ebook img

Network Analysis in Geography PDF

332 Pages·1969·43.471 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Network Analysis in Geography

NetworAkn alysiinsG eography PETER HAGGETT ProfeosfsU orrb aann dR egioGneaolg raip1ith hye UniverosfBi rtiys tol J. RICHARD CHORLEY LectuirnGe ero graipnth hyUe n iverosfCi atmyb ridge; Fellofo Swi dnSeuys sCeoxl leCgaem,b ridge EDWARD ARNOLD � - SERIE Preface Ifb ookasr et raceatbhlreo ugmhi sttya xonomtirce etsod istainntt ellectual forebeatrhse,nt his book cmliagihamtn cestirnyR oberHto rtonr'es ­ markablpea peorn t hee rosiodneavle lopmeonfst t reamTsh.i s1 94p5a per bya nA mericacni veinlg ineleari tdh eb asinso to nlyo fm ucha nalytical \Voriknfl uviagle omorpholbougtym oreg eneruanld erpinnifnogras p ro­ cesasp proacthoq uantitamtoirvpeh ologIyt.fis n dingwse ret aughttoo ne of ubsy VaughanL ewis Caatm bridgaen d tot heo thebry Arthur StrahlaetrC olumbifao;r b otho fu si tr epresenttheesd t arotft wot rails ofw ork,t heo nem ovinga way frogme omorpholoignyt ol ocational analysainsdt heo thetro wardtsh es tudoyf d rainabgaes inasst hef unda­ mentagle omorphuinci t. Itw ast hec rossionftg h espea thast C ambridgient he easrilxyt tiheast ledu st oc hecks omeo ft heo n-goiansgs umptionst heod ni chotoomfy physicaanld h umang eograpahnyd t od rawt ogethtehres tranodfst his bookI.n i tw e havet rietdoe xplowraey si nw hicht he analoyfas tiosp o­ logicadlilsyt icnlcatso sfs patisatlr uctures-lnientewaorr ks-mitghhrto w lighotn commong eographpirco blemosfm orphometroyr,i gignr,o wth, balancaen dd esigInt.b uildosn a ne arliveorl umbey o neo ft hea uthors (Locatiaonnaalliy nsh iusm agne ograapnhdi yn) places incorporates relevant sectiobnust,i tw identsh ea reao fs patiaanla lystiosi ncludpeh ysical netwosr.kW e are tcooon sciooufst hed angerosf e asya nalogy and strainmeedt aphorc ltaoi tmh atf,o re xamplset,r easmy steamnsd t rans­ port systemasr eg eographic'atlhley satmeod' o; s ow ouldf orcues t o ignoraes pecotfsn etworskt ructuarnede volutitohna ta rei ntrinsically importatnotp hysical haunmda ng eographreerssp ectivRealtyh.ew re arguteh at thaerreee q uivalsepnatt isatlr uctucroemsm ont ob othf ields andt hawte canu sec ommonm athematimcoadle lfso rb othk indHse.n ce ,,·lea yn o claimtso c ompletenoersr si gouwre: h aved rawn omno dels fromo uro wna reaosf e xperiencet haemn adt hematilceavle ilse lemen­ taryW.e hopeh owevetrh ats omeo ft hep roblemrsa isewdi lalt tract mathematicifaonrts h,e isro lutiwoinlsl surely adnee mlaengda nacned powerb eyonodu rc ommandF.o rg eographweerh so pet hasto mef amiliar materiwaillb le c asitn a newl ighatn dt hawte masyt arsto med iscussions ona lternawtaiyvseo fv iewinogu rfi eld. Thel engtohft hea cknowledgmesnetcst ioofnt his bsouogkg esstosm e­ thinogft hed ebtw eo wet oo therAs n.u mbero fw orkers, noCtharbilsyt ian '\TerneMri,c haeWlo ldenberagn dO ve Pederseanl,l oweuds a ccestso unpublishpeadp erNso.r thwestUenrinv erspirtoyv idae ds upertbr ans- v • Vl PREFACE portatiloinb raarnyd s timulatcionlgl eagfuoerws r itipnagr tof t heb ook. Otherp artosft heb ookw eret riewdi thv aryinsgu cceosnsc olleagauneds studenattCs a mbridgaen dB ristTohle.a ssistsatnataff t b othd epartments helpeidn t hep reparatoifot nh eb ooka ndw e arep articularly tgor ateful MargareRte ynoldMsa,r yN orcliffSei,m onG oddenT,o nyP hilpoatntd RoberBti gnaflolr h elpa tv arioucsr ucisatla geOsu.r familibeys n,o w hardenedt hteol ittoefrg alleayrso untdh eh ousea,s sisatneddr etarded thep rojeicntc haracterfiassthiico Wne. d edicatthei bso okt oo urt wo eldecshti ldriennt hef aint hopet htehyma aty sometimeensc ouratghee otherisn tfhoer mearc tivity. PETER HAGGETT RICHARD CHORLEY ChewM agna,S omerseStu.m mer, 1969 • Chapteorn e TopologSitcr uctures I.N ETWORKSA S GRAPHS. IIB.R ANCHINGN ETWORKS. i. Conceofp thsi erarocrhdie2cr. B. ranching (aL)a wo f path n(ubRm)eb geirosvn.aa rli aitnbi iofnusr craattiioons . ratios. 3.D atlai mitaftoirto onpso lcao ngailys4i.sS .t ochaasptpirco atcohn eest wotrokpl oogy. I II C .I RCU IT NETW RK S. 0 r.E lementgarrayp h-thmeeoarseutri2.ec Bs i.n ary (aO)r igicnoanln ectmiavtirti(ycb eP)so .w erceodn ­ connectmiavtirtiyc es. nectivity( cWm)ea itgrhictcoeendsn .e cmtaitvriitcye s. 3.S hortesmta-tpraitche s. (aC)o mparoifsg orna p(hbsC).o mparoifsn oond es and links. IV.B ARRIERN ETWORKS. r. Structruergaurlli ati2e. Esq.u ilibmroidueml s. (aU)n bounndeetdts h:'e m id-contpirnoebnl(tebamB)l.o ' u ndneedtt sh:e 'islparnodb'l em. Geographerresg ulaernlcyo untperro bleimnsv olvifnlgo wisn t heirre ­ searpcrho grammeCso.n sidtehrep hysicgaelo grapshteurd yisntgr eaming ofw atewri thian d rainabgaes ionr t heh umang eograpshteurd yiinngt er­ regionsatlr eaomfsm igranBtost.h e xamplreesp resdeinstt ifnucntc tional systebmust hatvheef undamental pirnocp oemrmtoynt hatth eiyn voltvhee flowso fs omec ommoditthyr ouag hc hanneolra n etworokfc hanneTlhse. probleimnso rganizfilnogwi sn teoffi ciecnhta nnepla tterns ainndt etrh­e pretatiooftn hsed istinccthiavnen neelt wortkhsa hta vee merged-ofatse n majofre atuornet sh ee arths'usr face-ftohremm a jotrh emoef t hivso lume. Thea pproafcohl lowheedr ies t ob egiinn P arOtn ew itthh en etworks ast heye xtlsta ndt oa nalytshee isrp atisatlr uctiunrt ee rmosf t opologic 2) �Chap1.) a ndg eon1et(rCihca p. componenHtasv.i negs tablitshhee d mains tructucrhaalr acteroifsc thiacnsn el networks tshhei fftioencd.u s is ParTtw o tot heierv aluatiTohner. e lationne towfo rskt ructtuorf el ow 3) demands( Chap. andt hep robleomf o ptimallloyc atinnegt works 1Chap4.) a ret hem ainc oncerinnt hisse ctiPoanr.tT hree analtyhsee s growtahn dt ransformaotfn ieotnw orokvse tri me( Chap5.) T.h roughout, thee mphasiso ni tsh eg enerparlo pertainedsp erformaonfcn ee tworks andt hes patial prtohbelpyeo msseb ,u tt hesaer ei llustrwaitterhde ference toa numbero fc ommonly-occunrertiwnogr sky steimnsp hysical and humang eography. I.N ETWORKS AS GRAPHS Thet opolosgtircu ctoufra en etworikn volvtehser eductoifot nh ec hannel pattetroni tmso stb asiacn de lementfaolr mW.h ethewre conceiav nee t­ ,,�oirnkt ermosf a standadridc tiondaerfyi nitoif'o anm eshed faobfr ic 3 :-- . A •I •• ,_ II •' \\ ' . \\ ,_ ...- ' ...... .. .• "' B -.. •• .,..._ -- ...... ..--.. ··- -- •I y'I '.,• )" /II ,,_,_.' __ _J__-- .. - ·- " ' >- -- • . • � ' I •' I I I t I ,. 'r --� I- > ' --.....,'. II' ,I I' I I I I ' • � I.II ,...,. _J I_.".. ..,.III. _ _ I II \.""' _ .., ""' \\_ ..,\'\ I. ,'I"I .,. I ·•- --f'-,' "'l.I _ ,.. ,''_ .-.-:. -..-rr� ---:._-:.- :.-_ -._:-- :.:---·-=;.-:-- ..- .- ..� -� .. .......-._._ _-_ _.,,. ..�_. _ .l ......_I. -.1 r-I' -""'.. ',' ,, r JIItIII-4... - , -\ _.-.,·..' -""', ,.\ I'- '. ', _ .< --�.._.-I....I .. ,.. ' _·.,I.)-' ..,.,-. ,'.,.'.I', .. I ........ . ..-_....,.._'..,..... .!,.-..',• _' ' • 1,.. '.. ,, •.. ..., .,. .,.,_ -.,._ .....,.r _.,)• -,_. ,, -',I 'J..1 II., .. -,.,.'I,'\..! 'I .,.' . , .'..,.,, ' \.•" _., ,If _ ..,. (_- I f_...,- ,. ...r.l.I... I\ -,.-�__ f, r" ,,-.,_ ..J_'.III,.,' M ..,.I., '" ,,\ ,., ..' \,._, '.. �..tII ).' .., . ,-I '- · ,- -'..-.. ·__.•.:�, I · &.t,,. ( . ..JI·..I( .I I ' , -• \ ,I..,.II' _ ..� (\ , --'\\. J - ,�-_.. ..- ..-..,I'.. ,'1... ! ...i. · 'A llAICY�\(.,. . . 0 .... MOULlRI( .D .,. r J 1 A ·- t:: FigI..I .S amplnee tworsky stem(sA.)C hannepla tteronfts h eM ississniepaprCi l arkesdMailses,U. .,S .Ab.r;a nc..h. ing networkRso.a d(c Bo)m municatisoynsst efmo rs amea reaa sA ; circuit ne(tpwloarnkas(r C)).A irlipnaet tern forF loridUa.,S .A.c;i rct1it n(entowno-rpklsa n(aDr)P) r.o perstuyb divissioountsh,e rn UO.hSi.oA b.a;r rineert ... worksS.o urcMee:a da ndB rown1,9 62p.. 1 91T;h rower1,9 66. I. I NETWORKS AS GRAPHS 5 intersecltiinneagsn di nterstoirci ensg 'e ographteresr'm ass ' as eto f geograplhoicca tiionntse rconneicnat esdy stebmy a numbero fr outes' ) (KanskIy9 ,6 3p,. r , we area utomaticcaolnlcye rnvveidt ha vercyo m­ plexb undloef· c haracteristhiocws :f artv hiezl .o catiaornesf romo ne anothewrh,e thetrh er outjeosi nitnhge ma res traigohrct u rvewdh,a t commodittyh en etworcka rriwehse,t hetrh efl owi sc ontinuoorui sn ter­ mittent,s oao nnd( FigI..1 )C.l earallytl h esaes pecatrse higrhellye vant toi ndividnueatlw orbkust,t heayl smoa kec omparisboentsw eenne tworks verdyi fficuletx cepatta triviaanlds elf-evildeevneItln .o rdetro g eta t theb asiscp atisatlr uctouftr hee netwmourckho ft his informmuasttbi eo n a b Es Fig1.. 2R.e ductioofna map ofa transpnoerttw or(kA )t oa graph( B). b a d c Fig1.. 3A.l ternattiovpeo lofgoircm fso rt heg rapmha ppedi nF ig1.. 2. initidailslcya rdaeldt,h ouogfhc ourisetm ustb er eintrodluacteiedr nt he analysis. Int hifisr scth aptneert worakrser educetdo tlheev oeflg rapGhrsa.p hs area rraoyfsp ointwsh,i calrie.c onnectoernd o t connetcoto endea nother byl ineTsh.e ries n oc oncern twhiet hl enogrot rhi entaotfit ohnel inneosr whethetrh eayr es traiogrhc tu rve(da ltholuignhem sa y bgei vepno sitive orn egatisvieg nis.,e d.i rected orga rsaspihgsnn;eud m ericvaall ueis.,e . valugerda phssot) h,a atn alyosfig sr aphs mraeyv ecaolm mont opological structubruersi eidn a pparentulnyl iknee tworkFsi.g .1 .2 showst he reductioofna simplreo adn etwor(kw iteha chn oder epresenatnin g origiinn,t ersectteiromni,n oarls ,e ttlemoennt th er outet)oa systeomf node(s vertVi1c-eVs1l )i,n k(se dgEe1s- E9a)n d( regiRo1n-sR 4S)i.n cwee may disregdairsdt anacnedd irectiito npi oss sibtlore e -dratwh eg raph 6 NETWORKS AS GRAPHS I. I (Fig1.. 2 -Bi)n sae rioefsa lternaftoirvmews h icsht iplrle sertvheeb asic patteorfin n tercotninoencbse tweenno deasn dl ink(ss eFei g1.. 3)Because . a numbeorf g raph represeonfta a gtiivoennnes t worcka nb ef ormeidt,i s moreu seftuols torteh ei nformataiboonu tth en etworiknm atrifxo rm. TableI. I showas serioefsb inarmya tricfeosrn odesl,i nkasn dr egions inw hichI represean dtisr eccotn nectiboent weetnh ee lemenatnsd o connectivity incidence otherwiTshee.s e matricmeasy bes upplemenbtye d matricienws h icclo1n nectiboentsw eenno deasn dl inknso,d easn d regions andl inla<nsdr egiomnasy ber epresenitnse idm ilfaorr m( Garrisaonnd Marble, Ip7 p-.20 ). Thes tudoyfn etworiknst hitso pologsiecnaslbe e gawni tEhu lerl'7 s3 6 papeorn t hes evebnr idgoefst heP russicaint oyf K onigsbearngd c on- Table1. 1.C onnectivMiattyr icefso rG raphm appedi nF ig1.. 2. Vert(Vi )c es Edg(eEs) I 2 6 I 2 6 8 3 45 7 3 4 5 7 9 I 0 0 I 0 0 0 0 I 0 I I I 0 0 0 0 0 2 0 0 I 0 0 0 I 2 I 0 I I I 0 0 0 0 I I 0 I I 0 0 I I 0 I 0 I I 0 0 3 3 0 0 I 0 I I 0 I I I 0 0 I 0 I 0 4 4 0 0 I I 0 0 I 0 I 0 0 0 0 0 I I 5 5 6 0 0 0 I 0 0 I 6 0 0 I I 0 0 I I 0 0 I 0 0 I I 0 0 0 I 0 0 I 0 0 I 7 7 8 0 0 0 I I I 0 0 I Regi(oRn)s 0 0 0 0 I 0 I I OJ 9 I 2 3 4 I 0 I I I 2 I 0 I I 1 = Connected I I 0 I o Notc onnected 3 = I I I 0 4 tinuewdi thC ayley('1 s8 79m)a p-colourpirnogb lebmu; tt hef ircsotm ­ prehenstirveea tmeonfnt e twortko polowgays n otp ublishuendt i1l9 36 Theodreieren dliucnhdue nne ndlGircahpehne n. inK onig's The brancohf topolodgeya liwnigt he lementasrtyr uctuwrhei,c hc amet ob e called grapthh eory, hasd evelopreadp idilnyt het hredee cadessi ncKeo nig's seminwaolr ka ndi sn ows ummarizienad r angoef t ext(se .Bge.r ge1,9 62; Busackaenrd S aaty1,9 65F;l amen1t9,6 3H;a raryN,o rmana ndC art­ wrigh1t9,6 5O;r e,1 963). Oneo ft hec omplicatiinoa npsp lying grapht ott hheea onrayl ysis of networskt ructure viesr yct ohnef usaendd o verlapptienrgm inology. Lineasr ec ommonlrye fertroea ds' link'se'd,g e'ss'i,d e'sa'r,c' ss'e,g ments', 'branch'erso'u,t oers' 'o ne-cewlhlisl'pe;o intasr ed escribe'dn oadse s', 'verti'cjeusn'c,t i'oinnst'e,r sec'ttieornmsi'n,oa rl' sz'e ro-cIenltlesr's.t ices withitnh en etworokr i nt hes urroundairnegaa ret erme'dr egioonrs ' 'faceTse'r.m sa reo fterne stritcota e pda rticualpaprl ifieedl d( e.gi.nt, h e I.I NETWORKS AS GRAPHS 7 medicalli teraltiunrkes naondde bse come 'neuarnodn' ss'y napsefso'r) , grapthh eorhya sf ounrde levanicnae varieotfyp roblemBse.s idtehse obvioaupsp licattioto hnes desoifeg lne ctrical acnidtr ocfl uoiwtsts h,r ough transportsaytsitoen(m Asv ondo-Bod1i9n6o2F,;o rda ndF ulkers1o9n6,2 ), stanidt s uisnte hsed esigonf arte(fAalcetxsa ndI9e 6r4,o) r i nt hea nalysis ofl inguissttircu ctu(rBeuss ackaenrd S aaty1,9 65)I.n anthropology, sociolaongdys ,o cipasly choltohgeyr iesa t raditoifio tnus s ei nu nravelling 'cliqsuter uctuarnedsd 'e scribpiantgt eronfss o ciianlt eracwthiiocngh o es ( backt oK urtL ewin'Psr inciopflt eosp olopgsyicchaoll o19gy3 6)L.i nks betweesno cial intearnadmc otdieolnos fn euraalc tivhiatvyeb eenf orged by Rapaporwth,i lues eosf d irectaendd v aluegdr aphhsa vee xtended Table Topologcilcaasls ificoafnt eitowno rks x.2. Networks Pla11Naert s N 011-PlaNneatrs I Paths Trees Circuits Cells I LineaBra rriers LineaFrl owS ystems \ SourceH:a ggett,C li1no rlaenyd H agget1t9,6 7p,. 1 0. frome conomiocusti ntfioe ldsm aonfa geme(net. ign.t hed evelopmoefn t 'criticaaln-aplaytshai nsd'P ERT techniq(uBeast terIs9 b6y4,) ). Treatmeonft networkas g rianp h-theocroenttieccx lte arclayr ries certapienn altiebse naenfidt Tsh.ep enaltaireets h eh ugel ossienrs e levant informattihoegn a;i ncso mei nt heh ighelre vela bosft racttihoern e,l ative easwei thw hichl argneu mbers of cnoemtpwloerxck asn b eh andleadn d compareadn,d i ng reatfleerx ibilFilteyx.i bisltietmyns o to nlyf rom analogubeest weenne tworiknsp hysicaanld n on-physiscyaslt e(msse e Chap5.. IIIb)u,tf romt hea bilittosy w itcphr oblefmrso mo ne' naturally­ occurrimnogd'et oa nothwehre rseo lutimoa1y1b se m oree asiolbyt ained. Thusw e may translnaettew oriknst om atricaensd t apt hep owerful resourocfem sa triaxl geb(rsae Ceh ap.1 .II(2o)r)p ,o rtrianyf ormation ini nput-outmpauttr icaesns e twor(ksse Ceh ap.4 .II). Simwiel caarnl y mover atheera siflryo mfl owp robletmosb arriperro blemasn,da ccom­ modatreo uteasn db oundarwiietsh icno mmon network f(oCrhmaapt.s 1. IIII)n.t hicsh aptetrh et opolosgtircu ctoufrt eh remea jorc lassoefs networ(kFsi g1. .2 i)s e xamineAdn.a lysbiesg inwsi tthh er elatisviemlpyl e 8 BRANCHING NETWORKS I II . structoufrb er anchinnegt wor(kIs )a,n dm oveso n toc onsidgerra phs withc ircu(iItIs) a,n df inalcleyl lunleatr(s III)F.i g.1 . 2 givefsa miliar map examploefst hesteh reteo polocgliacs s(eTsa bl1e.1 ). II.B RANCHING NETWORKS T11fier smta inc lasosfg eographniectawlo rckosn sideirsed di stinguished byi ttsr e..Ie i kset ructu(rFeisgI .. I-)A. Thesceo nsiosfst e tosf c onnected linewsi thouatn yc ompleltoeo ps;t oipno logitcearlm inoltohgeyya re '. ..c onnectgerda phwsi thout ci(rcOurie1t,9s 6'3 p,. 1 30)A.p arftr om theiarn astomossiencgt io(nwsh icfho rmc loseldo opss)t ream-channel systehmasv ea ltlh ep ropertoifte hse t opolotgriecee :. gt.h eyf ollotwh e rule tthraetec so nsissitm ployfl inessu ccessiavdedleydt oe xistliinnge s, sot haat t rewei thn vertihcaessn le dgeFsr.o mt het opologviiceawl­ - points,t reanme tworks have the simplest poasnsdia bllle connectivity - • ' Fig. T1o.p4o.l ogiciadlelnyt icchaaln nenle tworkAsr.r owheaidn dicaotuetsl et. SourcSeh:r ev1e,9 66p,.2 8. bifurcanteitnwgo rkssu,c ha sa rei llustrianFt iegd1. . 4a,r et opologically similiarn;d eemda nyg eometricdailffleyr ent sntertewaomr akrse t opo­ logicaildleyn ti(cSahlr ev1e9,6 6..H) o wevert,h itso pologdiecfailn iotfi on a treien cludfeosr ms intuirteicvoeglnyi zaabssl ien glpea thse:. gt.h e singllien ceo nnectai nsge otf p ointTsh.i sp articuklianrdo ft opological treken,o wna sa n' opeend get raipno's,e lso catiornaatlh tehra ns tructural probleamnsd i sd iscusisneC dh ap4.. I(3H)e.r ed iscussiisco onn finteod thes tructoufrb er anchinnegt worakssi llustrbaytt ehdeg raphosfs tream­ channesly stems. Streanme twormkasy bev ieweadsp langer aph(sS cheideg1g9e6r7,A ) oft opologicalr oofintiettdre e e(sM eltoin9,5 9i)n,w hicnho deVs,,( made up ofo utetri posr s ourcets;i, n nefro rkosr b ifurcatbi;oa nnsda, ter­ minarlo ootr o utlert)a, r ec onnectbeydl inkEs,,( exterei;oi rn,t eriio)r , sot haotn loyn el inekx isbtest weeann yt won odest,h eu pstreeanmd o f I BRANCIINIENTGW ORK9S .II eachl ink either cownintehct twiono gt helri nkosr terminaitnia n g I9 67, sourc(eS hreve, p.I 7 8).T hiss tatemelneta dtso a problem of definitiinot nh ats treanme tworiknsv olovnel yfl owsd irectferdo mt he (9I6 A7, 04) sourcteost heo utleatn,d S cheidegger p.l rejectthset erm 'treient' h aitt i mplineosn -direactrec(dse dgeHse) .p ropostehsed irected term' arboresciennw chei'c hp endanvte rtiocrefi sn gertiepmsa nate from a rootW.h atevetrh et erminolaodgoyp tetdh,e f ollowsinigm plree lation­ 1959; shipesx isbte tweetnh en umberosf nodesa nd link(sM elton., 1967; 1967) 1.5): Shreve, Woldenberg, (Fig. E= Vb-rt I E=2Vt-I Vb+ Vr= Vt It is potsosd iebslcer itbheet opoloogfys treanme tworiknsa number 1967, ofd ifferewnaty sS.h reve( pp.1 82-3h)a sp roposetdh es ymbolic representaotfia o nne tworbky thef ollowipnrgo cedur'eS:t arattt he Vt p I I I I I I -o \ -- __ \ \ \ \ b '\ ' ' ' ' 't> _..o -­ _..,. Fig. edg(eEsEi e,) I.5I.d eaclh annenle tworskh owinign nearn do uter andr oot, (VVrb,V, t ). branchianngd t erminvaelr tices SourceM:e lton1,9 59. outlaentd travtehresn ee tworakl,w aytsu rnilnegf attf orks raenvde rsing directaitos no urceusn,t itlh eo utliesta gairne acheDdu.r intgh et raverse, eneratae s equenocfei 'asn de 'bsy recordainn igt hefi rstt imea n : teriolri niks t raversaendda ne thefi rstt imea giveenx teriloirn iks __ -raversedE.a chl inwki lble traverstewdi cbeu tr ecordeodn lyo nce.' Fig. 1s.h6o-wAss ucha symbolriecp resentawthiiocnhw, i leln sure that opologiclayl identinceatlw orwkisl hla vei dentisceaqlu encBeesc.a use of e relationship: � Ei== Ee- I ) - e numbero fe 'nse vere xceetdh ei 's( excepfto rt hefi nale , and by +I 1, aciniga nde equal toa nd- respectiav eglrya,p ohf p artisaulm s 1.6-B). can beg enerat(eFdi g. (9 67A,0 ) SimilarSlcyh,e ideggle r p.l 5 woulde xpretshsea rborescence .6-A �0,\7Il inF ig.I asa leftto r igh'tw ordT'h.i sw ordi sc omposeodf

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.