ebook img

Net-Zero Emissions Energy Systems PDF

28 Pages·2017·1.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Net-Zero Emissions Energy Systems

RESEARCH REVIEW SUMMARY ◥ nisms to quickly and cheaply balance large and uncertain time-varying differences be- tweendemand and electricity generation; electrified substitutes for most fuel-using ENERGY devices; alternative materials and manu- facturing processes for structural materials; Net-zero emissions energy systems andcarbon-neutralfuelsforthepartsofthe economy that are not easily electrified. Re- cycling and removal of StevenJ.Davis*,NathanS.Lewis*,MatthewShaner,SoniaAggarwal,DougArent, carbon from the atmo- ONOURWEBSITE ◥ InêsL.Azevedo,SallyM.Benson,ThomasBradley,JackBrouwer,Yet-MingChiang, sphere (carbon manage- Readthefullarticle ChristopherT.M.Clack,ArmondCohen,StephenDoig,JaeEdmonds,PaulFennell, ment)isalsolikelytobe athttp://dx.doi. ChristopherB.Field,BryanHannegan,Bri-MathiasHodge,MartinI.Hoffert, an important activity of org/10.1126/ EricIngersoll,PaulinaJaramillo,KlausS.Lackner,KatharineJ.Mach, any net-zero emissions science.aas9793 MichaelMastrandrea,JoanOgden,PerF.Peterson,DanielL.Sanchez, energy system. The spe- .................................................. DanielSperling,JosephStagner,JessikaE.Trancik,Chi-JenYang,KenCaldeira* cific technologies that will be favored in futuremarketplacesarelargelyuncertain, BACKGROUND:Net emissions of CO2 by search,development,demonstration,andde- butonlyafinitenumberoftechnologychoices human activities—including not only en- ployment. It may take decades to research, existtodayforeachfunctionalrole.Totake ergyservicesandindustrialproductionbut develop,anddeploythesenewtechnologies. appropriate actions inthenear term, it is also land use and agriculture—must ap- imperative to clearly identify desired end D o proach zero in order to stabilize global ADVANCES:A successful transition to a points.Toachievearobust,reliable,andaf- w n mean temperature. Energy services such futurenet-zeroemissionsenergysystem fordable net-zero emissions energy system lo a aslight-dutytransportation,heating,cooling, is likely to depend on vast amounts of in- laterthiscentury,effortstoresearch,develop, d e and lighting may be relatively straight- expensive, emissions-free electricity; mecha- demonstrate, and deploy those candidate d forward to decarbonize by elec- technologies must start now. fro m trifyingandgeneratingelectricity h from variable renewable energy OUTLOOK:Combinations of known tech- ttp sources(suchaswindandsolar) nologies could eliminate emissions related ://s anddispatchable(“on-demand”) to all essential energy services and pro- cie n nonrenewablesources(including cesses, but substantial increases in costs c e nuclearenergyandfossilfuelswith areanimmediatebarriertoavoidingemis- .s c carboncaptureandstorage).How- sions in each category. In some cases, in- ie n ever,otherenergyservicesessential novation and deployment can be expected ce m tomoderncivilizationentailemis- toreducecostsandcreatenewoptions.More a sions that are likely to be more rapid changes may depend on coordinat- g.o difficulttofullyeliminate.These ingoperationsacrossenergyandindustry rg difficult-to-decarbonizeenergyser- sectors,whichcouldhelpboostutilization o / n vicesincludeaviation,long-distance rates of capital-intensive assets, but this J u transport,andshipping;production will require overcoming institutional and ne ofcarbon-intensivestructuralmate- organizationalchallengesinordertocreate 29 rialssuchassteelandcement;and newmarketsandensurecooperationamong , 2 0 provisionofareliableelectricity regulatorsanddisparate,risk-aversebusi- 1 8 supplythatmeetsvaryingdemand. nesses.Twoparallelandbroadstreamsof Moreover, demand for such ser- research and development could prove use- vices and products is projected ful:researchintechnologiesandapproaches toincreasesubstantiallyoverthis that can decarbonize provision of the most century.Thelong-livedinfrastruc- difficult-to-decarbonize energy services, and turebuilttoday,forbetterorworse, research in systems integration that would willshapethefuture. allowreliablea▪ndcost-effectiveprovisionof Here,wereviewthespecialchal- theseservices. lenges associated with an energy systemthatdoesnotaddanyCO 2 to the atmosphere (a net-zero Thelistofauthoraffiliationsisavailableinthefullarticleonline. emissions energy system). We *Correspondingauthor.Email:[email protected](S.J.D.); discuss prominent technolog- [email protected](N.S.L.);[email protected] (K.C.) ical opportunities and barriers Ashowerofmoltenmetalinasteelfoundry.Industrial CitethisarticleasS.J.Davisetal.,Science360,eaas9793 foreliminatingand/ormanaging processessuchassteelmakingwillbeparticularly (2018).DOI:10.1126/science.aas9793 emissionsrelatedtothedifficult- challengingtodecarbonize.Meetingfuturedemandfor to-decarbonize services; pitfalls suchdifficult-to-decarbonizeenergyservicesandindustrial in which near-term actions may productswithoutaddingCO totheatmospheremaydepend 2 makeitmoredifficultorcostlyto ontechnologicalcostreductionsviaresearchandinnovation, TOMORROW’SEARTH achievethenet-zeroemissions aswellascoordinateddeploymentandintegrationof Readmorearticlesonline goal; and critical areas for re- operationsacrosscurrentlydiscreteenergyindustries. atscim.ag/TomorrowsEarth Davisetal.,Science360,1419(2018) 29June2018 1of1 RESEARCH REVIEW ◥ tegratedassessmentmodelsremainschalleng- ing(4–6). Here,wereviewthespecialchallengesasso- ciatedwithanenergysystemthatdoesnotadd ENERGY anyCO totheatmosphere(anet-zeroemissions 2 energy system). We discuss prominent techno- Net-zero emissions energy systems logicalopportunitiesandbarriersforeliminat- ingand/ormanagingemissionsrelatedtothe difficult-to-decarbonizeservices;pitfallsinwhich StevenJ.Davis1,2*,NathanS.Lewis3*,MatthewShaner4,SoniaAggarwal5, near-termactionsmaymakeitmoredifficultor DougArent6,7,InêsL.Azevedo8,SallyM.Benson9,10,11,ThomasBradley12, costlytoachievethenet-zeroemissionsgoal; JackBrouwer13,14,Yet-MingChiang15,ChristopherT.M.Clack16,ArmondCohen17, andcriticalareasforresearch,development, StephenDoig18,JaeEdmonds19,PaulFennell20,21,ChristopherB.Field22, demonstration,anddeployment.Ourscopeis BryanHannegan23,Bri-MathiasHodge6,24,25,MartinI.Hoffert26,EricIngersoll27, notcomprehensive;wefocusonwhatnowseem themostpromisingtechnologiesandpathways. PaulinaJaramillo8,KlausS.Lackner28,KatharineJ.Mach29,MichaelMastrandrea4, Ourassertionsregardingfeasibilitythroughout JoanOgden30,PerF.Peterson31,DanielL.Sanchez32,DanielSperling33, arenottheresultofformal,quantitativeecono- JosephStagner34,JessikaE.Trancik35,36,Chi-JenYang37,KenCaldeira32* micmodeling;rather,theyarebasedoncompar- isonofcurrentandprojectedcosts,withstated Someenergyservicesandindustrialprocesses—suchaslong-distancefreighttransport, assumptionsaboutprogressandpolicy. airtravel,highlyreliableelectricity,andsteelandcementmanufacturing—areparticularly Amajorconclusionisthatitisvitaltointegrate difficulttoprovidewithoutaddingcarbondioxide(CO )totheatmosphere.Rapidly 2 currentlydiscreteenergysectorsandindustrial D growingdemandfortheseservices,combinedwithlongleadtimesfortechnology o processes.Thisintegrationmayentailinfrastruc- w dseervveilcoepsmbeontthaensdselnotnigalliafnedtimuregsenotf.eWneeregxyaminfinraesbtraurcriteurrse,amndakoeppdoerctaurnbitoinesizaatsisooncoiaftethdewseith tauctriavleamndaniangsetimtuetniotnoaflctarrabnosnfoinrmthaetioennesr,gaysswysetlelmas. nload thesedifficult-to-decarbonizeservicesandprocesses,includingpossibletechnological e d smoeluettiofuntsuarendderemsaenadrcshfoarntdhdeesevesloeprvmiceenstapnrdioprirtoiecse.sAsersanwgiethoofuetxnisettinagddtietciohnnoolfoCgiOes2tcoould Aanvdiatsihoinp,plionngg-distancetransport, from theatmosphere,buttheirusemaydependonacombinationofcostreductionsvia h researchandinnovation,aswellascoordinateddeploymentandintegrationofoperations In2014,medium-andheavy-dutytruckswith ttp acrosscurrentlydiscreteenergyindustries. meantripdistancesof>160km(>100miles) ://s accountedfor~270MtCO emissions,or0.8% c P 2 ie ofglobalCO emissionsfromfossilfuelcom- n 2 c eopledonotwantenergyitself,butrather renewablesources(includingnuclearenergy bustion and industry sources [estimated by e theservicesthatenergyprovidesandthe andfossilfuelswithcarboncaptureandstorage). using(7–9)].Similarlylongtripsinlight-duty .sc ie productsthatrelyontheseservices.Even However,otherenergyservicesessentialtomo- vehiclesaccountedforanadditional40MtCO, n 2 c withsubstantialimprovementsinefficiency, derncivilizationentailemissionsthatarelikely andaviationandothershippingmodes(such em globaldemandforenergyisprojectedto tobemoredifficulttofullyeliminate.These astrainsandships)emitted830and1060Mt a g hiwnuhcmirleeaa,nnseeatmcetmaivrikistseiideoslny—sooivnfeccrlaurtbhdoiisnngcdeinnootxutidroeyn((Cl1y)O.e2M)nfeerraognmy- dapvrifoifaditcuiuoclntti-,otlono-ndogfe-ccdaairrsbbtoaonnn-ciizenetterenannseisrvpgeoysrtstre,uracvntiudcresashliimnpcpaltiuendrgie-; (CrFeOisg2p.,o2rne).sspMibeecleatinvfwoelrhy.~ilAe6,l%tboogotefhthggelloro,bbtaahlleeCsenOes2rogueyrmcdeiessmswiaoennrdes on .org/ andindustrialproduction,butalsolanduseand alssuchassteelandcement;andprovisionof fortransportationandtheratioofheavy-to Ju agriculture—mustapproachzerotostabilizeglo- areliableelectricitysupplythatmeetsvarying light-dutyvehiclesisexpectedtoincrease(9). ne balmeantemperature(2,3).Indeed,interna- demand.Totheextentthatcarbonremainsin- Light-dutyvehiclescanbeelectrifiedorrun 29 tionalclimatetargets,suchasavoidingmore volvedintheseservicesinthefuture,net-zero onhydrogenwithoutdrasticchangesinperfor- , 2 0 than2°Cofmeanwarming,arelikelytorequire emissionswillalsoentailactivemanagement manceexceptforrangeand/orrefuelingtime. 1 8 anenergysystemwithnet-zero(ornet-negative) ofcarbon. Bycontrast,general-useairtransportationand emissionslaterthiscentury(Fig.1)(3). In2014,difficult-to-eliminateemissionsrelated long-distancetransportation,especiallybytrucks Energyservicessuchaslight-dutytranspor- toaviation,long-distancetransportation,and orships,haveadditionalconstraintsofrevenue tation,heating,cooling,andlightingmaybe shipping;structuralmaterials;andhighlyreliable cargospaceandpayloadcapacitythatmandate relatively straightforward todecarbonize by electricitytotaled~9.2GtCO,or27%ofglobal energysources with high volumetric and grav- 2 electrifyingandgeneratingelectricityfromvar- CO emissionsfromallfossilfuelandindustrial imetricdensity(10).Closed-cycleelectrochemical 2 iablerenewableenergysources(suchaswind sources(Fig.2).Yetdespitetheirimportance, batteriesmustcontainalloftheirreactantsand andsolar)anddispatchable(“on-demand”)non- detailedrepresentationoftheseservicesinin- products.Hence,fuelsthatareoxidizedwith 1DepartmentofEarthSystemScience,UniversityofCalifornia,Irvine,Irvine,CA,USA.2DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Irvine,Irvine,CA,USA. 3DivisionofChemistryandChemicalEngineering,CaliforniaInstituteofTechnology,Pasadena,CA,USA.4NearZero,CarnegieInstitutionforScience,Stanford,CA,USA.5EnergyInnovation,San Francisco,CA,USA.6NationalRenewableEnergyLaboratory,Golden,CO,USA.7JointInstituteforStrategicEnergyAnalysis,Golden,CO,USA.8EngineeringandPublicPolicy,CarnegieMellon University,Pittsburgh,PA,USA.9GlobalClimateandEnergyProject,StanfordUniversity,Stanford,CA,USA.10PrecourtInstituteforEnergy,StanfordUniversity,Stanford,CA,USA.11Department ofEnergyResourceEngineering,StanfordUniversity,Stanford,CA,USA.12DepartmentofMechanicalEngineering,ColoradoStateUniversity,FortCollins,CO,USA.13DepartmentofMechanical andAerospaceEngineering,UniversityofCalifornia,Irvine,Irvine,CA,USA.14AdvancedPowerandEnergyProgram,UniversityofCalifornia,Irvine,CA,USA.15DepartmentofMaterialScienceand Engineering,MassachusettsInstituteofTechnology,Cambridge,MA,USA.16VibrantCleanEnergy,Boulder,CO,USA.17CleanAirTaskForce,Boston,MA,USA.18RockyMountainInstitute, Boulder,CO,USA.19PacificNationalNorthwesternLaboratory,CollegePark,MD,USA.20DepartmentofChemicalEngineering,SouthKensingtonCampus,ImperialCollegeLondon,London,UK. 21JointBioenergyInstitute,5885HollisStreet,Emeryville,CA,USA.22WoodsInstitutefortheEnvironment,StanfordUniversity,Stanford,CA,USA.23HolyCrossEnergy,GlenwoodSprings,CO, USA.24DepartmentofElectrical,Computer,andEnergyEngineering,UniversityofColoradoBoulder,Boulder,CO,USA.25DepartmentofChemicalandBiologicalEngineering,ColoradoSchoolof Mines,Golden,CO,USA.26DepartmentofPhysics,NewYorkUniversity,NewYork,NY,USA.27LucidStrategy,Cambridge,MA,USA.28TheCenterforNegativeCarbonEmissions,ArizonaState University,Tempe,AZ,USA.29DepartmentofEarthSystemScience,StanfordUniversity,Stanford,CA,USA.30EnvironmentalScienceandPolicy,UniversityofCalifornia,Davis,Davis,CA,USA. 31DepartmentofNuclearEngineering,UniversityofCalifornia,Berkeley,Berkeley,CA,USA.32DepartmentofGlobalEcology,CarnegieInstitutionforScience,Stanford,CA,USA.33Instituteof TransportationStudies,UniversityofCalifornia,Davis,Davis,CA,USA.34DepartmentofSustainabilityandEnergyManagement,StanfordUniversity,Stanford,CA,USA.35InstituteforData, Systems,andSociety,MassachusettsInstituteofTechnology,Cambridge,MA,USA.36SantaFeInstitute,SantaFe,NM,USA.37Independentresearcher. *Correspondingauthors:Email:[email protected](S.J.D.);[email protected](N.S.L.);[email protected](K.C.) Davisetal.,Science360,eaas9793(2018) 29June2018 1of9 RESEARCH | REVIEW ambientairandthenventtheirexhausttothe range, heavy-duty trucks powered by current andvolumetricenergydensitylikelypreclude atmospherehaveasubstantialchemicaladvan- lithium-ionbatteriesandelectricmotorscancar- battery-orhydrogen-poweredaircraftforlong- tageingravimetricenergydensity. ry ~40% less goods than can trucks powered distancecargoorpassengerservice(12).Auto- Battery-andhydrogen-poweredtrucksarenow bydiesel-fueled,internalcombustionengines. nomoustrucksanddistributedmanufacturing usedinshort-distancetrucking(11),butatequal The same physical constraints of gravimetric mayfundamentallyaltertheenergydemandsof D o w n lo a d e d fro m h ttp ://s c ie n c e .s c ie n c e m a g .o rg o / n J u n e 2 9 , 2 0 1 8 Fig.1.Schematicofanintegratedsystemthatcanprovide mission;blue,hydrogenproductionandtransport;purple, essentialenergyserviceswithoutaddinganyCO2totheatmo- hydrocarbonproductionandtransport;orange,ammoniaproduction sphere.(AtoS)Colorsindicatethedominantroleofspecific andtransport;red,carbonmanagement;andblack,endusesof technologiesandprocesses.Green,electricitygenerationandtrans- energyandmaterials. Davisetal.,Science360,eaas9793(2018) 29June2018 2of9 RESEARCH | REVIEW Table1.Keyenergycarriersandtheprocessesforinterconversion.Processeslistedineachcellconverttherowenergycarriertothecolumnenergy carrier.Furtherdetailsaboutcostsandefficienciesoftheseinterconversionsareavailableinthesupplementarymaterials. To From e– H2 CxOyHz NH3 ............................................................................................................................................................................................................................................................................................................................................ e– Electrolysis($5to6/kgH ) Electrolysis+methanation Electrolysis+Haber-Bosch ....................................................................................................................................2.................................................................................................................................................................................... Electrolysis+Fischer-Tropsch ............................................................................................................................................................................................................................................................................................................................................ H Combustion Methanation Haber-Bosch($0.50to 2 ............................................................................................................................................................................(..$...0.....0...7....t..o....0.....5..7.../..m....3...C....H...4..)..................................................0.....6..0.../...k..g....N....H...3..).............. Oxidationviafuelcell Fischer-Tropsch($4.40 to$15.00/gallonof gasoline-equivalent) ............................................................................................................................................................................................................................................................................................................................................ CxOyHz Combustion Steamreforming Steamreforming+ ($1.29to1.50/kgH) Haber-Bosch ............................................................................................................................2............................................................................................................................................................................................ Biomassgasification ($4.80to5.40/kgH ) ................................................................2............................................................................................................................................................................................................................................................................ NH3 Combustion Metalcatalysts Metalcatalysts+methanation/ (~$3/kgH ) Fischer-Tropsch ....................................................................................................................2.................................................................................................................................................................................................... D Sodiumamide o ............................................................................................................................................................................................................................................................................................................................................ w n lo a d e thefreightindustry,butifavailable,energy-dense may bedirectly used in anengine ormay be portationfuelsatcostsroughlycompetitivewith d liquidfuelsarelikelytoremainthepreferred cracked toproduce hydrogen. Its thermolysis gasoline(forexample,U.S.$19/GJorU.S.$1.51/ fro energysourceforlong-distancetransportation mustbecarefullycontrolledsoastominimize gallonofethanol)(22).Astechnologymatures hm services(13). productionofhighlyoxidizedproductssuchas andoveralldecarbonizationeffortsoftheenergy ttp Optionsforsuchenergy-denseliquidfuelsin- NOx (17). Furthermore, like hydrogen, ammo- systemproceed,biofuelsmaybeabletolargely ://s cludethehydrocarbonswenowuse,aswellas nia’sgravimetricenergydensityisconsiderably avoidfossilfuelinputssuchasthoserelatedto c ie hydrogen,ammonia,andalcoholsandethers. lowerthanthatofhydrocarbonssuchasdiesel on-farmprocessesandtransport,aswellasemis- n c In each case, there are optionsfor producing (Fig.3A). sions associated with induced land-use change e.s cbaerbinotne-gnreautterdaltooralonwet--czaerrboonemfuiseslsiotnhsatencoerugldy Biofuels (li2q3u,i2d4f)u.eTlhseinexatefunttutroewnheti-czherboioemmaissssiownilslesunperpglyy cien c system(Fig.1),andeachcanalsobeintercon- Conversionofbiomasscurrently provides the systemthusdependsonadvancesinconversion em vertedthroughexistingthermochemicalprocesses mostcost-effectivepathwaytononfossil,carbon- technology,competingdemandsforbioenergy ag (Table1). containingliquidfuels.Liquidbiofuelsatpresent andland,thefeasibilityofothersourcesofcarbon- .o Hydrogenandammoniafuels rceopnrseusemnetd~4b.2yEthJeoftrthanesrpoourgthlsye1c0to0rEwJoorfldenweirdgey. ntieountrwailtfhueoltsh,earndobijnetcetgivreastio(2n5)o.fbiomassproduc- on rg/ Thelowvolumetricenergydensityofhydrogen Currently,themainliquidbiofuelsareethanol Ju favorstransportandstorageatlowtemperatures fromgrainandsugarcaneandbiodieselandre- Synthetichydrocarbons ne (–253°Cforliquidhydrogenatatmosphericpres- newable diesel from oil seeds and waste oils. Liquidhydrocarbonscanalsobesynthesized 29 sure)and/orhighpressures(350 to700bar), Theyareassociatedwithsubstantialchallenges through industrialhydrogenationoffeedstock , 2 0 thusrequiringheavyandbulkystoragecontain- relatedtotheirlife-cyclecarbonemissions,cost, carbon,suchasthereactionofcarbonmonoxide 1 8 ers(14).Tocontainthesametotalenergyasa andscalability(18). andhydrogenbytheFischer-Tropschprocess dieselfuelstoragesystem,aliquidhydrogen Photosynthesisconverts<5%ofincidentra- (26).Ifthecarboncontainedinthefeedstock storagesystemwouldweighroughlysixtimes diationtochemicalenergy,andonlyafraction istakenfromtheatmosphereandnofossilen- moreandbeabouteighttimeslarger(Fig.3A). ofthatchemicalenergyremainsinbiomass(19). ergyisusedfortheproduction,processing,and However,hydrogenfuelcellorhybridhydrogen- Conversionofbiomasstofuelalsorequiresen- transport of feedstocks and synthesized fuels, batterytruckscanbemoreenergyefficientthan ergyforprocessingandtransportation.Land theresultinghydrocarbonswouldbecarbon- thosewithinternalcombustiondieselengines usedtoproducebiofuelsmusthavewater,nu- neutral(Fig.1).Forexample,emissions-freeelec- (15),requiringlessonboardenergystorageto trient,soil,andclimatecharacteristicssuitable tricitycouldbeusedtoproducedihydrogen(H) 2 achievethesametravelingrange.Toyotahas foragriculture,thusputtingbiofuelsincompeti- bymeansofelectrolysisofwater,whichwould recentlyintroducedaheavy-duty(36,000kg), tionwithotherlanduses.Thishasimplications bereactedwithCO removedfromtheatmo- 2 500-kWfuelcell/batteryhybridtruckdesigned forfoodsecurity,sustainableruraleconomies,and sphereeitherthroughdirectaircaptureorphoto- totravel200milesonliquidhydrogenandstored theprotectionofnatureandecosystemservices synthesis(whichinthelattercasecouldinclude electricity,andNikolahasannouncedasimilar (20).Potentialland-usecompetitionisheightened CO capturedfromtheexhaustofbiomassor 2 battery/fuelcellheavy-dutytruckwithaclaimed byincreasinginterestinbioenergywithcarbon biogascombustion)(27,28). rangeof1300to1900km,whichiscomparable captureandstorage(BECCS)asasourceofnega- Atpresent,thecostofelectrolysisisamajor with today’s long-haul diesel trucks (16). If hy- tiveemissions(thatis,carbondioxideremoval), barrier.Thiscostincludesboththecapitalcosts drogencanbeproducedaffordablywithoutCO whichbiofuelscanprovide(21). ofelectrolyzersandthecostofemissions-free 2 emissions,itsuseinthetransportsectorcould Advancedbiofueleffortsincludeprocessesthat electricity;60to70%ofcurrentelectrolytichy- ultimatelybebolsteredbythefuel’simportance seektoovercometherecalcitranceofcelluloseto drogencostiselectricity(Fig.3C)(28,29).The inprovidingotherenergyservices. allowuseofdifferentfeedstocks(suchaswoody cheapestandmostmatureelectrolysistechnology Ammoniaisanothertechnologicallyviable crops,agriculturalresidues,andwastes)inorder availabletodayusesalkalineelectrolytes[suchas alternative fuel that contains no carbon and toachievelarge-scaleproductionofliquidtrans- potassiumhydroxide(KOH)orsodiumhydroxide Davisetal.,Science360,eaas9793(2018) 29June2018 3of9 RESEARCH | REVIEW Fig.2.Difficult-to-eliminate emissionsincurrentcontext. (AandB)EstimatesofCO 2 emissionsrelatedtodifferent energyservices,highlighting [forexample,bylongerpie piecesin(A)]thoseservices thatwillbethemostdifficult todecarbonize,andthe magnitudeof2014emissions fromthosedifficult-to- eliminateemissions.The sharesandemissionsshown herereflectaglobalenergy systemthatstillrelies primarilyonfossilfuelsand thatservesmanydeveloping regions.Both(A)theshares and(B)thelevelofemissions relatedtothesedifficult-to- decarbonizeservicesare D likelytoincreaseinthefuture. o w Totalsandsectoralbreak- n downsshownarebased loa primarilyondatafromthe de d IanntderEnDatGioAnRal4E.n3edrgaytaAbagseenscy from (8,38).Thehighlightedironandsteelandcementemissionsarethoserelated commercialemissionsarethoseproduceddirectlybybusinessesand h tothedominantindustrialprocessesonly;fossil-energyinputstothose households,and“Electricity,”“Combinedheat&electricity,”and“Heat” ttp sectorsthataremoreeasilydecarbonizedareincludedwithdirectemissions representemissionsfromtheenergysector.Furtherdetailsareprovidedin ://s c fromotherindustriesinthe“Otherindustry”category.Residentialand thesupplementarymaterials. ie n c (NaOH)]togetherwithmetalcatalyststopro- of the relative simplicity of large, long-term frastructure.Between2000and2015,cementand e .s ducehydrogenatanefficiencyof50to60%and storageofchemicalfuels.Hence,usingemissions- steelusepersistentlyaveraged50and21tonsper c ie acostof~U.S.$5.50/kgH (assumingindustrial freeelectricitytomakefuelsrepresentsacritical milliondollarsofglobalGDP,respectively(~1kg n 2 c electricitycostsofU.S.$0.07/kWhand75%uti- opportunityforintegratingelectricityandtrans- perpersonperdayindevelopedcountries)(4). em lizationrates)(29,30).Atthiscostofhydrogen, portationsystemsinordertosupplyapersistent Globally,~1320and1740MtCO emissionsem- a 2 g theminimumpriceofsynthesizedhydrocarbons demandforcarbon-neutralfuelswhileboosting anatedfromchemicalreactionsinvolvedwiththe .o w[ooru$ld5.5b0et$o1.$560.5t0o/$ga1.l7lo0n/liatenrdo$f4d2ietsoel$e5q0upivearleGnJt, utilizationratesofsystemassets. m(Faign.u2f)ac(t8u,r3e8o,f3c9e)m;aelntotgaentdhesrt,etehl,isreesqpueactteivsetloy on rg/ assumingcarbonfeedstockcostsof$0to100per Directsolarfuels ~9% of global CO2 emissions in 2014 (Fig. 1, Jun tlfirotonemroofsrtCe$aO1m2.5ar0nefpdoervrmeGriynJgl(o2ow8f)fpo].rsosFicolerCssHcoc4moisnpttsaoroiCfsOo$n20,a.0Hn5d/2 Pptohhoopttrooocedaleutacctleyrosftcushedelmitrheiccrtaolluycgsehplllsiatorwtrifapitcaeirratlibcpyuhluaosttieno/gsmysonultenhcleuigslihasrt, po(4fu0cr,po4nl1e)s,tasrntuedcetlbidoluenmec)a.onAudlltdihsbopeurogsjhuebcmtsetadatnetortiigaarllolsywinrbetdyenu3sc.3iet%dy e 29, 20 H currentlycosts$1.30to1.50perkg(Fig.3D, withouttheland-useconstraintsassociatedwith peryearto2.4billiontonsin2025(42),andce- 1 2 8 red line) (29, 31). Thus, the feasibility of syn- biomass(35).Hydrogenproductionefficiencies mentproductionisprojectedtogrowby0.8to thesizinghydrocarbonsfromelectrolyticH may canbehigh,butcosts,capacityfactors,andlife- 1.2%peryearto3.7billionto4.4billiontonsin 2 dependondemonstratingvaluablecross-sector timesneedtobeimprovedinordertoobtainan 2050(43,44),continuinghistoricalpatternsof benefits,suchasbalancingvariabilityofrenew- integrated,cost-advantagedapproachtocarbon- infrastructureaccumulationandmaterialsuseseen ableelectricitygeneration,orelseapolicy-imposed neutralfuelproduction(36).Short-livedlabora- inregionssuchasChina,India,andAfrica(4). priceof~$400pertonofCO emitted(which torydemonstrations have also produced liquid Decarbonizingtheprovisionofcementand 2 wouldalsoraisefossildieselpricesby~$1.00/liter carbon-containingfuelsbyusingconcentrated steel will require major changes in manufac- or~$4.00/gallon). CO streams(Fig.1H)(37),insomecasesby turingprocesses,useofalternativematerials 2 Intheabsenceofpoliciesorcross-sectorcoor- usingbacteriaascatalysts. thatdonotemitCO duringmanufacture,or 2 dination,hydrogencostsof$2.00/kg(approaching carboncaptureandstorage(CCS)technologies thecostoffossil-derivedhydrogenandsynthe- Outlook tominimizethereleaseofprocess-relatedCO 2 sizeddieselof~$0.79/literor$3.00/gallon)could Large-scale production of carbon-neutral and totheatmosphere(Fig.1B)(45). beachieved,forexample,ifelectricitycostswere energy-denseliquidfuelsmaybecriticaltoachiev- $0.03/kWhandcurrentelectrolyzercostswere inganet-zeroemissionsenergysystem.Suchfuels Steel reducedby60to80%(Fig.3B)(29).Suchreduc- couldprovideahighlyadvantageousbridgebe- Duringsteelmaking,carbon(cokefromcoking tionsmaybepossible(32)butmayrequirecentral- tweenthestationaryandtransportationenergypro- coal)isusedtoreduceironoxideoreinblast izedelectrolysis(33)andusinglessmaturebut ductionsectorsandmaythereforedeservespecial furnaces, producing 1.6 to 3.1 tons of process promisingtechnologies,suchashigh-temperature priorityinenergyresearchanddevelopmentefforts. CO pertonofcrudesteelproduced(39).This 2 solidoxideormoltencarbonatefuelcells,or isinadditiontoCO emissionsfromfossilfuels Structuralmaterials 2 thermochemicalwatersplitting(30,34).Fuel burnedtogeneratethenecessaryhightemper- marketsarevastlymoreflexiblethaninstan- Economicdevelopmentandindustrialization atures(1100to1500°C).ReductionsinCO emis- 2 taneouslybalancedelectricitymarketsbecause arehistoricallylinkedtotheconstructionofin- sionspertonofcrudesteelarepossiblethrough Davisetal.,Science360,eaas9793(2018) 29June2018 4of9 RESEARCH | REVIEW theuseofelectricarcfurnace(EAF)“minimills” are high (40 to 50% and 35% by volume,re- assteelandcement,orclosesubstitutes,without thatoperatebyusingemissions-freeelectricity, spectively)(Fig.1,GandE)(51,52). addingCO totheatmosphere.Althoughalter- 2 efficiencyimprovements(suchastopgasrecovery), nativeprocessesmightavoidliberationanduse newprocessmethods(suchas“ultra-lowCO Cement ofcarbon,thecementandsteelindustriesare 2 directreduction,”ULCORED),processheatfuel- About40%oftheCO emissionsduringcement especiallyaversetotheriskofcompromisingthe 2 switching, and decreased demand via better productionarefromfossilenergyinputs,withthe mechanical properties of produced materials. engineering. For example, a global switch to remainingCO emissionsarisingfromthecalcina- Demonstrationandtestingofsuchalternatives 2 ultrahigh-strengthsteelforvehicleswouldavoid tionofcalciumcarbonate(CaCO)(typicallylime- atscaleisthereforepotentiallyvaluable.Unless 3 ~160MtCO annually.Theavailabilityofscrap stone)(53).Eliminatingtheprocessemissions anduntilsuchalternativesareproven,eliminating 2 steel feedstocks currently constrains EAF pro- requiresfundamentalchangestothecement- emissionsrelatedtosteelandcementwillde- ductionto~30%ofglobaldemand(46,47),and makingprocessandcementmaterialsand/or pendonCCS. theotherimprovementsreduce—butdonot installationofcarbon-capturetechnology(Fig.1G) Highlyreliableelectricity eliminate—emissions. (54).CO concentrationsaretypically~30%by 2 Prominentalternativereductantsincludechar- volumeincementplantfluegas[comparedwith Moderneconomiesdemandhighlyreliableelec- coal(biomass-derivedcarbon)andhydrogen. ~10to15%inpowerplantfluegas(54)],improv- tricity;forexample,demandmustbemet>99.9% Charcoalwasuseduntilthe18thcentury,andthe ingtheviabilityofpost-combustioncarboncap- ofthetime(Fig.1A).Thisrequiresinvestmentin Braziliansteelsectorhasincreasinglysubstituted ture.FiringthekilnwithoxygenandrecycledCO energygenerationorstorageassetsthatwillbe 2 charcoalforcoalinordertoreducefossilCO isanotheroption(55),butitmaybechallenging usedasmallpercentageofthetime,whendemand 2 emissions (48). However, the ~0.6 tons of char- tomanagethecompositionofgasesinexisting ishighrelativetovariableorbaseloadgeneration. coalneededpertonofsteelproducedrequire cement kilnsthatare not gas-tight,operate at Astheshareofrenewableelectricityhasgrown 0.1 to0.3haofBrazilianeucalyptusplantation veryhightemperatures(~1500°C),androtate(56). intheUnitedStates,naturalgas-firedgenerators (48, 49). Hundreds of millions of hectares of A substantialfraction of process CO2 emis- haveincreasinglybeenusedtoprovidegenerat- D o highlyproductivelandwouldthusbenecessary sionsfromcementproductionisreabsorbedon ingflexibilitybecauseoftheirrelativelylowfixed w tomeetexpectedcharcoaldemandsofthesteel a time scale of 50 years through natural car- costs(Fig.3B),theirabilitytorampupanddown nlo industry,andassociatedlandusechangeemis- bonationofcementmaterials(57).Hence,capture quickly(58),andtheaffordabilityofnaturalgas ad sionscouldoutweighavoidedfossilfuelemissions, ofemissionsassociatedwithcementmanufacture (59).Inothercountries,otherfossil-fuelsources ed ashashappenedinBrazil(48).Hydrogenmight mightresultinoverallnet-negativeemissions orhydroelectricityareusedtoprovideflexibility. fro alsobeusedasareductant,butqualitycouldbe asaresultofthecarbonationofproducedcement. WeestimatethatCO emissionsfromsuch“load- m compromisedbecausecarbonimpartsstrength Ifcompletecarbonationisensured,capturedpro- following”electricity2were~4000MtCO2in2014 http andotherdesirablepropertiestosteel(50). cessemissionscouldprovideanalternativefeed- (~12%of global fossil-fueland industry emis- ://s Costnotwithstanding,captureandstorageof stockforcarbon-neutralsyntheticliquidfuels. sions), based loosely on the proportion of elec- c ie processCO emissionshasbeendemonstrated tricitydemandinexcessofminimumdemand n andmaybe2feasible,particularlyindesignssuch Outlook (Fig.2)(60). ce .s astopgasrecyclingblastfurnaces,wherecon- Afuturenet-zeroemissionsenergysystemmust Thecentralchallengeofahighlyreliablenet- c ie centrationsandpartialpressuresofCOandCO provideawaytosupplystructuralmaterialssuch zeroemissionselectricitysystemisthustoachieve n 2 c e m Fig.3.Comparisonsofenergysourcesand a g technologies.A)Theenergydensityofenergy .o rg sourcesfortransportation,includinghydrocar- o / bons(purple),ammonia(orange),hydrogen n J (blue),andcurrentlithiumionbatteries(green). u n (B)Relationshipsbetweenfixedcapitalversus e 2 variableoperatingcostsofnewgeneration 9 resourcesintheUnitedStates,withshaded , 2 0 rangesofregionalandtaxcreditvariationand 1 8 contoursoftotallevelizedcostofelectricity, assumingaveragecapacityfactorsandequip- mentlifetimes.NGcc,naturalgascombined cycle.(113).(C)Therelationshipofcapitalcost (electrolyzercost)andelectricitypriceonthe costofproducedhydrogen(thesimplestpossi- bleelectricity-to-fuelconversion)assuminga 25-yearlifetime,80%capacityfactor,65% operatingefficiency,2-yearconstructiontime, andstraight-linedepreciationover10yearswith $0salvagevalue(29).Forcomparison,hydrogen iscurrentlyproducedbysteammethanerefor- mationatcostsof~$1.50/kgH (~$10/GJ;red 2 line).(D)Comparisonofthelevelizedcostsof dischargedelectricityasafunctionofcycles peryear,assumingconstantpowercapacity, 20-yearservicelife,andfulldischargeover 8hoursfordailycyclingor121daysforyearly cycling.Dashedlinesforhydrogenandlithium- ionreflectaspirationaltargets.Furtherdetails areprovidedinthesupplementarymaterials. Davisetal.,Science360,eaas9793(2018) 29June2018 5of9 RESEARCH | REVIEW theflexibility,scalability,andlowcapitalcosts Energystorage stationarybatteries.NotshowninFig.3D,less- ofelectricitythatcancurrentlybeprovidedby efficient(forexample,70%round-trip)batteries Reliableelectricitycouldalsobeachievedthrough naturalgas–firedgenerators—butwithoutemit- energystoragetechnologies.Thevalueoftoday’s basedonabundantmaterialssuchassulfurmight tingfossilCO2.Thismightbeaccomplishedbya energystorageiscurrentlygreatestwhenfrequent reducecapitalcostperunitenergycapacityto mixofflexiblegeneration,energystorage,and $8/kWh(withapowercapacitycostof$150/kW), cyclingisrequired,suchasforminute-to-minute demandmanagement. frequencyregulationorpricearbitrage(72).Cost- leadingtoalevelizedcostofdischargedelectri- effectivelystoringanddischargingmuchlarger cityforthegrid-scaleusecaseintherangeof Flexiblegeneration $0.06to0.09/kWh($17to25perGJ),assuming quantitiesofenergyoverconsecutivedaysandless Evenwhenspanninglargegeographicalareas, 20to100cyclesperyearover20years(81). frequent cycling may favor a different set of asysteminwhichvariableenergyfromwind Utilizationratesmightbeincreasedifelec- innovativetechnologies,policies,andvaluation andsolararemajorsourcesofelectricity will (72,73). tricvehiclebatterieswereusedtosupportthe haveoccasionalbutsubstantialandlong-term electricalgrid[vehicle-to-grid(V2G)],presuming mismatchesbetweensupplyanddemand.For Chemicalbonds thatthedisruptiontovehicleownersfromdim- example, such gaps in the United States are Chemicalstorageofenergyingasorliquidfuels inishedbatterychargewouldbelesscostlythan commonlytensofpetajoules(40PJ=10.8TWh= isakeyoptionforachievinganintegratednet- anoutagewouldbetoelectricityconsumers(82). 24hoursofmeanU.S.electricitydemandin2015) zeroemissionsenergysystem(Table1).Stored Forexample,ifallofthe~150millionlight-duty andspanmultipledays,orevenweeks(61).Thus, electrolytichydrogencanbeconvertedbackto vehiclesintheUnitedStateswereelectrified, evenwithcontinental-scaleorglobalelectricity electricityeitherinfuelcellsorthroughcom- 10%ofeachbattery’s100kWhchargewould interconnections(61–63),highlyreliableelectricity bustioningasturbines[power-to-gas-to-power provide1.5TWh,whichiscommensuratewith in such a system will require either verysub- (P2G2P)](Figs.1,FandP,and3D,redcurve); ~3hoursofthecountry’saverage~0.5TWpower stantialamountsofdispatchableelectricitysources commercial-scaleP2G2Psystemscurrentlyexhibit demand. It is also not yet clear how owners (eithergeneratorsorstoredenergy)thatoperate around-tripefficiency(energyoutdividedby wouldbecompensatedforthelong-termimpacts D less than 20% of the time or corresponding energyin)of>30%(74).Regenerativefuelcells, ontheirvehicles’batterycyclelife;whetherpe- ow amountsofdemandmanagement.Similarchal- inwhichthesameassetsareusedtointerconvert riodsofhighelectricitydemandwouldbeco- nlo lenges apply if most electricity were produced electricityandhydrogen,couldboostcapacity incidentwithperiodsofhightransportation ad e bynucleargeneratorsorcoal-firedpowerplants factorsbutwouldbenefitfromimprovements demand;whethertheubiquitouscharginginfras- d equippedwithcarboncaptureandstorage,sug- inround-tripefficiency(now40to50%inproton- tructureentailedwouldbecost-effective;whether fro gesting an important role for generators with exchangemembranedesigns)andchemicalsub- thescaleandtimingoftheconsent,control,and m h higher variable cost,suchasgasturbinesthat stitutesforexpensivepreciousmetalcatalysts payment transactions would be manageable at ttp u(Fsieg.sy1nPt)h(e6t4ic).hydrocarbonsorhydrogenasfuel (75H,y7d6)r.ogencanalsoeitherbecombinedwith gpreird-1r5elmeviannptesrciaolde)s;(o~r3h0omwiellmioenrgtirnagnstaeccthionnos- ://sc ie Equippingdispatchablenaturalgas,biomass, nonfossilCO viamethanationtocreaterenew- logiesandsocialnorms(suchassharedauton- n 2 c orsyngasgeneratorswithCCScouldallowcon- ablemethaneorcanbemixedinlowconcen- omousvehicles)mightaffectV2Gfeasibility. e .s tinuedsystemreliabilitywithdrasticallyreduced trations(<10%)withnaturalgasorbiogasfor c CO emissions.Whenfueledbysyngasorbio- combustioninexistingpowerplants.Existing Potentialandkineticenergy ien 2 c masscontainingcarboncapturedfromtheat- naturalgaspipelines,turbines,andend-useequip- Waterpumpedintosuperposedreservoirsfor em mosphere,suchCCSoffersanopportunityfor mentcouldberetrofittedovertimeforusewith laterreleasethroughhydroelectricgenerators a g negativeemissions.However,thecapitalcosts purehydrogenorricherhydrogenblends(77,78), isacost-effectiveandtechnologicallymature .o ofCCS-equippedgeneratorsarecurrentlyconsi- althoughtheremaybedifficulttrade-offsofcost optionforstoringlargequantitiesofenergywith o rg/ derablyhigherthanforgeneratorswithoutCCS andsafetyduringsuchatransition. highround-tripefficiency(>80%).Althoughcap- n (Fig.3B).Moreover,CCStechnologiesdesigned Currentmass-marketrechargeablebatteries italcostsofsuchpumpedstoragearesubstantial, Ju n for generators that operate a large fraction of servehigh-valueconsumermarketsthatprize whencycledatleastweekly,levelizedcostsof e thetime(withhigh“capacityfactors”),suchas round-tripefficiency,energydensity,andhigh dischargedelectricityarecompetitive(Fig.3D). 29 coal-burningplants,maybelessefficientand charge/dischargerates.Althoughthesebatteries Majorbarriersaretheavailabilityofwaterand , 2 0 effectivewhengeneratorsoperateatlowercapa- canprovidevaluableshort-durationancillary suitablereservoirs,socialandenvironmentalop- 1 8 city factors (65). Use of CCS-equipped gener- services(suchasfrequencyregulationandback- position,andconstraintsonthetimingofwater atorstoflexiblyproduceback-upelectricityand uppower),theircapitalcostperenergycapacity releases by nonenergy considerations such as hydrogenforfuelsynthesiscouldhelpalleviate andpowercapacitymakesthemexpensivefor floodprotection,recreation,andthestorageand temporalmismatchesbetweenelectricitygener- grid-scaleapplicationsthatstorelargequantities deliveryofwaterforagriculture(83).Under- ationanddemand. ofenergyandcycleinfrequently.Foranexample groundandunderseadesigns,aswellasweight- Nuclearfissionplantscanoperateflexiblyto grid-scale use case with an electricity cost of basedsystemsthatdonotusewater,mightexpand followloadsifadjustmentsaremadetocoolant $0.035/kWh (Fig. 3D), the estimated cost of thenumberofpossiblesites,avoidnonenergy flowrateandcirculation,controlandfuelrod dischargedelectricitybyusingcurrentlithium- conflicts,andallaysomesocialandenvironmental positions,and/ordumpingsteam(66–68).Inthe ionbatteriesisroughly$0.14/kWh($39/GJ)if concerns(84–86). UnitedStates,thedesignandhighcapitalcosts cycleddailybutrisesto$0.50/kWh($139/GJ) Electricitymayalsobestoredbycompressing ofnuclearplantshavehistoricallyobligatedtheir forweeklycycling.Assumingthattargetsfor airinundergroundgeologicformations,under- near-continuous“baseload”operation,oftenat halvingtheenergycapacitycostsoflithium-ion watercontainers,orabove-groundpressureves- capacityfactors>90%.Ifcapitalcostscouldbe batteriesarereached(forexample,~$130/kWh sels.Electricityisthenrecoveredwithturbines reducedsufficiently,nuclearpowermightalso ofcapacity)(73,79,80),thelevelizedcostofdis- whenairissubsequentlyreleasedtotheatmo- becomeacost-competitivesourceofload-following chargedelectricitywouldfallto~$0.29/kWh sphere.Diabaticdesignsventheatgenerated power,butcostsmayhaveincreasedovertimein ($81/GJ)forweeklycycling.Costestimatesfor duringcompressionandthusrequireanexternal someplaces(69–71).SimilartoCCS-equipped currentvanadiumredoxflowbatteriesareeven (emissions-free) source of heat when the air is gasgenerators,theeconomicfeasibilityofnext- higherthanforcurrentlithium-ionbatteries,but released,reducinground-tripefficiencyto<50%. generationadvancednuclearplantsmaydepend lowercostflowchemistriesareindevelopment Adiabaticandisothermaldesignsachievehigher on flexibly producing multiple energy products (81).Efficiency,physicalsize,charge/discharge efficiencies (>75%) by storingboth compressed suchaselectricity,high-temperatureheat,and/or rates,andoperatingcostscouldinprinciplebe airandheat,andsimilarlyefficientunderwater hydrogen. sacrificedtoreducetheenergycapacitycostsof systemshavebeenproposed(84). Davisetal.,Science360,eaas9793(2018) 29June2018 6of9 RESEARCH | REVIEW Thermalenergy Captureandstoragewillbedistinctcarbon cooperationamongregulatorsanddisparate,risk- managementservicesinanet-zeroemissions aversebusinesses.Wethussuggesttwoparallel Thermalstoragesystemsarebasedonsensible energy system (for example, Fig. 1, E and J). broad streams of R&D effort: (i) research in heat(suchasinwatertanks,buildingenvelopes, moltensalt,orsolidmaterialssuchasbricksand Carboncapturedfromtheambientaircouldbe technologiesandprocessesthatcanprovidethese used to synthesize carbon-neutral hydrocarbon difficult-to-decarbonizeenergyservices,and(ii) gravel),latentheat(suchassolid-solidorsolid- fuels or sequestered to produce negative emis- researchinsystemsintegrationthatwouldallow liquidtransformationsofphase-changematerials), orthermochemicalreactions.Sensibleheatstorage sions.Carboncapturedfromcombustionofbio- fortheprovisionoftheseservicesandproducts mass or synthesized hydrocarbons could be inareliableandcost-effectiveway. systemsarecharacterizedbylowenergydensities recycledtoproducemorefuels(98).Storageof Wehavefocusedonprovisionofenergyser- [36to180kJ/kgor10to50watt-hourthermal (Wh )/kg]andhighcosts(84,87,88).Future capturedCO2(forexample,underground)will vices without adding CO2 to the atmosphere. th costtargetsare<$15/kWh (89).Thermalstor- berequiredtotheextentthatusesoffossilcar- However,manyofthechallengesdiscussedhere th bonpersistand/orthatnegativeemissionsare couldbereducedbymoderatingdemand,such ageiswellsuitedtowithin-dayshiftingofheat- needed(20). asthroughsubstantialimprovementsinenergy ing and cooling loads, whereas low efficiency, ForindustrialCO capture,researchandde- andmaterialsefficiency.Particularlycrucialare heatlosses,andphysicalsizearekeybarriersto 2 fillingweek-long,large-scale(forexample,30%of velopmentareneededtoreducethecapitalcosts the rate and intensity of economic growth in andcostsrelatedtoenergyforgasseparation developingcountriesandthedegreetowhich dailydemand)shortfallsinelectricitygeneration. and compression (99). Future constraints on suchgrowthcanavoidfossil-fuelenergywhile Demandmanagement land,water,andfoodresourcesmaylimitbio- prioritizinghumandevelopment,environmental Technologiesthatallowelectricitydemandtobe logicallymediatedcapture(20).Themainchal- protection, sustainability, and social equity shiftedintime(load-shiftingorload-shaping)or lenges to direct air capture include costs to (4,107,108).Furthermore,manyenergyservices curtailedtobettercorrelatewithsupplywould manufacturesorbentsandstructures,energize relyonlong-livedinfrastructureandsystemsso improveoverallsystemreliabilitywhilereducing theprocess,andhandleandtransportthecap- thatcurrentinvestmentdecisionsmaylockin D theneedforunderused,flexibleback-upgenerators turedCO2(100,101).Despitemultipledemon- patterns of energy supply and demand (and ow (90,91).Smartchargingofelectricvehicles,shifted strations at scale [~15 Mt CO2/year are now thereby the cost of emissions reductions) for nlo heatingandcoolingcycles,andschedulingof being injected underground (99)], financing halfacenturytocome(109).Thecollectiveand ad e appliancescouldcost-effectivelyreducepeak carbon storage projects with high perceived reinforcinginertiaofexistingtechnologies,pol- d loads in the United States by ~6% and thus risks and long-term liability for discharge re- icies, institutions, and behavioral norms may fro avoid77GWofotherwiseneededgenerating mainsamajorchallenge(102). activelyinhibitinnovationofemissions-freetech- m capacity (~7% of U.S. generating capacity in Discussion nologies(110).EmissionsofCO2andotherra- http 2017)(92).Managinglargerquantitiesofenergy diativelyactivegasesandaerosols(111),fromland ://s demand for longer times (for example, tens of We have estimated that difficult-to-eliminate useandland-usechangecouldalsocausesub- c petajoulesoverweeks)wouldinvolveidlinglarge emissionsrelatedtoaviation,long-distancetrans- stantialwarming(112). ien c industrialusesofelectricity—thusunderutilizing portationandshipping,structuralmaterials,and e othervaluablecapital—oreffectivelycurtailing highlyreliableelectricityrepresentedmorethan Conclusion .sc ie service.Exploringanddevelopingnewtechnol- aquarterofglobalfossilfuelandindustryCO Wehaveenumeratedhereenergyservicesthat n 2 c ogiesthatcanmanageweeklyorseasonalgaps emissions in 2014(Fig. 2). But economic and mustbeservedbyanyfuturenet-zeroemissions em in electricity supply is an important area for human development goals,trends ininterna- energysystemandhaveexploredthetechnolo- a g furtherresearch(93). tionaltradeandtravel,therapidlygrowingshare gicalandeconomicconstraintsofeach.Asuccess- .o Outlook oscfavlaereialebclteriefniceartgioynsooufroctehse(r10se3c),toarnsdatlhlseulgagrgeest- fsuylsttermansiistiolinketloyatofutduerpeennedt-zoenrothemeiasvsiaoilnasbielniteyrgoyf on rg/ Nonemittingelectricitysources,energy-storage thatdemandfortheenergyservicesandpro- vastamountsofinexpensive,emissions-freeelec- Ju n technologies,anddemandmanagementoptions cessesassociatedwithdifficult-to-eliminateemis- tricity;mechanismstoquicklyandcheaplybal- e thatarenowavailableandcapableofaccom- sionswillincreasesubstantiallyinthefuture.For ancelargeanduncertaintime-varyingdifferences 29 modatinglarge,multidaymismatchesinelec- example, in some of the Shared Socioeconomic betweendemandandelectricitygeneration;elec- , 2 0 tricitysupplyanddemandarecharacterizedby Pathwaysthatwererecentlydevelopedbythe trifiedsubstitutesformostfuel-usingdevices; 1 8 high capital costs compared with the current climatechangeresearchcommunityinorderto alternative materials and manufacturing pro- costsofsomevariableelectricitysourcesorna- frameanalysisoffutureclimateimpacts,global cessesincludingCCSforstructuralmaterials;and turalgas–firedgenerators.Achievingaffordable, finalenergydemandmorethandoublesby2100 carbon-neutralfuelsforthepartsoftheeconomy reliable, and net-zero emissions electricity sys- (104);hence,themagnitudeofthesedifficult-to- thatarenoteasilyelectrified.Thespecifictech- temsmaythusdependonsubstantiallyreducing eliminateemissionscouldinthefuturebecom- nologiesthatwillbefavoredinfuturemarket- suchcapitalcostsviacontinuedinnovationand parablewiththeleveloftotalcurrentemissions. places are largely uncertain, but only a finite deployment, emphasizing systems that can be Combinationsofknowntechnologiescould number of technology choices exist today for operatedtoprovidemultipleenergyservices. eliminateemissionsrelatedtoallessentialen- eachfunctionalrole.Totakeappropriateactions ergy services and processes (Fig. 1), but sub- inthenear-term,itisimperativetoclearlyiden- Carbonmanagement stantial increases in costs are an immediate tify desired endpoints. If we want to achieve a Recyclingandremovalofcarbonfromtheatmo- barriertoavoidingemissionsineachcategory. robust,reliable,affordable,net-zeroemissions sphere(carbonmanagement)islikelytobeanim- Insomecases,innovationanddeploymentcan energy system later this century, we must be portantactivityofanynet-zeroemissionsenergy beexpectedtoreducecostsandcreatenewop- researching,developing,demonstrating,andde- system.Forexample,synthesizedhydrocarbons tions(32,73,105,106).Morerapidchangesmay ployingthosecandidatetechnologiesnow. thatcontaincarboncapturedfromtheatmosphere dependoncoordinatingoperationsacrossenergy willnotincreaseatmosphericCO whenoxidized. andindustrysectors,whichcouldhelpboost 2 Integrated assessment models also increasingly utilizationratesofcapital-intensiveassets.In REFERENCESANDNOTES requirenegativeemissionstolimittheincrease practice,thiswouldentailsystematizingand 1. M.I.Hoffertetal.,Energyimplicationsoffuturestabilization inglobalmeantemperaturesto2°C(94–97)— explicitlyvaluingmanyoftheinterconnections ofatmosphericCO2content.Nature395,881–884(1998). for example, via afforestation/reforestation, en- depictedinFig.1,whichwouldalsomeanover- doi:10.1038/27638 2. H.D.Matthews,K.Caldeira,Stabilizingclimaterequires hancedmineralweathering,bioenergywithCCS, coming institutional and organizational chal- near-zeroemissions.Geophys.Res.Lett.35,L04705(2008). ordirectcaptureofCO2fromtheair(20). lengesinordertocreatenewmarketsandensure doi:10.1029/2007GL032388 Davisetal.,Science360,eaas9793(2018) 29June2018 7of9 RESEARCH | REVIEW 3. J.Rogeljetal.,Zeroemissiontargetsaslong-termglobal 27. F.S.Zeman,D.W.Keith,Carbonneutralhydrocarbons. manufactureandCO2abatementusingthecalciumlooping goalsforclimateprotection.Environ.Res.Lett.10,105007 Philos.Trans.AMathPhys.Eng.Sci.366,3901–3918(2008). cycle.EnergyEnviron.Sci.4,2050–2053(2011). (2015).doi:10.1088/1748-9326/10/10/105007 doi:10.1098/rsta.2008.0143;pmid:18757281 doi:10.1039/c1ee01282g 4. J.C.Steckel,R.J.Brecha,M.Jakob,J.Strefler, 28. C.Graves,S.D.Ebbesen,M.Mogensen,K.S.Lackner, 54. D.Barkeretal.,“CO2captureinthecementindustry” G.Luderer,Developmentwithoutenergy?Assessingfuture SustainablehydrocarbonfuelsbyrecyclingCO2andH2Owith (IEAGreenhouseasR&DProgramme,2008). scenariosofenergyconsumptionindevelopingcountries. renewableornuclearenergy.Renew.Sustain.EnergyRev.15, 55. F.S.Zeman,K.S.Lackner,Thezeroemissionkiln.Int. Ecol.Econ.90,53–67(2013).doi:10.1016/ 1–23(2011).doi:10.1016/j.rser.2010.07.014 CementRev.2006,55–58(2006). j.ecolecon.2013.02.006 29. M.R.Shaner,H.A.Atwater,N.S.Lewis,E.W.McFarland,A 56. L.Zheng,T.P.Hills,P.Fennell,Phaseevolution, 5. S.Collinsetal.,Integratingshorttermvariationsofthepower comparativetechnoeconomicanalysisofrenewablehydrogen characterisation,andperformanceofcementpreparedinan systemintointegratedenergysystemmodels:A productionusingsolarenergy.EnergyEnviron.Sci.9, oxy-fuelatmosphere.FaradayDiscuss.192,113–124 methodologicalreview.Renew.Sustain.EnergyRev.76, 2354–2371(2016).doi:10.1039/C5EE02573G (2016).doi:10.1039/C6FD00032Kpmid:27477884 839–856(2017).doi:10.1016/j.rser.2017.03.090 30. J.D.Holladay,J.Hu,D.L.King,Y.Wang,Anoverviewof 57. F.Xietal.,Substantialglobalcarbonuptakebycement 6. S.Yehetal.,Detailedassessmentofglobaltransport-energy hydrogenproductiontechnologies.Catal.Today139, carbonation.Nat.Geosci.9,880–883(2016).doi:10.1038/ models’structuresandprojections.Transp.Res.PartD 244–260(2009).doi:10.1016/j.cattod.2008.08.039 ngeo2840 Transp.Environ.55,294–309(2017).doi:10.1016/ 31. U.S.DepartmentofEnergy(DOE),H2A(HydrogenAnalysis) 58. M.Jarre,M.Noussan,A.Poggio,Operationalanalysisof j.trd.2016.11.001 Model(DOE,2017). naturalgascombinedcycleCHPplants:Energyperformance 7. S.C.Davis,S.W.Diegel,R.G.Boundy,TransportationEnergy 32. O.Schmidtetal.,Futurecostandperformanceofwater andpollutantemissions.Appl.Therm.Eng.100,304–314 DataBook.(CenterforTransportationAnalysis,ed.34,2015). electrolysis:Anexpertelicitationstudy.Int.J.Hydrogen (2016).doi:10.1016/j.applthermaleng.2016.02.040 8. InternationalEnergyAgency(IEA),“CO2emissionsfromfuel Energy42,30470–30492(2017).doi:10.1016/ 59. Q.Wang,X.Chen,A.N.Jha,H.Rogers,Naturalgasfrom combustion,”(IEA,2016). j.ijhydene.2017.10.045 shaleformation–Theevolution,evidencesandchallengesof 9. IEA,EnergyTechnologyPerspectives2017(IEA,2017). 33. DOE,“Technicaltargetsforhydrogenproductionfrom shalegasrevolutioninUnitedStates.Renew.Sustain. 10. L.M.Fulton,L.R.Lynd,A.Körner,N.Greene,L.R.Tonachel, electrolysis”(2018);www.energy.gov/eere/fuelcells/doe- EnergyRev.30,1–28(2014).doi:10.1016/j.rser.2013.08.065 Theneedforbiofuelsaspartofalowcarbonenergyfuture. technical-targets-hydrogen-production-electrolysis. 60. U.S.EnergyInformationAdministration(EIA),“Monthly BiofuelsBioprod.Biorefin.9,476–483(2015).doi:10.1002/ 34. S.M.Saba,M.Muller,M.Robinius,D.Stolten,Theinvestment generatorcapacityfactordatanowavailablebyfueland bbb.1559 costsofelectrolysis—Acomparisonofcoststudiesfromthe technology”(EIA,2014). 11. J.Impullitti,“ZeroemissioncargotransportII:SanPedroBay past30years.Int.J.HydrogenEnergy43,1209–1223(2018). 61. M.R.Shaner,S.J.Davis,N.S.Lewis,K.Caldeira,Geophysical portshybrid&fuelcellelectricvehicleproject”;www.energy. doi:10.1016/j.ijhydene.2017.11.115 constraintsonthereliabilityofsolarandwindpowerinthe D gov/sites/prod/files/2016/06/f33/ 35. A.C.Nielander,M.R.Shaner,K.M.Papadantonakis, UnitedStates.EnergyEnviron.Sci.11,914–925(2018). o w vs158_impullitti_2016_o_web.pdf. S.A.Francis,N.S.Lewis,Ataxonomyforsolarfuels doi:10.1039/C7EE03029K n 12. D.Cecere,E.Giacomazzi,A.Ingenito,Areviewon generators.EnergyEnviron.Sci.8,16–25(2015). 62. A.E.MacDonaldetal.,Futurecost-competitiveelectricity lo a hEynderrgoyge3n9,in1d0u7s3tr1i–a1l0a7e4ro7s(p2a0c1e4)a.pdpoliic:a1t0io.1n0s1.6In/t.J.Hydrogen 36. Jd.oRi:.1M0.c10K3on9e/,CN4E.ES0.2L2e5w1iCs,H.B.Gray,Willsolar-driven Csyhsatnegm.s6,an5d26t–h5e3ir1im(2p0a1c6t).odnoUi:S10C.1O023e8m/niscsliimonast.e2N9a2t.1Clim. ded 13. jM.ij.hMyduernaeto.2ri0e14t.a0l4.,.1R2o6leoftheFreightSectorinFuture w40a7te–r4-s1p4li(t2ti0n1g4d).evdiocie:s10se.1e02th1e/clmigh4t0o2f15d1a8y?Chem.Mater.26, 63. NReRnEeLw,a“bRleenEewnearbglyeLealebcotrraictiotyryf,u2t0ur1e2s).study,”(National from ClimateChangeMitigationScenarios.Environ.Sci.Technol. 37. N.S.Lewis,Researchopportunitiestoadvancesolarenergy 64. L.Hirth,J.C.Steckel,Theroleofcapitalcostsin h 51,3526–3533(2017).doi:10.1021/acs.est.6b04515; utilization.Science351,aad1920(2016).doi:10.1126/ decarbonizingtheelectricitysector.Environ.Res.Lett.11, ttp 14. Spm.Sida:ty2a8p2a4l,0i0n2H2ydrogenandFuelCellsProgram,FuelCell 38. Gsc.ieJnacnes.saeands1-9M2a0e;nphmouidt:e2t6a7l.9,8E0D2G0ARv4.3.2GlobalAtlasof 65. E11.4M01e0ch(l2er0i,16P)..Sd.oFi:e1n0n.e10ll,8N8/.1M74ac8-D93ow26e/ll1,1O/p11t/im11i4sa0t1i0onand ://sc TechnologiesOffice,U.S.DepartmentofEnergy,AnnualMerit thethreemajorgreenhousegasemissionsfortheperiod evaluationofflexibleoperationstrategiesforcoal-and ie n ReviewandPeerEvaluationMeeting(Washington,DC,2017). 1970-2012.EarthSystemScienceData,(2017). gas-CCSpowerstationswithamulti-perioddesignapproach. c 15. Htr.ucZkhatoe,chAn.oBlougrkiees,Lu.siZnhgud,iAenseall,ysLiNsGo,feClelacstsric8ithy,ybanridd-electric 39. IsEoAu,rc“eGsr—eeIInI:hoIruosneagnadssetmeeislspiorondsufcrtoiomn”m(aIEjoAr,i2n0du0s0t)r.ial Ij.nijtg.gJc..2G0re16en.0h9..G01a8sControl59,24–39(2017).doi:10.1016/ e.sc hydrogen,asthefuelforvariousapplications.EVS27 40. A.Denis-Ryan,C.Bataille,F.Jotzo,Managing 66. EPRI,“Programontechnologyinnovation:Approachto ien InternationalBattery,HybridandFuelCellElectricVehicle carbon-intensivematerialsinadecarbonizingworldwithouta transitionnuclearpowerplantstoflexiblepoweroperations” ce Symposium,17–20November2013(IEEE,2014). globalpriceoncarbon.Clim.Policy16(sup1),S110–S128 (ElectricPowerResearchInstitute,2014). m 16. D.Z.Morris,NikolaMotorsintroduceshydrogen-electricsemi (2016).doi:10.1080/14693062.2016.1176008 67. R.Poncirolietal.,Profitabilityevaluationofload-following ag truck.Fortune(4December2016);http://fortune.com/ 41. J.Tollefson,Thewoodenskyscrapersthatcouldhelptocool nuclearunitswithphysics-inducedoperationalconstraints. .o 2016/12/04/nikola-motors-hydrogen-truck. theplanet.Nature545,280–282(2017).doi:10.1038/ Nucl.Technol.200,189–207(2017).doi:10.1080/ rg 17. J.Li,H.Huang,N.Kobayashi,Z.He,Y.Nagai,Studyonusing 545280a;pmid:28516941 00295450.2017.1388668 o / hadnyoddi:rN1o0gO.e1xn0f0oa2rnm/deaart.mi3o1nm4.1oInntia.Ja.sEfnueerlgsy:CRoems.b3u8s,ti1o2n14c–h1a2r2a3cte(2ri0s1t4ic)s. 4423.. PIAEWgAe,Cn“-cMCye;emtWaelosnr,tld“TSBetecuehslinnionelso2sg0yC2oR5uo:naqcduimlofaovpar”dSi(suI?ns”ttae(irnPnaEabCtilo,en2a0l1E5n).ergy 68. 8Js.y7sD2t–.e8Jme8n4okpi(ne2sr0ae1t8tio)an.ls.d,owTih:iteh10br.e1e0nn1ee6fwi/tasj.baolpefenenunecerlrgegyay.r2.0fAl1ep8xp.i0bl.i3lEi.t0nye0ir2ngypo2w2e2r, n June 18. D.Tilmanetal.,Beneficialbiofuels—Thefood,energy,and Development,2009). 69. J.R.Lovering,A.Yip,T.Nordhaus,Historicalconstruction 2 denovi:ir1o0n.1m12e6nt/stcriileenmcme.1a1.7S7c9i7e0nc;epm32id5:,1297600–8297010(2009). 44. eBn.eJr.gvyanusReuiajvnednCeOt2ale.,mLoisnsgio-tnesrmfrommodtheel-bgalosbedalpsrtoejeelctainodnsof c3o7s1–ts38o2fg(l2o0b1a6l)n.udcolei:a1r0p.1o0w1e6r/jr.eeancptoolr.2s0.1E6n.e0r1g.y01P1olicy91, 9, 20 19. E.H.DeLuciaetal.,Thetheoreticallimittoplantproductivity. cementindustries.Resour.Conserv.Recycling112,15–36 70. A.Grubler,ThecostsoftheFrenchnuclearscale-up:Acase 18 Environ.Sci.Technol.48,9471–9477(2014).doi:10.1021/ (2016).doi:10.1016/j.resconrec.2016.04.016 ofnegativelearningbydoing.EnergyPolicy38,5174–5188 es502348e;pmid:25069060 45. NETL,“CostofcapturingCO2fromIndustrialSources” (2010).doi:10.1016/j.enpol.2010.05.003 20. P.Smithetal.,Biophysicalandeconomiclimitstonegative (NETL,2014). 71. J.Koomey,N.E.Hultman,Areactor-levelanalysisofbusbar CO2emissions.Nat.Clim.Chang.6,42–50(2016). 46. IEA,“EnergyTechnologyPerspectives:Iron&SteelFindings,” costsforUSnuclearplants,1970–2005.EnergyPolicy35, doi:10.1038/nclimate2870 (IEA,2015). 5630–5642(2007).doi:10.1016/j.enpol.2007.06.005 21. N.Johnson,N.Parker,J.Ogden,Hownegativecanbiofuels 47. A.Carpenter,“CO2abatementintheironandsteelindustry” 72. W.A.Braff,J.M.Mueller,J.E.Trancik,Valueofstorage withCCStakeusandatwhatcost?Refiningtheeconomic (IEACleanCoalCentre,2012). technologiesforwindandsolarenergy.Nat.Clim.Chang.6, potentialofbiofuelproductionwithCCSusingspatially- 48. L.J.Sonter,D.J.Barrett,C.J.Moran,B.S.Soares-Filho, 964–969(2016).doi:10.1038/nclimate3045 explicitmodeling.EnergyProcedia63,6770–6791(2014). Carbonemissionsduetodeforestationfortheproductionof 73. N.Kittner,F.Lill,D.Kammen,Energystoragedeployment doi:10.1016/j.egypro.2014.11.712 charcoalusedinBrazil’ssteelindustry.Nat.Clim.Chang.5, andinnovationforthecleanenergytransition.Nat.Energy2, 22. L.R.Lyndetal.,Cellulosicethanol:Statusandinnovation. 359–363(2015).doi:10.1038/nclimate2515 17125(2017).doi:10.1038/nenergy.2017.125 Curr.Opin.Biotechnol.45,202–211(2017).doi:10.1016/ 49. M.-G.Piketty,M.Wichert,A.Fallot,L.Aimola,Assessingland 74. M.Sterner,M.Jentsch,U.Holzhammer, j.copbio.2017.03.008;pmid:28528086 availabilitytoproducebiomassforenergy:Thecaseof EnergiewirtschaftlicheundökologischeBewertungeines 23. O.Cavalett,M.F.Chagas,T.L.Junqueira,M.D.B.Watanabe, Braziliancharcoalforsteelmaking.BiomassBioenergy33, Windgas-Angebotes(FraunhoferInstitutfürWindenergieund A.Bonomi,Environmentalimpactsoftechnologylearning 180–190(2009).doi:10.1016/j.biombioe.2008.06.002 Energiesystemtechnik,2011). curveforcellulosicethanolinBrazil.Ind.CropsProd.106, 50. H.Hiebler,J.F.Plaul,Hydrogenplasmasmelting 75. Y.Wang,D.Y.C.Leung,J.Xuan,H.Wang,Areviewon 31–39(2017).doi:10.1016/j.indcrop.2016.11.025 reduction—Anoptionforsteelmakinginthefuture. unitizedregenerativefuelcelltechnologies,partA:Unitized 24. N.Pavlenko,S.Searle,AComparisonofInducedLandUse Metalurgija43,155–162(2004). regenerativeprotonexchangemembranefuelcells.Renew. ChangeEmissionsEstimatesfromEnergyCrops(International 51. T.Kuramochi,A.Ramírez,W.Turkenburg,A.Faaij, Sustain.EnergyRev.65,961–977(2016).doi:10.1016/ CouncilonCleanTransportation,2018). ComparativeassessmentofCO2capturetechnologiesfor j.rser.2016.07.046 25. L.R.Lynd,Thegrandchallengeofcellulosicbiofuels. carbon-intensiveindustrialprocesses.Pror.EnergyCombust. 76. D.McVay,J.Brouwer,F.Ghigliazza,Criticalevaluationof Nat.Biotechnol.35,912–915(2017).doi:10.1038/nbt.3976; Sci.38,87–112(2012).doi:10.1016/j.pecs.2011.05.001 dynamicreversiblechemicalenergystoragewithhigh pmid:29019992 52. M.C.Romanoetal.,Applicationofadvancedtechnologiesfor temperatureelectrolysis.Proceedingsofthe41st 26. N.MacDowell,P.S.Fennell,N.Shah,G.C.Maitland,Therole CO2capturefromindustrialsources.EnergyProcedia37, InternationalConferenceonAdvancedCeramicsand ofCO2captureandutilizationinmitigatingclimatechange. 7176–7185(2013).doi:10.1016/j.egypro.2013.06.655 Composites38,47–53(2018). Nat.Clim.Chang.7,243–249(2017).doi:10.1038/ 53. C.C.Dean,D.Dugwell,P.S.Fennell,Investigationinto 77. M.Melaina,O.Antonia,M.Penev,“Blendinghydrogenintonatural nclimate3231 potentialsynergybetweenpowergeneration,cement gaspipelinenetworks:Areviewofkeyissues”(NREL,2013). Davisetal.,Science360,eaas9793(2018) 29June2018 8of9 RESEARCH | REVIEW 78. AmaericanGasAssociation,TransitioningtheTransportation 95. D.P.vanVuurenetal.,TheroleofnegativeCO2emissions 109. S.J.Davis,K.Caldeira,H.D.Matthews,FutureCO2emissions Sector:ExploringtheIntersectionofHydrogenFuelCelland forreaching2°C—Insightsfromintegratedassessment andclimatechangefromexistingenergyinfrastructure. NaturalGasVehicles(SandiaNationalLaboratory,2014). modelling.Clim.Change118,15–27(2013).doi:10.1007/ Science329,1330–1333(2010).doi:10.1126/ 79. DOE,“Goalsforbatteries”(DOE,VehicleTechnologiesOffice, s10584-012-0680-5 science.1188566;pmid:20829483 2018);https://energy.gov/eere/vehicles/batteries. 96. E.Kriegleretal.,Theroleoftechnologyforachievingclimate 110. K.C.Setoetal.,Carbonlock-in:Types,causes,andpolicy 80. R.E.Ciez,J.F.Whitacre,Thecostoflithiumisunlikelyto policyobjectives:OverviewoftheEMF27studyonglobal implications.Annu.Rev.Environ.Resour.41,425–452(2016). upendthepriceofLi-ionstoragesystems.J.PowerSources technologyandclimatepolicystrategies.Clim.Change123, doi:10.1146/annurev-environ-110615-085934 320,310–313(2016).doi:10.1016/j.jpowsour.2016.04.073 353–367(2014).doi:10.1007/s10584-013-0953-7 111. D.E.H.J.Gernaatetal.,Understandingthecontributionof 81. Z.Lietal.,Air-breathingaqueoussulfurflowbatteryfor 97. C.Azaretal.,ThefeasibilityoflowCO2concentrationtargets non-carbondioxidegasesindeepmitigationscenarios. ultralowcostelectricalstorage.Joule1,306–327(2017). andtheroleofbio-energywithcarboncaptureandstorage Glob.Environ.Change33,142–153(2015).doi:10.1016/ doi:10.1016/j.joule.2017.08.007 (BECCS).Clim.Change100,195–202(2010).doi:10.1007/ j.gloenvcha.2015.04.010 82. C.Quinn,D.Zimmerle,T.H.Bradley,Theeffectof s10584-010-9832-7 112. D.P.vanVuurenetal.,Energy,land-useandgreenhousegas communicationarchitectureontheavailability,reliability,and 98. J.M.D.MacElroy,Closingthecarboncyclethroughrational emissionstrajectoriesunderagreengrowthparadigm. economicsofplug-inhybridelectricvehicle-to-gridancillary useofcarbon-basedfuels.Ambio45(Suppl1),S5–S14 Glob.Environ.Change42,237–250(2017).doi:10.1016/ services.J.PowerSources195,1500–1509(2010). (2016).doi:10.1007/s13280-015-0728-7;pmid:26667055 j.gloenvcha.2016.05.008 doi:10.1016/j.jpowsour.2009.08.075 99. H.deConinck,S.M.Benson,Carbondioxidecaptureand 113. EIA,“LevelizedCostandLevelizedAvoidedCostofNew 83. J.I.Pérez-Díaz,M.Chazarra,J.García-González,G.Cavazzini, storage:Issuesandprospects.Annu.Rev.Environ.Resour.39, GenerationResourcesintheAnnualEnergyOutlook2018” A.Stoppato,Trendsandchallengesintheoperationof 243–270(2014).doi:10.1146/annurev-environ-032112-095222 (2018);www.eia.gov/outlooks/aeo/pdf/ pumped-storagehydropowerplants.Renew.Sustain.Energy 100. R.Socolowetal.,“DirectaircaptureofCO2withchemicals:A electricity_generation.pdf. Rev.44,767–784(2015).doi:10.1016/j.rser.2015.01.029 technologyassessmentfortheAPSPanelonPublicAffairs,” 84. A.B.Gallo,J.R.Simões-Moreira,H.K.M.Costa, (AmericanPhysicalSociety,2011). ACKNOWLEDGMENTS M.M.Santos,E.MoutinhodosSantos,Energystorageinthe 101. K.S.Lackneretal.,TheurgencyofthedevelopmentofCO2 TheauthorsextendaspecialacknowledgmenttoM.I.H.for energytransitioncontext:Atechnologyreview.Renew. capturefromambientair.Proc.Natl.Acad.Sci.U.S.A.109, inspirationonthe20thanniversaryofpublicationof(1).The Sustain.EnergyRev.65,800–822(2016).doi:10.1016/ 13156–13162(2012).doi:10.1073/pnas.1108765109; authorsalsothankM.Dyson,L.Fulton,L.Lynd,G.Janssens-Maenhout, j.rser.2016.07.028 pmid:22843674 M.McKinnon,J.Mueller,G.Pereira,M.Ziegler,and 85. T.Letcher,StoringEnergywithSpecialReferenceto 102. Z.Kapetaki,J.Scowcroft,Overviewofcarboncaptureand M.Wangforhelpfulinput.ThisReviewstemsfroman RenewableEnergySources(Elsevier,2016). storage(CCS)demonstrationprojectbusinessmodels:Risks AspenGlobalChangeInstitutemeetinginJuly2016convened D 86. MGHDeepSeaEnergyStorage;www.mgh-energy.com. andenablersonthetwosidesoftheAtlantic.Energy withsupportfromNASA,theHeising-SimonsFoundation, ow 87. A.Hauer,“Thermalenergystorage,”TechnologyPolicyBrief Procedia114,6623–6630(2017).doi:10.1016/ andtheFundforInnovativeClimateandEnergyResearch.S.J.D. n E17(IEA-ETSAPandIRENA,2012). j.egypro.2017.03.1816 andJ.B.alsoacknowledgesupportoftheU.S.NationalScience loa 88. Aen.eArbgeydsinto,rMag.eRosysestne,mAsc.rOitpiceanlRreevnieeww.oEfntehr.erJm.4oc,h4e2m–4ic6al 103. 2IE0A1,7R).enewables2017:AnalysisandForecaststo2022(IEA, Facokunnodwatleiodnge(INAFlliEaWncSegfroarnStuEsAtaRin1a6b3le93E1n8e)r.gDy.,At.h,eB.mH.a,naangderBa-Mnd.H. ded 89. (D2O0E1,0“)T.hdeori:m1a0l.2s1to7r4a/g1e87R6&3D87f1o0r1C0S0P40s1y0s0te4m2s,”(DOE,Solar 104. Nen.eBrgauyesreecttoarl-.q,uSahnatriefydinsgocthioe-encaornraotmiviecsp.aGtlhowb.ayEsnvoirfotnh.e oDpeepraarttomreonfttohfeENneartgioyna(DlOREen)euwnadbelrecEonnetrragcytLDaEb-oArCa3to6r-y08foGrOt2h8e3U08.S.. from EnergyTechnologiesOffice,2018);www.energy.gov/eere/ Change42,316–330(2017).doi:10.1016/ FundingwasinpartprovidedbytheDOEOfficeofEnergyEfficiency h solar/thermal-storage-rd-csp-systems. j.gloenvcha.2016.07.006 andRenewableEnergy.Theviewsexpressedinthearticledonot ttp 90. dEe.tHaailleedebtuaill.d,i“nDgeemnaenrdgyremspoodneslse”r(eNsRouErLc,e2q0u16an).tificationwith 105. Jp.roDg.rFesasrm?eRre,sF..PLoalficoynd4,5H,o6w47p–r6e6d5ict(a2b0le16i)s.tdeocih:n10ol.o10gi1c6a/l nTehceeUss.Sar.ilgyorveeprnremseennttrtheteaivnisewasndofththeepDuOblEishoerr,thbeyUa.cSc.egpotivnegrntmheent. ://sc 91. Pst.uAdlys”to(nCePeUtCa/lL.,B“NCLa,li2fo0r1n6ia).demandresponsepotential 106. jL.r.eMsp.oAl..2B0e1t5t.e1n1.c0o0u1rt,J.E.Trancik,J.Kaur,Determinantsof aartnioclneefxocrlupsuivbeli,cpaatiiodn-u,pac,kirnreovwolecdabgeles,twhoartldthweidUe.Slic.egnosveertnompeunbtlirsehtaoinrs ienc 92. P“gfr.liedBx”riwo(nRastotkcsik”eytcrMaeloa.,ute“nTtqhauienaenInctiosfitnaiotbumleteic,vsa2l0oufe15df)oe.mrcaunsdtofmlexeirbsiliatyn:dHtohwe tPphoLenOeSp.a0Oc0eN6E7o8f86g,4leo;6bp7am8l6iind4n:o(22v4a01t51io35n)8.6idn7oei:n1e0r.g1y37t1e/cjhonuornloagl.ies. rfoerprUo.dSu.cgeovtheernpmuebnlitshpeudrpfoosrems.ofthiswork,orallowotherstodoso, e.scien 93. B.Pierpont,D.Nelson,A.Goggins,D.Posner,“Flexibility:Thepathto 107. K.Riahietal.,TheSharedSocioeconomicPathwaysandtheir SUPPLEMENTARYMATERIALS ce low-carbon,low-costelectricitygrids”(ClimatePolicyInitiative, energy,landuse,andgreenhousegasemissionsimplications: m 94. 2Lo.f01CW7l)oa.rrkkiengetGarlo.,upinIIMIittoigtahteionIPoCfCC5litmhaFtiefthChAasnsgees.smCoennttriRbeuptioornt 108. AdEo.niH:oo1v0led.re1v0nie1,w6K/..jG.Lglilonobne.enrEvuncdhv,iarD.o2n.0.B1C6ahn.0ais5nt.ge0er0,49T2h,e1i5m3p–e1r6a8tiv(e2s01o7f). wMRewaftweer.rseicanilcesenascne(dm11M4ag–e.1to6hro1g)d/scontent/360/6396/eaas9793/suppl/DC1 ag.org oftheIntergovernmentalPanelonClimateChange. sustainabledevelopment.Sustain.Dev.10.1002/sd.1647 11January2018;accepted25May2018 o / (CambridgeUniv.Press,2014). (2016). 10.1126/science.aas9793 n J u n e 2 9 , 2 0 1 8 Davisetal.,Science360,eaas9793(2018) 29June2018 9of9

Description:
Inês L. Azevedo, Sally M. Benson, Thomas Bradley, Jack Brouwer, . renewable sources (including nuclear energy A. A. Akhil et al., “DOE/EPRI electricity storage handbook in collaboration with NRECA” A. Sakti, J. J. Michalek, E. R. H. Fuchs, J. F. Whitacre, A techno-economic analysis and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.