfrom time O(n) to evaluate, then we simply multiply it by whereyouare,openthebookatanotherrandompointin k/2m, which takes a further time O(n). Thus the total thatdirection,andrepeat. Eachtimeyoudothisyoude- timeforthecomputationisO(m+n). creasethedistancetothedesiredwordby,onaverage,a Exercise8.4: factoroftwo. Whenthedistancegetsdowntooneword, you have found the word you want. The number k of a)O(n) factors of two needed to do this is given by 2k (cid:3) n, so b)OneachroundofthealgorithmwetakeO(n)timetofind k(cid:3)log2nandthecomplexityisO(logn). thehighest-degreenode,thentimeO(m/n)toremoveit (seeTable8.2onpage228),foratotalofO(n+m/n)time Exercise8.2: perround. Therearen rounds,sototalrunningtimeis a)Perform a breadth-first search starting from the given O(n2 +m). (Normally m is less than n2, so to leading nodetofindthedistancetoallothernodes,thenaverage orderitcanbeignoredandtherunningtimeisO(n2).) thosedistancesandtakethereciprocaltogetthecloseness c)Ifweuseaheapwecanfindthehighest-degreenodein centrality. Thebreadth-firstsearchtakestimeO(m+n) timeO(1)andremoveitfromtheheapintimeO(logn) andtheaveragetakestimeO(n),sotheoverallrunning and from the network in time O(m/n), for a total time timeisO(m+n). ofO(m/n+logn)perroundofthealgorithm,toleading b)UseDijkstra’salgorithm. Ifimplementedusingabinary order. Over n rounds the whole calculation then takes heap,thetimecomplexitywouldbeO((m+n)logn). timeO(m+nlogn). d)We place all the numbers in the heap, which takes c)Userepeatedbreadth-firstsearches. Startatnode1and O(logn) time per number or O(nlogn) for all of them, performabreadth-firstsearchtofindallthenodesinthe thenrepeatedlyfindandremovethelargestone. Find- component it belongs to. Then find the next node that ingthelargestonetakestimeO(1)andremovingittakes isnotinthatcomponentandstartanotherbreadth-first timeO(logn),andhencethetotalrunningtimeforsort- searchfromtheretofindallthenodesinitscomponent. ingnnumbersisO(nlogn)toleadingorder. Repeat until there are no nodes left that are not in any ofthepreviouslydiscoveredcomponents. Eachbreadth- e)Makeahistogramofthedegreesasfollows. First,create firstsearchtakestimeO(nc +mc),wherenc andmc de- an array of n integers, initially all equal to zero, which notethenumbersofnodesandedgesinthecomponent. takes time O(n). This array represents the bins in our Summingoverallcomponents,thetotalrunningtimeis histogram. Thengothroughthedegreesonebyoneand O(n+m). for each degree k increase the count in the kth bin by one. This also takes time O(n), and at the end of the d)You could use a truncated version of the augmenting process the kth bin will contain the number of degrees path algorithm, in which you repeatedly find indepen- equaltok. Nowprintoutthecontentsofthehistogram dentpaths,butstopwhenyouhavefoundtwo—thereis inorderfromlargestdegreestosmallest,goingthrough no need to keep going beyond this point if your aim is eachbininturnandprintingoutseparatelyeachofthe onlytofindtwopaths. node degrees it contains. For instance if the k (cid:3) 5 bin Exercise8.3: containsthreenodes,printouta5threetimes. Thistoo takestimeO(n). Theendresultwillbeaprintedlistof a)Multiplyingann×nmatrixintoann-elementvectorin- the degrees in decreasing order, which takes time O(n) volves n2 multiplies and n2 additions. So the running togenerate. Thisalgorithmis(aversionof)radixsort. timeforthecompletecalculationisO(n2). b)Setupann-elementarraytorepresentthematrix,which Exercise8.5: takestimeO(n),thenaddtoitonetermforeachnon-zero a)For a network stored in adjacency list format, one nor- elementintheadjacencymatrix,ofwhichthereare2m. mallyhasthedegreesstoredseparatelyaswell,inwhich SothetotalrunningtimeisO(m+n). casecalculatingtheirmeanissimplyamatterofsumming c)AtfirstsightthiscalculationisgoingtotaketimeO(n2) themandthendividingbyn,whichtakesO(n)time. as in part (a) above. But we can do it faster by noting b)Thesimplestwaytocalculatethemedianistosortthelist thatthemodularitymatrixcanbewritteninmatrixnota- of degrees in either increasing or decreasing order and tionasB(cid:3)A−kkT/2m,wherekisthen-elementvector thenfindtheoneinthemiddleofthelist. Asdiscussed 6 Solutionstoexercises inExercise8.4,thissortingtakeseitherO(nlogn)timeor Ifthedegreeswerecorrelatedyoucouldhaveaproblem, O(n)time,dependingonthealgorithmused,andhence becausemoreedgescouldendatnodeswithhighout-degree findingthemediantakesthesametime. than you would expect on average. That would increase the c)OnewoulduseDijkstra’salgorithm,whichhascomplex- amount of work you needed to do to check all the outgoing ityO((m+n)logn). edges. Imagine, for instance, the extreme case of a star-like networkinwhichhalfofalledgespointedinwardstoasingle d)Thisrequiresustocalculatetheminimumnodecutset, hubnodeandtheotherhalfpointedoutwards. Thenforthe whichwecandousingtheaugmentingpathalgorithm. The running time is O((m + n)m/n), as shown in Sec- 12mingoingedgesyouwouldneedtocheckthedestinationsof tion8.7.2. 1m outgoingedgesforreciprocity,andthewholecalculation 2 wouldtaketimeO(m2),whichismuchlargerthanO(m2/n). Exercise8.6: a)Ifweknowthetruedistancetoeverynodeatdistanced Exercise8.9: ohravleesdsitshtaenncaendy+no1doerwgirtehaotuert.aInfsausscihgnaendoddiestiasnacdejamceunstt a)xi (cid:3)(cid:205)jαdij. b)Usebreadth-firstsearchtocalculateandstoreallthedis- to one with distance d, however, then there is at least onepathtoitoflengthd+1,viaitsdistance-dneighbor. tances, thenrunthroughallnodesperformingthesum Henceitsdistancemustbeexactlyd+1. above. b)Theremustbeatleastonepathoflengthd+1tothenode c)The time complexity for each node is O(m + n) and O(n(m+n))forallnodes. inquestion(letuscallitnodev). Thedistancealongthat pathtothepenultimatenodeu(whichisaneighborofv) isthend,meaningthatuhasdistancenogreaterthand. Butucanalsohavedistancenolessthand,sinceifitdid 9 Networkstatisticsandmeasurementerror thentherewouldbeapathoflengthlessthand+1tov andhenceitsdistancewouldnotbed+1. Thusu,which Exercise9.1: isaneighborofv,musthavedistanced. a)Confusionsarisingbecauseauthorshavethesamename. Confusions arising because the same author may give Exercise8.7: their name differently on different papers. Missing pa- a)To find the diameter of a network we must perform a pers. breadth-firstsearchstartingfromeachnode,thentakethe b)Some pages are not reachable from the starting point. largestdistancefoundinanysuchsearch. Eachbreadth- Dynamicallygeneratedpagesmighthavetobeexcluded firstsearchtakestimeO(m+n)andtherearensearches, toavoidgettingintoinfiniteloopsortrees. sothetotalrunningtimeisO(n(m+n)). c)Laboratory experimental error of many kinds. Missing b)Listing the neighbors of a node i is simply a matter of pathways. runningalongtheappropriaterowoftheadjacencylist, d)Subjectivityonthepartofparticipants. Missingpartici- whichtakestimeofordertheaveragelengthoftherow, whichis (cid:104)k(cid:105). Tolistthesecondneighbors,however,we pants. Inaccuratespecificationofwhata“friend”is. needtolistseparatelyallthekj neighborsofeachofthe e)Out-of-dateorinaccuratemaps. firstneighbors j. Butthenumberofendsofedgesthat attachtonode jis,bydefinition,kj,andhencewearekj Exercise9.2: timesmorelikelytobeattachedtonode jthantoanode a)Thelikelihoodis withdegree1. Takingtheappropriateweightedaverage, theexpectednumberofneighborsofaneighboris n L(cid:3)µn(cid:214)e−µxi. (cid:205)jkj×kj (cid:3) (cid:104)k2(cid:105), i(cid:3)1 (cid:205)jkj (cid:104)k(cid:105) andtheaveragetotalnumberofsecondneighborsis(cid:104)k(cid:105) b)Tenhteialtoign-glikweiltihhoroesdpiescLtto(cid:3)µnalnodgµse−ttµin(cid:205)gnit(cid:3)h1exrie,saunldt,todizffeerro- timesthis,or(cid:104)k2(cid:105),whichisalsotheamountoftimeitwill weget taketolistthesecondneighbors. n 1 1 (cid:213) (cid:3) x . Exercise8.8: To calculate the reciprocity you have to go µ n i i(cid:3)1 througheachedgeinthenetworkinturn,ofwhichtherearem, andaskwhetheranyoftheedgesoutgoingfromthenodeat Exercise9.3: After the algorithm converges, the parameter thetailendoftheedgeconnectbacktothenodeatthehead. valuesareα (cid:3) 0.598, β (cid:3) 0.202,andρ (cid:3) 0.415,andtheprob- TocheckthroughalltheoutgoingedgestakesatimeO(m/n) abilities of edges existing between each pair of nodes are as onaverage,sothewholecalculationtakesO(m2/n). follows: 7 Networks(2ndEdition) way, inasparsenetworkthereareveryfewedges, and 0.965 0.442 eovnelynbifeaalltionfytfhreamctiowneorefafalllsneodpoespitaiivress,stohetyhewvoaululdeostfilβl 0.022 wouldbesmall. 9 0.119 0.11 0.823 Earxeerncoisfeal9s.e6:poIfsiotibvseesr:vawtihoennswofeesdegeeasnareedgreel,iaitb’sler,etahlleyntthheerree. Soβ(cid:3)0inthiscase. Substitutingβ(cid:3)0intoEq.(9.29),weget ρ(1−α)N Exercise9.4: Q (cid:3) ij ρ(1−α)N +(1−ρ)(1−β)N a)Wearecertainabouteverypairthatisconnectedbyan edgeinanyofthesepaths: theydefinitelyhaveanedge. ifEij (cid:3)0andQij (cid:3)1otherwise. Substitutingthesevaluesinto Wearealsocertainaboutthenon-existenceofanyedge Eq.(9.30)thengives thatwouldshortenapath. Forinstance,iftherewerean α(cid:3) (cid:205)i<jEij , edgebetweennode5andnode7,thentheshortestpath (cid:205) to node 7 would go along that edge. Since it does not, N i<jQij weknowthattheedgedoesnotexist. Forthisreasonwe withρgivenbythesameexpressionaspreviouslyandβ(cid:3)0. canbesurethereisnoedgebetweenthepairs(1,3),(1,4), (1,6),(1,7),(1,8),(2,7),and(5,7). Theremainingpairsare 10 Thestructureofreal-worldnetworks alluncertain: theycouldhaveanedgeornot. Exercise10.1: b)(i)Theyaredefinitelyconnectediftheyhaveanedgein a)Everynodeisconnectedbyanedgetoeveryother,sothe anyofthepaths. (ii)Theyaredefinitelynotconnectedif shortestpathbetweenanytwodistinctnodeshaslength1, addinganedgewouldcreateashorterpathtoanynode. andhencethediameterisalso1. (iii)Allotheredgesareuncertain. b)Thefurthestpointsonthelatticeareoppositecorners. To Exercise9.5: reachonecornerfromtheotheryouhavetogo L steps a)Droppingtheparametersα, β,andρfromournotation along and L steps down for a total of 2L steps, so the diameteris2L. Theequivalentresultforad-dimensional forthesakeofbrevity,wehave hypercubic lattice is dL. The number of nodes on the P(Oij (cid:3)1)(cid:3)P(Oij (cid:3)1,Aij (cid:3)1)+P(Oij (cid:3)1,Aij (cid:3)0) hypercubic lattice is n (cid:3) (L +1)d, which implies that (cid:3)P(Oij (cid:3)1|Aij (cid:3)1)P(Aij (cid:3)1) Ld(n(cid:3)1/nd1−/d1−).1. Thus the diameter as a function of n is +P(Oij (cid:3)1|Aij (cid:3)0)P(Aij (cid:3)0). c)Onthefirststepwereach k nodes. Oneachofthesub- sequentd−1stepsthetreebranchesbyafactorofk−1, b)Wehave: so the number of nodes is multiplied by k−1. After d P(Oij (cid:3)1|Aij (cid:3)1)(cid:3)α, steps, therefore, we reach k(k −1)d−1 nodes. The total number n ofnodesreachablein d stepsorlessisthen P(Oij (cid:3)1|Aij (cid:3)0)(cid:3)β, givenbytdhesumofthisquantityoverdistances1to d, P(Aij (cid:3)1)(cid:3)ρ, plus1forthecentralnode: P(Aij (cid:3)0)(cid:3)1−ρ. 1+ (cid:213)d k(k−1)m−1(cid:3)1+k (cid:213)d−1(k−1)m Substitutingalloftheseintotheexpressionsaboveand m(cid:3)1 m(cid:3)0 c)iFnorthtehqeureesatiloitnygmiviensinthgeerxeaqmuipreledwaneswhearv.e α (cid:3) 0.4242, (cid:3)1+ k−k 2(cid:2)(k−1)d−1(cid:3). β (cid:3) 0.0043, and ρ (cid:3) 0.0335, whichgivesafalsediscov- When this number is equal to n we have reached the eryrateof0.226. Inotherwords,morethanoneinfive wholenetwork,andthediameteristheside-to-sidedis- observededgesisactuallywrong. tance in the network, which is twice the corresponding d)Thefalsediscoveryrateisrelativelylargebecausetheob- valueof d. Settingtheaboveexpressionequalto n and servationsareunreliable: inthelanguageofthereality rearrangingfordweget miningstudy,manypairsofpeoplewhoareobservedin log[1+(k−2)(n−1)/k] proximity do not actually have a connection in the net- diameter(cid:3)2 . log(k−1) work.Eventhoughthisistrue,however,thefalsepositive rateisstillsmallbecausemostpeoplewhodonothave d)Thediameterofnetworks(a)and(c)growslogarithmi- a connection are never observed in proximity. This is cally or slower with n and hence these networks show justbecausethegraphissparse: mostpairsofpeopleare the small-world effect. Network (b) does not, although neverobservedinproximityatall. Toputthatanother onecouldarguethatitdoesinthelimitoflarged. 8 Solutionstoexercises Exercise10.2: Exercise10.5: a)The constant is fixed by the normalization condition a)Theoneontherightisroughlyscale-free,aswecantell (cid:205)∞k(cid:3)0pk (cid:3)1whichmeansthat because the cumulative distribution is approximately a straightlineonthelogarithmicscalesusedinthefigure. ∞ (cid:213) b)Theslopeofthelineintheright-handfigureisapproxi- 1(cid:3)C ak (cid:3)C/(1−a). mately1.1,sotheexponentisα(cid:3)2.1(becausetheslope k(cid:3)0 ofthecumulativeplotisonelessthantheexponent). HenceC(cid:3)1−a. c)RearrangingEq.(10.24)forPgivesP(cid:3)W(α−1)/(α−2)and b) settingW (cid:3) 1 andα (cid:3)2.1thengivesP (cid:3)4.9×10−4,or ∞ ∞ 2 (cid:213) (cid:213) about0.05%. Inotherwords,lessthan 1 ofapercentof P(cid:3) p (cid:3)(1−a) am (cid:3)ak. 20 k thebestconnectednodeshaveahalfofalltheedgeends. m(cid:3)k m(cid:3)k c)Thereare m endsofedgesattachedtoeachnodeofde- Exercise10.6: greemandtherearenpm suchnodes,sothetotalnum- a)Theaveragedegreeis(nm−1)pm (cid:3)A(nm−1)−β+1. ber of ends of edges attached to nodes of degree m is b)Theprobabilitythattwoofyourneighborsareconnected mnpm. Thenumberofendsofedgesattachedtonodes within your group is just the probability that any two ofdegreek orgreaterisgivenbythisquantitysummed nodesareconnected,whichispm (cid:3)A(nm−1)−β. overmthus: c)Eliminating nm between the previous two expressions (cid:213)∞ (cid:213)∞ k−ka+a givestherequiredanswer. mnpm (cid:3)n(1−a) mam (cid:3)nak (1−a)2 . d)For the local clustering to fall off as (cid:104)k(cid:105)−3/4 we need m(cid:3)k m(cid:3)k β/(1−β)(cid:3) 3 orβ(cid:3) 3. 4 7 Thetotalnumberofendsofedgesisthesameexpression withk(cid:3)0,whichisjustna/(1−a)2. Dividingonebythe 11 Randomgraphs other,wethenfindthat Exercise11.1: W (cid:3)ak(cid:2)1−k(1−a−1)(cid:3). a)Theprobabilityofanyparticularsetofthreenodesform- ingatriangleisp3,andthereare (cid:0)n(cid:1) possiblesuchsets. d)Eliminating k betweenourexpressionsforP andW we 3 Hencetheexpectednumberoftrianglesinthenetworkis thenhavetheclaimedresult. e)The unphysical values W > 1 all fall in the range (cid:16)n(cid:17) c3 0 < k < 1. However, k is only allowed to take integer 3 p3(cid:3) 16n(n−1)(n−2)(n−1)3 (cid:39) 16c3, values, so W is never greater than 1 in any real-world situation. where the approximate equality becomes exact in the limit of large n. Note that the appearance of triangles Exercise10.3: α(cid:3)2.53±0.34 indifferentpositionsisnotindependent,sincesometri- angles share edges, but this makes no difference to the Exercise10.4: Thenumeratorof(10.27)is result: theexpectednumberoftrianglesisequaltothe (cid:213) (cid:213) 1 (cid:213) (cid:213) expected number in each position times the number of (Aij−kikj/2m)kikj (cid:3) Aijkikj− 2m ki2 k2j positions, regardless of whether the triangles are inde- ij ij i j pendent(becausetheaverageofasumisequaltoasum S2 ofaverages). (cid:3)Se− S2, b)Similarly,theprobabilityofaconnectedtripleinanypar- 1 ticularpositionisp2andthenumberofpossiblepositions where we have made use of 2m (cid:3) (cid:205)iki (cid:3) S1. Likewise, the isthenumberofwaysofchoosingthecentralnodeofthe denominatoris triplethenchoosingtwoothers,whichisn×(cid:0)n−1(cid:1). Thus 2 (cid:213) (cid:213) 1 (cid:213) (cid:213) theexpectednumberofconnectedtriplesis (kiδij−kikj/2m)kikj (cid:3) ki3− 2m ki2 k2j ij i i j 1n(n−1)(n−2) c2 (cid:39) 1nc2. S2 2 (n−1)2 2 (cid:3)S − 2. 3 S1 c)FollowingEq.(7.28),theclusteringcoefficientis Dividingnumeratorbydenominatorandmultiplyingtopand 3× 1c3 c bottombyS1thengivestherequiredanswer. 1n6c2 (cid:3) n. 2 9 Networks(2ndEdition) Exercise11.2: a)1−S is the probability, averaged over all nodes, that a # Pull a node off the queue i = q[pout] nodedoesnotbelongtothegiantcomponent. Foranode pout += 1 specificallyofdegreektonotbelongtothegiantcompo- nent all of its k neighbors must not belong to the giant # Check its neighbors component,whichhappenswithprobability(1−S)k. for j in edge[i]: b)ByBayes’rule,theprobabilityP(k|GC)ofanodehaving if d[j]==0: degreekgiventhatitisnotinthegiantcomponentisre- d[j] = c latedtotheprobabilityP(GC|k)thatitisnotinthegiant q[pin] = j componentgiventhatithasdegreekthus: pin += 1 P(k|GC)(cid:3)P(GC|k) P(k) (cid:3)(1−S)k e−cck # Check if this is the largest component P(GC) k!(1−S) if pin>maxs: maxs = pin e−cck(1−S)k−1 (cid:3) . print("Largest component has size",maxs) k! Onatypicalruntheprogramprints Exercise11.3: Hereisanexampleprogramtosolvethisprob- Largest component has size 500644 lem,writteninPython: Inotherwordsithasfoundavalueof from math import log from numpy import empty,zeros S(cid:3) 500644 (cid:3)0.500644. from random import randrange 1000000 ThetruevalueisS(cid:3) 1,soweareoffbylessthan0.1%. n = 1000000 # Number of nodes 2 c = 2*log(2) # Mean degree Exercise11.4: m = int(n*c/2) # Number of edges a)Theaveragedegreeisgivenby edge = empty(n,set) # Adjacency list for i in range(n): ln(1−S) ln1 edge[i] = set() c(cid:3)− S (cid:3)− 12 (cid:3)2ln2(cid:3)1.38... 2 # Place the edges b) for ki i=nrraanndgrea(nmg)e:(n) p5(cid:3)e−cc55! (cid:3)0.0107... j = randrange(n) orabout1%. while (i==j) or (i in edge[j]): c)It is not a member of the giant component if and only i = randrange(n) if none of its five neighbors are, which happens with j = randrange(n) probability (cid:0)1(cid:1)5 (cid:3) 1 . Thusitisamemberofthegiant edge[i].add(j) 2 32 component with probability 1− 1 (cid:3) 31 (cid:3) 0.96875, or edge[j].add(i) 32 32 about97%. # Create queue and set up breadth-first search d)WecanuseBayes’rulethus: q = empty(n,int) # Queue array P(k) d = zeros(n,int) # Component labels P(k|ing.c.)(cid:3)P(ing.c.|k)P(ing.c.) c = 0 # Number of components maxs = 0 # Largest component (cid:3) 31 ×e−cc5 ×2(cid:3)0.0207... 32 5! for v in range(n): orabout2%—twiceashighasthefractioninthenetwork if d[v]==0: asawhole. q[0] = v # First node in queue pin = 1 # Write pointer Exercise11.5: pout = 0 # Read pointer a)Theprobabilityofhavingnoedgestothegiantcompo- c += 1 nent is simply equal to the probability of not being in d[v] = c # Label node v thegiantcomponent,whichis1−S(cid:3)e−cSbyEq.(11.16). Alternatively,ifwewantamoreelaborateproof,theprob- # Main loop abilityofbeingconnectedtothegiantcomponentviaa while pin>pout: particular other node is the probability p of having an 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.