ebook img

Network Role Mining and Analysis PDF

109 Pages·2017·2.079 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Network Role Mining and Analysis

SPRINGER BRIEFS IN COMPLEXITY Derek Doran Network Role Mining and Analysis 123 SpringerBriefs in Complexity Editorial Board for Springer Complexity Henry Abarbanel, La Jolla, USA Dan Braha, Dartmouth, USA Péter Érdi, Kalamazoo, USA Karl Friston, London, UK Hermann Haken, Stuttgart, Germany Viktor Jirsa, Marseille, France Janusz Kacprzyk, Warsaw, Poland Kunihiko Kaneko, Tokyo, Japan Scott Kelso, Boca Raton, USA Markus Kirkilionis, Coventry, UK Jürgen Kurths, Potsdam, Germany Andrzej Nowak, Warsaw, Poland Hassan Qudrat-Ullah, Toronto, Canada Linda Reichl, Austin, USA Peter Schuster, Vienna, Austria Frank Schweitzer, Zürich, Switzerland Didier Sornette, Zürich, Switzerland Stefan Thurner, Vienna, Austria Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems—cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine, neuroscience, social and computer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the mani- festations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like the climate, the coherent emission of light from lasers, chemical reaction-diffusion systems, biological cellular networks, the dynamicsofstockmarketsandoftheinternet,earthquakestatisticsandprediction, freeway traffic, the human brain, or the formation of opinions in socialsystems, to name just some of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence. The three major book publication platforms of the Springer Complexity pro- gram are the monograph series “Understanding Complex Systems” focusing on the various applications of complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoretical and methodological foundations, and the “SpringerBriefs in Complexity” which are concise and topical working reports, case-studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks to major reference works. More information about this series at http://www.springer.com/series/8907 Derek Doran Network Role Mining and Analysis 123 Derek Doran Department ofComputer Science andEngineering Wright State University Dayton,OH USA ISSN 2191-5326 ISSN 2191-5334 (electronic) SpringerBriefs inComplexity ISBN978-3-319-53885-3 ISBN978-3-319-53886-0 (eBook) DOI 10.1007/978-3-319-53886-0 LibraryofCongressControlNumber:2017932113 ©TheAuthor(s)2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Theadventoflarge-scaleonlinesocialnetworks,webservicesandsystemsthatare inherently social, and our unprecedented ability to capture “big” meta-data about entitiesincountlesssystemshaveledtoasurgeofrecentdevelopmentstodiscover the roles of entities in networks by sociologists, mathematicians, statisticians, and computer scientists. This monograph presents an overview of network role mining and analysis techniques. It organizes methods into five classes, representing methods of varying computational sophistication and interpretability. Techniques within each class are presented with an eye towards their actual implementation in computer algorithms and systems. The monograph also discusses the broad char- acteristics of methods in each class, enabling high-level comparisons that guide practitioners toward choosing the appropriate technique for a given analysis task. Themonographtargetsresearchersandpractitionerswithlittletonobackgroundin network role mining, those with experience in a limited number of methods, or thosethatfeeltheyhavejustanarrowperspectiveofthiskindofnetworkanalytics. The structure and components of almost any complex system can be examined fromtheperspectiveoftherolesitscomponentsplay.Thismonographwillserveas aguidepostforcomputationalsocialscientists,computerscientists,andstatisticians toaidintheirunderstandingofthesemethods,tofindtherightkindofroleanalysis tobeusedintheirproblemofinterest,andtoinspirenewresearchdirectionsinthis important field. Dayton, OH, USA Derek Doran December 2016 v Acknowledgements I would like to thank my collaborators and students who engaged me in conver- sations leading to the development of this monograph. Thank you to Kyle Brown, JaceRobinson,andJibrilIkharofortheirhelpfuleditsandcommentsthatimproved thereadabilityandcontentofthisbook.IespeciallywanttoacknowledgeKylewho assisted me in various aspects of the blockmodeling chapters and engaged me in manyconversationsconcerningthetopicsofthisbookbeforeitsconception.Thank youalsotoChristopherCoughlin,whoseinterestingconversationsduringthe2015 IEEE/ACM International Conference at Social Network Analysis and Mining in Paris, France provided the initial spark for this brief. Finally thanks to Zandra Zweber, Dan Ford, and Andre Keuck for volunteering their time as professional meteorological and extraordinary individuals consultants. vii Contents 1 Network Role Mining and Analysis: An Overview.. .... ..... .... 1 1.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 1 1.2 Defining Roles .. .... ..... .... .... .... .... .... ..... .... 2 1.2.1 Networks. .... ..... .... .... .... .... .... ..... .... 3 1.2.2 Positions in Networks.... .... .... .... .... ..... .... 5 1.3 Mining Roles ... .... ..... .... .... .... .... .... ..... .... 6 1.3.1 Relationship to Graph Partitioning and Community Detection. .... ..... .... .... .... .... .... ..... .... 10 1.4 Purpose and Outline of This Monograph ... .... .... ..... .... 11 References.. .... .... .... ..... .... .... .... .... .... ..... .... 11 2 Implied Role Mining. .... ..... .... .... .... .... .... ..... .... 15 2.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 15 2.2 The Implied Role Mining Process .... .... .... .... ..... .... 17 2.3 Illustrations with Usenet.... .... .... .... .... .... ..... .... 18 2.3.1 Golder et al.’s Taxonomy. .... .... .... .... ..... .... 19 2.3.2 Nolker et al.’s Hierarchy.. .... .... .... .... ..... .... 22 2.4 Analysis of Implied Role Mining. .... .... .... .... ..... .... 25 2.4.1 Qualitative Nature... .... .... .... .... .... ..... .... 25 2.4.2 Compatibility . ..... .... .... .... .... .... ..... .... 26 2.4.3 Simplicity and Interpretability.. .... .... .... ..... .... 27 2.5 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 29 References.. .... .... .... ..... .... .... .... .... .... ..... .... 30 3 Equivalence-Based Role Mining. .... .... .... .... .... ..... .... 31 3.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 31 3.2 Structural Equivalence ..... .... .... .... .... .... ..... .... 32 3.2.1 Finding Structural Equivalences .... .... .... ..... .... 32 ix x Contents 3.3 Automorphic Equivalence... .... .... .... .... .... ..... .... 34 3.3.1 Finding Automorphic Equivalences.. .... .... ..... .... 35 3.3.2 Quantifying Automorphic Similarity. .... .... ..... .... 37 3.4 Regular Equivalence.. ..... .... .... .... .... .... ..... .... 40 3.4.1 Finding Regular Equivalences.. .... .... .... ..... .... 40 3.4.2 Quantifying Regular Similarity. .... .... .... ..... .... 45 3.5 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 46 References.. .... .... .... ..... .... .... .... .... .... ..... .... 46 4 Deterministic Blockmodeling ... .... .... .... .... .... ..... .... 49 4.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 49 4.2 The Blockmodeling Framework .. .... .... .... .... ..... .... 52 4.2.1 Similarity Measures.. .... .... .... .... .... ..... .... 52 4.2.2 Blocktypes ... ..... .... .... .... .... .... ..... .... 56 4.3 Goodness of Fit . .... ..... .... .... .... .... .... ..... .... 58 4.3.1 A Goodness-of-Fit Measure for Positional Analysis .. .... 59 4.3.2 A Goodness-of-Fit Measure for Network Compression.... 60 4.4 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 60 References.. .... .... .... ..... .... .... .... .... .... ..... .... 61 5 Stochastic Blockmodeling . ..... .... .... .... .... .... ..... .... 63 5.1 Introduction .... .... ..... .... .... .... .... .... ..... .... 63 5.2 SBM Specification ... ..... .... .... .... .... .... ..... .... 64 5.3 The Infinite Relational Model.... .... .... .... .... ..... .... 65 5.3.1 Parameter Inference for the IRM.... .... .... ..... .... 67 5.3.2 Summary. .... ..... .... .... .... .... .... ..... .... 70 5.4 The Dynamic Stochastic Blockmodel.. .... .... .... ..... .... 70 5.4.1 DSBM Network Generation ... .... .... .... ..... .... 71 5.4.2 Parameter Inference for the DSBM.. .... .... ..... .... 73 5.5 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 75 References.. .... .... .... ..... .... .... .... .... .... ..... .... 75 6 Advanced Computational Methods .. .... .... .... .... ..... .... 77 6.1 Factor Graphs: The Social Roles and Statuses Factor Graph Model. .... .... .... ..... .... .... .... .... .... ..... .... 78 6.1.1 Social Features ..... .... .... .... .... .... ..... .... 79 6.1.2 A Factor Graph Model ... .... .... .... .... ..... .... 80 6.2 Multi-view Learning: Dual-View Uncertainty Regularization. .... 82 6.2.1 Graph Co-regularization .. .... .... .... .... ..... .... 83 6.2.2 Uncertainty Regularization and Objective Function... .... 84 6.3 Bayesian Modeling: Co-discovery of Roles in Communities . .... 85 6.4 Matrix Factorization: RolX.. .... .... .... .... .... ..... .... 87 Contents xi 6.5 Iterative Quadratic Programming: Synergistic Co-discovery of Communities and Roles.. .... .... .... .... .... ..... .... 89 6.5.1 Initializing Communities (InitCom).. .... .... ..... .... 90 6.5.2 Initializing Roles (InitRole).... .... .... .... ..... .... 90 6.5.3 Updating Communities... .... .... .... .... ..... .... 91 6.5.4 Updating Roles..... .... .... .... .... .... ..... .... 92 6.6 Conclusion. .... .... ..... .... .... .... .... .... ..... .... 92 References.. .... .... .... ..... .... .... .... .... .... ..... .... 93 7 Concluding Remarks. .... ..... .... .... .... .... .... ..... .... 95 7.1 Emerging Trends in Role Mining. .... .... .... .... ..... .... 96 7.2 Tension Between Rigor and Interpretability . .... .... ..... .... 98 References.. .... .... .... ..... .... .... .... .... .... ..... .... 100

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.