Understanding Complex Systems Jan Treur Network- Oriented Modeling Addressing Complexity of Cognitive, Affective and Social Interactions Springer Complexity Springer Complexity is an interdisciplinary program publishing the best research and academic-level teaching on both fundamental and applied aspects of complex systems— cutting across all traditional disciplines of the natural and life sciences, engineering, economics, medicine,neuroscience, social andcomputer science. Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations of which are the spontaneous formation of distinctive temporal, spatial or functional structures. Models of such systems can be successfully mapped onto quite diverse “real-life” situations like theclimate,thecoherentemissionoflightfromlasers,chemicalreaction-diffusionsystems, biological cellular networks, the dynamics of stock markets and of the internet, earthquake statistics and prediction, freeway traffic, the human brain, or the formation of opinions in socialsystems, to name justsome of the popular applications. Although their scope and methodologies overlap somewhat, one can distinguish the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence,dynamicalsystems,catastrophes,instabilities,stochasticprocesses,chaos,graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence. ThethreemajorbookpublicationplatformsoftheSpringerComplexityprogramarethe monographseries“UnderstandingComplexSystems”focusingonthevariousapplicationsof complexity, the “Springer Series in Synergetics”, which is devoted to the quantitative theoreticalandmethodologicalfoundations,andthe“SpringerBriefsinComplexity”which are concise and topical working reports, case studies, surveys, essays and lecture notes of relevance to the field. In addition to the books in these two core series, the program also incorporates individual titles ranging from textbooks tomajor reference works. Editorial and Programme Advisory Board HenryAbarbanel,InstituteforNonlinearScience,UniversityofCalifornia,SanDiego,USA DanBraha,NewEnglandComplexSystemsInstituteandUniversityofMassachusettsDartmouth,USA Péter Érdi, Center for Complex Systems Studies, Kalamazoo College, USA and Hungarian Academy of Sciences,Budapest,Hungary KarlFriston,InstituteofCognitiveNeuroscience,UniversityCollegeLondon,London,UK HermannHaken,CenterofSynergetics,UniversityofStuttgart,Stuttgart,Germany ViktorJirsa,CentreNationaldelaRechercheScientifique(CNRS),UniversitédelaMéditerranée,Marseille, France JanuszKacprzyk,SystemResearch,PolishAcademyofSciences,Warsaw,Poland KunihikoKaneko,ResearchCenterforComplexSystemsBiology,TheUniversityofTokyo,Tokyo,Japan ScottKelso,CenterforComplexSystemsandBrainSciences,FloridaAtlanticUniversity,BocaRaton,USA MarkusKirkilionis,MathematicsInstituteandCentreforComplexSystems,UniversityofWarwick,Coventry, UK JürgenKurths,NonlinearDynamicsGroup,UniversityofPotsdam,Potsdam,Germany RonaldoMenezes,DepartmentofComputerScience,FloridaInstituteofTechnology,Melbourne,FL,USA AndrzejNowak,DepartmentofPsychology,WarsawUniversity,Poland HassanQudrat-Ullah,SchoolofAdministrativeStudies,YorkUniversity,Toronto,ON,Canada PeterSchuster,TheoreticalChemistryandStructuralBiology,UniversityofVienna,Vienna,Austria FrankSchweitzer,SystemDesign,ETHZurich,Zurich,Switzerland DidierSornette,EntrepreneurialRisk,ETHZurich,Zurich,Switzerland StefanThurner,SectionforScienceofComplexSystems,MedicalUniversityofVienna,Vienna,Austria Understanding Complex Systems Founding Editor: S. Kelso Future scientific and technological developments in many fields will necessarily depend uponcomingtogripswithcomplexsystems.Such systems arecomplex in both their composition – typically many different kinds of components interacting simultaneouslyandnonlinearlywitheachotherandtheirenvironmentsonmultiple levels – and in the rich diversity of behavior of which they are capable. The Springer Series in Understanding Complex Systems series (UCS) promotes new strategies and paradigms for understanding and realizing applications of complex systems research in a wide variety of fields and endeavors. UCS is explicitlytransdisciplinary.Ithasthreemaingoals:First,toelaboratetheconcepts, methodsandtoolsofcomplexsystemsatalllevelsofdescriptionandinallscientific fields,especiallynewlyemergingareaswithinthelife,social,behavioral,economic, neuro-andcognitivesciences(andderivativesthereof);second,toencouragenovel applicationsoftheseideasinvariousfieldsofengineeringandcomputationsuchas robotics, nano-technology,and informatics; third, to provide a single forum within which commonalities and differences in the workings of complex systems may be discerned, hence leadingto deeper insight and understanding. UCS will publish monographs, lecture notes, and selected edited contributions aimed at communicating new findings to a large multidisciplinary audience. More information about this series at http://www.springer.com/series/5394 Jan Treur Network-Oriented Modeling Addressing Complexity of Cognitive, Affective and Social Interactions 123 Jan Treur Department ofComputer Science, BehaviouralInformatics Group VUUniversity Amsterdam Amsterdam, Noord-Holland TheNetherlands ISSN 1860-0832 ISSN 1860-0840 (electronic) Understanding ComplexSystems ISBN978-3-319-45211-1 ISBN978-3-319-45213-5 (eBook) DOI 10.1007/978-3-319-45213-5 LibraryofCongressControlNumber:2016948267 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface During a sabbatical period in 2015 I decided to start working on a book on the Network-OrientedModelingapproachdevelopedoverthepastyearsandwhichhas turned out useful in modeling complex-integrated individual and social human processesintheformofnetworks.Thedecisiontospendaconsiderableamountof time on such an enterprise led to further reflection on the modeling approach, and its presentation and positioning. This book has been written with a multidisciplinary audience in mind without assumingmuchpriorknowledge.Inprinciple,thedetailedexplanationsinthebook allow it to be used as an introduction in Network-Oriented Modeling for multi- disciplinary Master and Ph.D. students. In particular, this implies that, although some more technical mathematical and formal logical aspects have also been addressed, they have been kept to the minimum and are presented in a concise mannerinPartIV.Theycanbeskippedifnotneeded.Muchofthematerialinthis book has been and is being used in teaching multidisciplinary courses for under- graduate and graduate students, and based on these experiences, the presentation hasbeenadaptedtosuitrequirementsevenbetter.Sometimesthereissomeoverlap between chapters, and this has been done on purpose in order to make it easier to readeachchapterseparately.Lecturerscancontactmetoreceiveadditionalmaterial such as slides, assignments and software. Thecontentofthebookhasbenefitedmuchfromcooperationwithstudentsand (past and current) members of the Behavioural Informatics Group (formerly the Agent Systems Group) at the VU University in Amsterdam (Vrije Universiteit Amsterdam).Inthediscussionsectionineachofthechapters,specificpublications and authors related to the material presented in the chapter are mentioned. Amsterdam, The Netherlands Jan Treur June 2016 v Contents Part I Network-Oriented Modeling: Introduction 1 Network-Oriented Modeling and Its Conceptual Foundations. .... 3 An Introduction. .... .... ..... .... .... .... .... .... ..... .... 3 1.1 Introduction . .... ..... .... .... .... .... .... ..... .... 3 1.2 Addressing Human Complexity by Separation Assumptions. .... ..... .... .... .... .... .... ..... .... 4 1.3 Addressing Complexity by Interaction in Networks Instead of by Separation. .... .... .... .... .... ..... .... 11 1.4 Network-Oriented Modeling.. .... .... .... .... ..... .... 14 1.5 The Dynamic Computational Modeling Perspective ..... .... 16 1.6 Network-Oriented Modeling Based on Temporal-Causal Networks ... .... ..... .... .... .... .... .... ..... .... 18 1.7 Scope of Applicability and Achievements.... .... ..... .... 22 1.8 Overview of the Book .. .... .... .... .... .... ..... .... 23 References. .... .... .... ..... .... .... .... .... .... ..... .... 29 2 A Temporal-Causal Network Modeling Approach. .... ..... .... 35 With Biological, Neurological and Social Processes as Inspiration.... 35 2.1 Introduction . .... ..... .... .... .... .... .... ..... .... 35 2.2 Modeling Complex Processes by Temporal-Causal Networks ... .... ..... .... .... .... .... .... ..... .... 40 2.3 Exploiting Knowledge About Physical and Biological Mechanisms in Modeling .... .... .... .... .... ..... .... 43 2.3.1 Addressing Complexity by Higher Level Models Based on Knowledge from Computer Science.. .... 43 2.3.2 Addressing Complexity by Higher Level Models Based on Knowledge from Neuroscience ..... .... 44 2.4 Conceptual Representation of a Temporal-Causal Network Model.. .... .... ..... .... .... .... .... .... ..... .... 45 vii viii Contents 2.4.1 Conceptual Representations of a Temporal-Causal Network Model.... .... .... .... .... ..... .... 47 2.4.2 More Specific Examples of Conceptual Representations of Temporal-Causal Network Models.. ..... .... .... .... .... .... ..... .... 49 2.5 Numerical Representation of a Temporal-Causal Network Model.. .... .... ..... .... .... .... .... .... ..... .... 58 2.5.1 The Systematic Transformation from Conceptual to Numerical Representation .. .... .... ..... .... 59 2.5.2 Illustration of the Transformation for the Example of Fig. 2.10.... .... .... .... ..... .... 64 2.5.3 Illustration of the Modeling Perspective for a Social Contagion Process .... .... ..... .... 66 2.6 Standard Combination Functions .. .... .... .... ..... .... 69 2.6.1 Basic Standard Combination Functions.. ..... .... 69 2.6.2 Building More Complex Standard Combination Functions..... .... .... .... .... .... ..... .... 72 2.7 Properties for Combination Functions... .... .... ..... .... 77 2.8 Applying Computational Methods to Model Representations... ..... .... .... .... .... .... ..... .... 81 2.9 Applicability of the Modeling Perspective ... .... ..... .... 85 2.9.1 The State-Determined System Assumption .... .... 85 2.9.2 State-Determined Systems and First-Order Differential Equations ... .... .... .... ..... .... 86 2.9.3 State-Determined Systems and Modeling Based on Temporal-Causal Networks ... ..... .... 88 2.10 Modeling Adaptive Processes by Adaptive Temporal-Causal Networks ... .... ..... .... .... .... .... .... ..... .... 92 2.11 Discussion... .... ..... .... .... .... .... .... ..... .... 99 References. .... .... .... ..... .... .... .... .... .... ..... .... 100 Part II Emotions All the Way 3 How Emotions Come in Between Everything . .... .... ..... .... 105 Emotions Serving as Glue in All Mental and Social Processes... .... 105 3.1 Introduction . .... ..... .... .... .... .... .... ..... .... 105 3.2 Generating Emotional Responses and Feelings.... ..... .... 107 3.3 Emotion Regulation .... .... .... .... .... .... ..... .... 111 3.4 Interaction Between Cognitive and Affective States ..... .... 114 3.5 Emotion-Related Valuing in Decision-Making .... ..... .... 118 3.6 Emotions and Social Contagion ... .... .... .... ..... .... 119 3.7 Discussion... .... ..... .... .... .... .... .... ..... .... 120 References. .... .... .... ..... .... .... .... .... .... ..... .... 121 Contents ix 4 How Do You Feel Dreaming... .... .... .... .... .... ..... .... 125 Using Internal Simulation to Generate Emotional Dream Episodes.... 125 4.1 Introduction . .... ..... .... .... .... .... .... ..... .... 125 4.2 Memory Elements, Emotions and Internal Simulation in Dreaming . .... ..... .... .... .... .... .... ..... .... 126 4.3 A Temporal-Causal Network Model Generating Dream Episodes .. ..... .... .... .... .... .... ..... .... 128 4.4 Simulations of Example Dream Scenarios ... .... ..... .... 133 4.5 Relations to Neurological Theories and Findings .. ..... .... 136 4.6 Discussion... .... ..... .... .... .... .... .... ..... .... 137 References. .... .... .... ..... .... .... .... .... .... ..... .... 138 5 Dreaming Your Fear Away ... .... .... .... .... .... ..... .... 141 Fear Extinction Learning During Dreaming .... .... .... ..... .... 141 5.1 Introduction . .... ..... .... .... .... .... .... ..... .... 141 5.2 An Adaptive Temporal-Causal Network Model for Fear Extinction Learning.. .... .... .... .... ..... .... 142 5.2.1 Conceptual Representation of the Adaptive Network Model.... .... .... .... .... ..... .... 142 5.2.2 Numerical Representation of the Adaptive Network Model.... .... .... .... .... ..... .... 146 5.3 Simulations of Fear Extinction Learning in Dream Scenarios ... .... ..... .... .... .... .... .... ..... .... 148 5.4 Relating the Adaptive Temporal-Causal Network Model to Neurological Theories. .... .... .... .... .... ..... .... 152 5.5 Discussion... .... ..... .... .... .... .... .... ..... .... 153 References. .... .... .... ..... .... .... .... .... .... ..... .... 154 6 Emotions as a Vehicle for Rationality in Decision Making ... .... 157 Experiencing Emotions for Decisions Based on Experience ..... .... 157 6.1 Introduction . .... ..... .... .... .... .... .... ..... .... 157 6.2 The Adaptive Temporal-Causal Network Model for Decision Making.... .... .... .... .... .... ..... .... 159 6.3 Simulation Results for a Deterministic World. .... ..... .... 168 6.4 Simulation Results for a Stochastic World ... .... ..... .... 171 6.5 Simulation Results for a Changing Stochastic World .... .... 172 6.6 Evaluating the Adaptive Temporal-Causal Network Model on Rationality.... ..... .... .... .... .... .... ..... .... 175 6.7 Discussion... .... ..... .... .... .... .... .... ..... .... 178 References. .... .... .... ..... .... .... .... .... .... ..... .... 179 x Contents Part III Yourself and the Others 7 From Mirroring to the Emergence of Shared Understanding and Collective Power.... ..... .... .... .... .... .... ..... .... 183 Biological and Computational Perspectives on the Emergence of Social Phenomena. .... ..... .... .... .... .... .... ..... .... 183 7.1 Introduction . .... ..... .... .... .... .... .... ..... .... 183 7.2 Mirror Neuron Activation and Internal Simulation . ..... .... 185 7.2.1 The Discovery of Mirror Neurons.. .... ..... .... 185 7.2.2 Neurons for Control and Self-other Distinction. .... 186 7.2.3 Generating Emotions and Feelings by Internal Simulation: As-if Body Loops. .... .... ..... .... 187 7.2.4 Mirroring Process: Mirror Neuron Activation and Internal Simulation .. .... .... .... ..... .... 187 7.2.5 Development of the Discipline Social Neuroscience.. .... .... .... .... .... ..... .... 192 7.3 The Emergence of Shared Understanding.... .... ..... .... 193 7.3.1 The Emergence of Shared Understanding for External World States .... .... .... ..... .... 194 7.3.2 The Emergence of Shared Understanding for Internal Mental States .... .... .... ..... .... 195 7.4 The Emergence of Collective Power.... .... .... ..... .... 197 7.4.1 The Emergence of Collective Action Based on Mirroring .. .... .... .... .... .... ..... .... 197 7.4.2 The Role of Feelings and Valuing in the Emergence of Collective Action ... .... ..... .... 199 7.5 Integration of External Effects and Internal Processes.... .... 200 7.6 Abstraction of Complex Internal Temporal-Causal Network Models.. ..... .... .... .... .... .... ..... .... 202 7.7 Discussion... .... ..... .... .... .... .... .... ..... .... 203 References. .... .... .... ..... .... .... .... .... .... ..... .... 205 8 Am I Going to Do This? Is It Me Who Did This? . .... ..... .... 209 Prior and Retrospective Ownership States for Actions .... ..... .... 209 8.1 Introduction . .... ..... .... .... .... .... .... ..... .... 209 8.2 Neurological Background.... .... .... .... .... ..... .... 211 8.3 A Temporal-Causal Network Model for Ownership ..... .... 213 8.3.1 ConceptualRepresentationoftheTemporal-Causal Network Model.... .... .... .... .... ..... .... 213 8.3.2 Numerical Representation of the Temporal-Causal Network Model.... .... .... .... .... ..... .... 215 8.4 Simulation of Example Scenarios.. .... .... .... ..... .... 220 8.4.1 Normal Execution and Attribution of an Action .... 221 8.4.2 Vetoing a Prepared Action Due to Unsatisfactory Predicted Effect.... .... .... .... .... ..... .... 222
Description: