ebook img

Network Optimization: Continuous and Discrete Models PDF

586 Pages·2016·7.19 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Network Optimization: Continuous and Discrete Models

Network Optimization: Continuous and Discrete Models Dimitri P. Bertsekas Massachusetts Institute of Technology WWW site for book information and orders http://www.athenasc.com Athena Scientific, Belmont, Massachusetts Athena Scientific Post Office Box 391 Belmont, Mass. 02178-9998 U.S.A. Email: [email protected] WWW: http://www.athenasc.com Cover Design: Ann Gallager (cid:1)c 1998 Dimitri P. Bertsekas All rights reserved. No part of this book may be reproduced in any form byanyelectronicormechanicalmeans(includingphotocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Publisher’s Cataloging-in-Publication Data Bertsekas, Dimitri P. Network Optimization: Continuous and Discrete Models Includes bibliographical references and index 1. Network analysis (Planning). 2. Mathematical Optimization. I. Title. T57.85.B44 1998 658.4’032-dc20 98-70298 ISBN 1-886529-02-7 ABOUT THE AUTHOR Dimitri Bertsekas studied Mechanical and Electrical Engineering at the National Technical University of Athens, Greece, and obtained his Ph.D. in system science from the Massachusetts Institute of Technology. He has held faculty positions at Stanford University and the Uni- versity of Illinois. Since 1979 he has been teaching at the Massachusetts Institute of Technology (M.I.T.), where he is currently McAfee Professor of Engineering. He consults regularly with private industry and has held editorial positions in several journals. His research spans several fields, includingoptimization,control,large-scalecomputation,anddatacommu- nication networks. He has written many research papers and he is the author or coauthor of thirteen textbooks and research monographs. Professor Bertsekas was awarded the INFORMS 1997 Prize for Re- search Excellence in the Interface Between Operations Research and Com- puter Science for his book ”Neuro-Dynamic Programming” (co-authored with John Tsitsiklis), the 2000 Greek National Award for Operations Re- search, and the 2001 ACC John R. Ragazzini Education Award. In 2001, he was elected to the United States National Academy of Engineering. iii ATHENA SCIENTIFIC OPTIMIZATION AND COMPUTATION SERIES 1. ConvexAnalysisandOptimization,byDimitriP.Bertsekas,with Angelia Nedi´c and Asuman E. Ozdaglar, 2003, ISBN 1-886529- 45-0, 560 pages 2. Introduction to Probability by Dimitri P. Bertsekas and John Tsitsiklis, 2002, ISBN 1-886529-40-X, 430 pages 3. DynamicProgrammingandOptimalControl, Vols.IandII,2nd Edition, by Dimitri P. Bertsekas, 2001, ISBN 1-886529-08-6, 704 pages 4. Nonlinear Programming, 2nd Edition, by Dimitri P. Bertsekas, 1999, ISBN 1-886529-00-0, 800 pages 5. NetworkOptimization: ContinuousandDiscreteModelsbyDim- itri P. Bertsekas, 1998, ISBN 1-886529-02-7, 608 pages 6. NetworkFlowsandMonotropicOptimizationbyR.TyrrellRock- afellar, 1998, ISBN 1-886529-06-X, 634 pages 7. Introduction to Linear Optimization by Dimitris Bertsimas and John N. Tsitsiklis, 1997, ISBN 1-886529-19-1, 608 pages 8. Parallel and Distributed Computation: Numerical Methods by DimitriP.BertsekasandJohnN.Tsitsiklis,1997,ISBN1-886529- 01-9, 718 pages 9. Neuro-DynamicProgramming,byDimitriP.BertsekasandJohn N. Tsitsiklis, 1996, ISBN 1-886529-10-8, 512 pages 10. Constrained Optimization and Lagrange Multiplier Methods, by Dimitri P. Bertsekas, 1996, ISBN 1-886529-04-3, 410 pages 11. StochasticOptimalControl: TheDiscrete-TimeCasebyDimitri P. Bertsekas and Steven E. Shreve, 1996, ISBN 1-886529-03-5, 330 pages iv Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . p. 1 1.1. Graphs and Flows . . . . . . . . . . . . . . . . . . . . p. 3 1.1.1. Paths and Cycles . . . . . . . . . . . . . . . . . . p. 4 1.1.2. Flow and Divergence . . . . . . . . . . . . . . . . p. 6 1.1.3. Path Flows and Conformal Decomposition . . . . . . . p. 7 1.2. Network Flow Models – Examples . . . . . . . . . . . . . p. 8 1.2.1. The Minimum Cost Flow Problem . . . . . . . . . . p. 9 1.2.2. Network Flow Problems with Convex Cost . . . . . . . p. 16 1.2.3. Multicommodity Flow Problems . . . . . . . . . . . p. 17 1.2.4. Discrete Network Optimization Problems . . . . . . . p. 19 1.3. Network Flow Algorithms – An Overview . . . . . . . . . p. 20 1.3.1. Primal Cost Improvement . . . . . . . . . . . . . . p. 21 1.3.2. Dual Cost Improvement . . . . . . . . . . . . . . . p. 24 1.3.3. Auction . . . . . . . . . . . . . . . . . . . . . . p. 27 1.3.4. Good, Bad, and Polynomial Algorithms . . . . . . . . p. 35 1.4. Notes, Sources, and Exercises . . . . . . . . . . . . . . . p. 37 2. Shortest Path Problems . . . . . . . . . . . . . . . p. 51 2.1. Problem Formulation and Applications . . . . . . . . . . p. 52 2.2. A Generic Shortest Path Algorithm . . . . . . . . . . . . p. 57 2.3. Label Setting (Dijkstra) Methods . . . . . . . . . . . . . p. 65 2.3.1. Performance of Label Setting Methods . . . . . . . . . p. 68 2.3.2. The Binary Heap Method . . . . . . . . . . . . . . p. 69 2.3.3. Dial’s Algorithm . . . . . . . . . . . . . . . . . . p. 70 2.4. Label Correcting Methods . . . . . . . . . . . . . . . . p. 73 2.4.1. The Bellman-Ford Method . . . . . . . . . . . . . . p. 73 2.4.2. The D’Esopo-Pape Algorithm . . . . . . . . . . . . p. 75 2.4.3. The SLF and LLL Algorithms . . . . . . . . . . . . p. 76 2.4.4. The Threshold Algorithm . . . . . . . . . . . . . . p. 78 2.4.5. Comparison of Label Setting and Label Correcting . . . p. 80 2.5. Single Origin/Single Destination Methods . . . . . . . . . p. 81 2.5.1. Label Setting . . . . . . . . . . . . . . . . . . . . p. 81 v vi Contents 2.5.2. Label Correcting . . . . . . . . . . . . . . . . . . p. 81 2.6. Auction Algorithms . . . . . . . . . . . . . . . . . . . p. 86 2.7. Multiple Origin/Multiple Destination Methods . . . . . . . p. 96 2.8. Notes, Sources, and Exercises . . . . . . . . . . . . . . . p. 98 3. The Max-Flow Problem . . . . . . . . . . . . . . p. 115 3.1. The Max-Flow and Min-Cut Problems . . . . . . . . . . p. 116 3.1.1. Cuts in a Graph . . . . . . . . . . . . . . . . . p. 119 3.1.2. The Max-Flow/Min-Cut Theorem . . . . . . . . . . p. 121 3.1.3. The Maximal and Minimal Saturated Cuts . . . . . . p. 123 3.1.4. Decomposition of Infeasible Network Problems . . . . p. 124 3.2. The Ford-Fulkerson Algorithm . . . . . . . . . . . . . p. 125 3.3. Price-Based Augmenting Path Algorithms . . . . . . . . p. 132 3.3.1. A Price-Based Path Construction Algorithm . . . . . p. 135 3.3.2. A Price-Based Max-Flow Algorithm . . . . . . . . . p. 139 3.4. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 139 4. The Min-Cost Flow Problem . . . . . . . . . . . . p. 151 4.1. Transformations and Equivalences . . . . . . . . . . . . p. 152 4.1.1. Setting the Lower Flow Bounds to Zero . . . . . . . p. 152 4.1.2. Eliminating the Upper Flow Bounds . . . . . . . . . p. 153 4.1.3. Reduction to a Circulation Format . . . . . . . . . p. 154 4.1.4. Reduction to an Assignment Problem . . . . . . . . p. 154 4.2. Duality . . . . . . . . . . . . . . . . . . . . . . . p. 155 4.2.1. Interpretation of CS and the Dual Problem . . . . . . p. 162 4.2.2. Duality and CS for Nonnegativity Constraints . . . . p. 163 4.3. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 164 5. Simplex Methods for Min-Cost Flow . . . . . . . . . p. 169 5.1. Main Ideas in Simplex Methods . . . . . . . . . . . . . p. 170 5.1.1. Using Prices to Obtain the In-Arc . . . . . . . . . . p. 176 5.1.2. Obtaining the Out-Arc . . . . . . . . . . . . . . p. 179 5.1.3. Dealing with Degeneracy . . . . . . . . . . . . . . p. 183 5.2. The Basic Simplex Algorithm . . . . . . . . . . . . . . p. 186 5.2.1. Termination Properties of the Simplex Method . . . . p. 187 5.2.2. Initialization of the Simplex Method . . . . . . . . . p. 188 5.3. Extension to Problems with Upper and Lower Bounds . . . p. 195 5.4. Implementation Issues . . . . . . . . . . . . . . . . . p. 199 5.5. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 203 6. Dual Ascent Methods for Min-Cost Flow . . . . . . . p. 213 6.1. Dual Ascent . . . . . . . . . . . . . . . . . . . . . p. 214 Contents vii 6.2. The Primal-Dual (Sequential Shortest Path) Method . . . p. 221 6.3. The Relaxation Method . . . . . . . . . . . . . . . . p. 234 6.4. Solving Variants of an Already Solved Problem . . . . . . p. 243 6.5. Implementation Issues . . . . . . . . . . . . . . . . . p. 243 6.6. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 244 7. Auction Algorithms for Min-Cost Flow . . . . . . . p. 251 7.1. The Auction Algorithm for the Assignment Problem . . . p. 252 7.1.1. The Main Auction Algorithm . . . . . . . . . . . . p. 253 7.1.2. Approximate Coordinate Descent Interpretation . . . p. 257 7.1.3. Variants of the Auction Algorithm . . . . . . . . . p. 257 7.1.4. Computational Complexity – (cid:1)-Scaling . . . . . . . . p. 259 7.1.5. Dealing with Infeasibility . . . . . . . . . . . . . p. 265 7.2. Extensions of the Auction Algorithm . . . . . . . . . . p. 268 7.2.1. Reverse Auction . . . . . . . . . . . . . . . . . p. 268 7.2.2. Auction Algorithms for Asymmetric Assignment . . . p. 272 7.2.3. Auction Algorithms with Similar Persons . . . . . . p. 279 7.3. The Preflow-Push Algorithm for Max-Flow . . . . . . . . p. 282 7.3.1. Analysis and Complexity . . . . . . . . . . . . . . p. 285 7.3.2. Implementation Issues . . . . . . . . . . . . . . . p. 293 7.3.3. Relation to the Auction Algorithm . . . . . . . . . p. 294 7.4. The (cid:1)-Relaxation Method . . . . . . . . . . . . . . . p. 304 7.4.1. Computational Complexity – (cid:1)-Scaling . . . . . . . . p. 310 7.4.2. Implementation Issues . . . . . . . . . . . . . . . p. 318 7.5. The Auction/Sequential Shortest Path Algorithm . . . . . p. 320 7.6. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 326 8. Nonlinear Network Optimization . . . . . . . . . . p. 337 8.1. Convex and Separable Problems . . . . . . . . . . . . p. 339 8.2. Problems with Side Constraints . . . . . . . . . . . . . p. 346 8.3. Multicommodity Flow Problems . . . . . . . . . . . . p. 349 8.4. Integer Constraints . . . . . . . . . . . . . . . . . . p. 355 8.5. Networks with Gains . . . . . . . . . . . . . . . . . p. 360 8.6. Optimality Conditions . . . . . . . . . . . . . . . . . p. 365 8.7. Duality . . . . . . . . . . . . . . . . . . . . . . . p. 370 8.8. Algorithms and Approximations . . . . . . . . . . . . p. 375 8.8.1. Feasible Direction Methods . . . . . . . . . . . . . p. 375 8.8.2. Piecewise Linear Approximation . . . . . . . . . . p. 380 8.8.3. Interior Point Methods . . . . . . . . . . . . . . p. 382 8.8.4. Penalty and Augmented Lagrangian Methods . . . . . p. 384 8.8.5. Proximal Minimization . . . . . . . . . . . . . . p. 386 8.8.6. Smoothing . . . . . . . . . . . . . . . . . . . . p. 387 8.8.7. Transformations . . . . . . . . . . . . . . . . . p. 389 viii Contents 8.9. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 398 9. Convex Separable Network Problems . . . . . . . . p. 407 9.1. Convex Functions of a Single Variable . . . . . . . . . . p. 408 9.2. Optimality Conditions . . . . . . . . . . . . . . . . . p. 412 9.3. Duality . . . . . . . . . . . . . . . . . . . . . . . p. 414 9.4. Dual Function Differentiability . . . . . . . . . . . . . p. 426 9.5. Algorithms for Differentiable Dual Problems . . . . . . . p. 430 9.6. Auction Algorithms . . . . . . . . . . . . . . . . . . p. 433 9.6.1. The (cid:1)-Relaxation Method . . . . . . . . . . . . . p. 441 9.6.2. Auction/Sequential Shortest Path Algorithm . . . . . p. 446 9.7. Monotropic Programming . . . . . . . . . . . . . . . p. 449 9.8. Notes, Sources, and Exercises . . . . . . . . . . . . . . p. 463 10. Network Problems with Integer Constraints . . . . . p. 467 10.1. Formulation of Integer-Constrained Problems . . . . . . p. 469 10.2. Branch-and-Bound . . . . . . . . . . . . . . . . . . p. 483 10.3. Lagrangian Relaxation . . . . . . . . . . . . . . . . p. 492 10.3.1. Subgradients of the Dual Function . . . . . . . . . p. 497 10.3.2. Subgradient Methods . . . . . . . . . . . . . . . p. 499 10.3.3. Cutting Plane Methods . . . . . . . . . . . . . . p. 503 10.3.4. Decomposition and Multicommodity Flows . . . . . p. 507 10.4. Local Search Methods . . . . . . . . . . . . . . . . p. 512 10.4.1. Genetic Algorithms . . . . . . . . . . . . . . . p. 514 10.4.2. Tabu Search . . . . . . . . . . . . . . . . . . . p. 515 10.4.3. Simulated Annealing . . . . . . . . . . . . . . . p. 516 10.5. Rollout Algorithms . . . . . . . . . . . . . . . . . . p. 517 10.6. Notes, Sources, and Exercises . . . . . . . . . . . . . p. 525 Appendix A: Mathematical Review . . . . . . . . . . p. 545 A.1. Sets . . . . . . . . . . . . . . . . . . . . . . . . p. 546 A.2. Euclidean Space . . . . . . . . . . . . . . . . . . . p. 547 A.3. Matrices . . . . . . . . . . . . . . . . . . . . . . p. 547 A.4. Analysis . . . . . . . . . . . . . . . . . . . . . . . p. 548 A.5. Convex Sets and Functions . . . . . . . . . . . . . . p. 551 A.6. Subgradients . . . . . . . . . . . . . . . . . . . . . p. 553 References . . . . . . . . . . . . . . . . . . . . . . . . . p. 555 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 587 Preface Network optimization lies in the middle of the great divide that separates the two major types of optimization problems, continuous and discrete. The ties between linear programming and combinatorial optimization can be traced to the representation of the constraint polyhedron as the convex hull of its extreme points. When a network is involved, however, these ties becomemuchstrongerbecausetheextremepointsofthepolyhedronarein- tegerandrepresentsolutionsofcombinatorialproblemsthatareseemingly unrelated to linear programming. Because of this structure and also be- causeoftheirintuitivecharacter, networkmodelsprovideidealvehiclesfor explaining many of the fundamental ideas in both continuous and discrete optimization. Aside from their interesting methodological characteristics, network models are also used extensively in practice, in an ever expanding spec- trum of applications. Indeed collectively, network problems such as short- est path, assignment, max-flow, transportation, transhipment, spanning tree, matching, traveling salesman, generalized assignment, vehicle rout- ing, and multicommodity flow constitute the most common class of practi- cal optimization problems. There has been steady progress in the solution methodology of network problems, and in fact the progress has accelerated in the last fifteen years thanks to algorithmic and technological advances. Thepurposeofthisbookistoprovideafairlycomprehensiveandup- to-datedevelopmentoflinear,nonlinear,anddiscretenetworkoptimization problems. The interplay between continuous and discrete structures has beenhighlighted,theassociatedanalyticalandalgorithmicissueshavebeen treated quite extensively, and a guide to important network models and applications has been provided. Regarding continuous network optimization, we focus on two ideas, which are also fundamental in general mathematical programming: dual- ity and iterative cost improvement. We provide an extensive treatment of iterative algorithms for the most common linear cost problem, the mini- mumcostflowortranshipmentproblem,andforitsconvexcostextensions. The discussion of duality is comprehensive: it starts with linear network ix

Description:
Belmont (Mass.): Athena Scientific, 1998. - 585 p.An insightful, comprehensive, and up-to-date treatment of linear, nonlinear, and discrete/combinatorial network optimization problems, their applications, and their analytical and algorithmic methodology. It covers extensively theory, algorithms, an
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.