RESEARCH REVIEW SUMMARY ◥ nisms to quickly and cheaply balance large and uncertain time-varying differences be- tweendemand and electricity generation; electrified substitutes for most fuel-using ENERGY devices; alternative materials and manu- facturing processes for structural materials; Net-zero emissions energy systems andcarbon-neutralfuelsforthepartsofthe economy that are not easily electrified. Re- cycling and removal of StevenJ.Davis*,NathanS.Lewis*,MatthewShaner,SoniaAggarwal,DougArent, carbon from the atmo- ONOURWEBSITE ◥ InêsL.Azevedo,SallyM.Benson,ThomasBradley,JackBrouwer,Yet-MingChiang, sphere (carbon manage- Readthefullarticle ChristopherT.M.Clack,ArmondCohen,StephenDoig,JaeEdmonds,PaulFennell, ment)isalsolikelytobe athttp://dx.doi. ChristopherB.Field,BryanHannegan,Bri-MathiasHodge,MartinI.Hoffert, an important activity of org/10.1126/ EricIngersoll,PaulinaJaramillo,KlausS.Lackner,KatharineJ.Mach, any net-zero emissions science.aas9793 MichaelMastrandrea,JoanOgden,PerF.Peterson,DanielL.Sanchez, energy system. The spe- .................................................. DanielSperling,JosephStagner,JessikaE.Trancik,Chi-JenYang,KenCaldeira* cific technologies that will be favored in futuremarketplacesarelargelyuncertain, BACKGROUND:Net emissions of CO2 by search,development,demonstration,andde- butonlyafinitenumberoftechnologychoices human activities—including not only en- ployment. It may take decades to research, existtodayforeachfunctionalrole.Totake ergyservicesandindustrialproductionbut develop,anddeploythesenewtechnologies. appropriate actions inthenear term, it is also land use and agriculture—must ap- imperative to clearly identify desired end D o proach zero in order to stabilize global ADVANCES:A successful transition to a points.Toachievearobust,reliable,andaf- w n mean temperature. Energy services such futurenet-zeroemissionsenergysystem fordable net-zero emissions energy system lo a aslight-dutytransportation,heating,cooling, is likely to depend on vast amounts of in- laterthiscentury,effortstoresearch,develop, d e and lighting may be relatively straight- expensive, emissions-free electricity; mecha- demonstrate, and deploy those candidate d forward to decarbonize by elec- technologies must start now. fro m trifyingandgeneratingelectricity h from variable renewable energy OUTLOOK:Combinations of known tech- ttp sources(suchaswindandsolar) nologies could eliminate emissions related ://s anddispatchable(“on-demand”) to all essential energy services and pro- cie n nonrenewablesources(including cesses, but substantial increases in costs c e nuclearenergyandfossilfuelswith areanimmediatebarriertoavoidingemis- .s c carboncaptureandstorage).How- sions in each category. In some cases, in- ie n ever,otherenergyservicesessential novation and deployment can be expected ce m tomoderncivilizationentailemis- toreducecostsandcreatenewoptions.More a sions that are likely to be more rapid changes may depend on coordinat- g.o difficulttofullyeliminate.These ingoperationsacrossenergyandindustry rg difficult-to-decarbonizeenergyser- sectors,whichcouldhelpboostutilization o / n vicesincludeaviation,long-distance rates of capital-intensive assets, but this J u transport,andshipping;production will require overcoming institutional and ne ofcarbon-intensivestructuralmate- organizationalchallengesinordertocreate 29 rialssuchassteelandcement;and newmarketsandensurecooperationamong , 2 0 provisionofareliableelectricity regulatorsanddisparate,risk-aversebusi- 1 8 supplythatmeetsvaryingdemand. nesses.Twoparallelandbroadstreamsof Moreover, demand for such ser- research and development could prove use- vices and products is projected ful:researchintechnologiesandapproaches toincreasesubstantiallyoverthis that can decarbonize provision of the most century.Thelong-livedinfrastruc- difficult-to-decarbonize energy services, and turebuilttoday,forbetterorworse, research in systems integration that would willshapethefuture. allowreliablea▪ndcost-effectiveprovisionof Here,wereviewthespecialchal- theseservices. lenges associated with an energy systemthatdoesnotaddanyCO 2 to the atmosphere (a net-zero Thelistofauthoraffiliationsisavailableinthefullarticleonline. emissions energy system). We *Correspondingauthor.Email:[email protected](S.J.D.); discuss prominent technolog- [email protected](N.S.L.);[email protected] (K.C.) ical opportunities and barriers Ashowerofmoltenmetalinasteelfoundry.Industrial CitethisarticleasS.J.Davisetal.,Science360,eaas9793 foreliminatingand/ormanaging processessuchassteelmakingwillbeparticularly (2018).DOI:10.1126/science.aas9793 emissionsrelatedtothedifficult- challengingtodecarbonize.Meetingfuturedemandfor to-decarbonize services; pitfalls suchdifficult-to-decarbonizeenergyservicesandindustrial in which near-term actions may productswithoutaddingCO totheatmospheremaydepend 2 makeitmoredifficultorcostlyto ontechnologicalcostreductionsviaresearchandinnovation, TOMORROW’SEARTH achievethenet-zeroemissions aswellascoordinateddeploymentandintegrationof Readmorearticlesonline goal; and critical areas for re- operationsacrosscurrentlydiscreteenergyindustries. atscim.ag/TomorrowsEarth Davisetal.,Science360,1419(2018) 29June2018 1of1 RESEARCH REVIEW ◥ tegratedassessmentmodelsremainschalleng- ing(4–6). Here,wereviewthespecialchallengesasso- ciatedwithanenergysystemthatdoesnotadd ENERGY anyCO totheatmosphere(anet-zeroemissions 2 energy system). We discuss prominent techno- Net-zero emissions energy systems logicalopportunitiesandbarriersforeliminat- ingand/ormanagingemissionsrelatedtothe difficult-to-decarbonizeservices;pitfallsinwhich StevenJ.Davis1,2*,NathanS.Lewis3*,MatthewShaner4,SoniaAggarwal5, near-termactionsmaymakeitmoredifficultor DougArent6,7,InêsL.Azevedo8,SallyM.Benson9,10,11,ThomasBradley12, costlytoachievethenet-zeroemissionsgoal; JackBrouwer13,14,Yet-MingChiang15,ChristopherT.M.Clack16,ArmondCohen17, andcriticalareasforresearch,development, StephenDoig18,JaeEdmonds19,PaulFennell20,21,ChristopherB.Field22, demonstration,anddeployment.Ourscopeis BryanHannegan23,Bri-MathiasHodge6,24,25,MartinI.Hoffert26,EricIngersoll27, notcomprehensive;wefocusonwhatnowseem themostpromisingtechnologiesandpathways. PaulinaJaramillo8,KlausS.Lackner28,KatharineJ.Mach29,MichaelMastrandrea4, Ourassertionsregardingfeasibilitythroughout JoanOgden30,PerF.Peterson31,DanielL.Sanchez32,DanielSperling33, arenottheresultofformal,quantitativeecono- JosephStagner34,JessikaE.Trancik35,36,Chi-JenYang37,KenCaldeira32* micmodeling;rather,theyarebasedoncompar- isonofcurrentandprojectedcosts,withstated Someenergyservicesandindustrialprocesses—suchaslong-distancefreighttransport, assumptionsaboutprogressandpolicy. airtravel,highlyreliableelectricity,andsteelandcementmanufacturing—areparticularly Amajorconclusionisthatitisvitaltointegrate difficulttoprovidewithoutaddingcarbondioxide(CO )totheatmosphere.Rapidly 2 currentlydiscreteenergysectorsandindustrial D growingdemandfortheseservices,combinedwithlongleadtimesfortechnology o processes.Thisintegrationmayentailinfrastruc- w dseervveilcoepsmbeontthaensdselnotnigalliafnedtimuregsenotf.eWneeregxyaminfinraesbtraurcriteurrse,amndakoeppdoerctaurnbitoinesizaatsisooncoiaftethdewseith tauctriavleamndaniangsetimtuetniotnoaflctarrabnosnfoinrmthaetioennesr,gaysswysetlelmas. nload thesedifficult-to-decarbonizeservicesandprocesses,includingpossibletechnological e d smoeluettiofuntsuarendderemsaenadrcshfoarntdhdeesevesloeprvmiceenstapnrdioprirtoiecse.sAsersanwgiethoofuetxnisettinagddtietciohnnoolfoCgiOes2tcoould Aanvdiatsihoinp,plionngg-distancetransport, from theatmosphere,buttheirusemaydependonacombinationofcostreductionsvia h researchandinnovation,aswellascoordinateddeploymentandintegrationofoperations In2014,medium-andheavy-dutytruckswith ttp acrosscurrentlydiscreteenergyindustries. meantripdistancesof>160km(>100miles) ://s accountedfor~270MtCO emissions,or0.8% c P 2 ie ofglobalCO emissionsfromfossilfuelcom- n 2 c eopledonotwantenergyitself,butrather renewablesources(includingnuclearenergy bustion and industry sources [estimated by e theservicesthatenergyprovidesandthe andfossilfuelswithcarboncaptureandstorage). using(7–9)].Similarlylongtripsinlight-duty .sc ie productsthatrelyontheseservices.Even However,otherenergyservicesessentialtomo- vehiclesaccountedforanadditional40MtCO, n 2 c withsubstantialimprovementsinefficiency, derncivilizationentailemissionsthatarelikely andaviationandothershippingmodes(such em globaldemandforenergyisprojectedto tobemoredifficulttofullyeliminate.These astrainsandships)emitted830and1060Mt a g hiwnuhcmirleeaa,nnseeatmcetmaivrikistseiideoslny—sooivnfeccrlaurtbhdoiisnngcdeinnootxutidroeyn((Cl1y)O.e2M)nfeerraognmy- dapvrifoifaditcuiuoclntti-,otlono-ndogfe-ccdaairrsbbtoaonnn-ciizenetterenannseisrvpgeoysrtstre,uracvntiudcresashliimnpcpaltiuendrgie-; (CrFeOisg2p.,o2rne).sspMibeecleatinvfwoelrhy.~ilAe6,l%tboogotefhthggelloro,bbtaahlleeCsenOes2rogueyrmcdeiessmswiaoennrdes on .org/ andindustrialproduction,butalsolanduseand alssuchassteelandcement;andprovisionof fortransportationandtheratioofheavy-to Ju agriculture—mustapproachzerotostabilizeglo- areliableelectricitysupplythatmeetsvarying light-dutyvehiclesisexpectedtoincrease(9). ne balmeantemperature(2,3).Indeed,interna- demand.Totheextentthatcarbonremainsin- Light-dutyvehiclescanbeelectrifiedorrun 29 tionalclimatetargets,suchasavoidingmore volvedintheseservicesinthefuture,net-zero onhydrogenwithoutdrasticchangesinperfor- , 2 0 than2°Cofmeanwarming,arelikelytorequire emissionswillalsoentailactivemanagement manceexceptforrangeand/orrefuelingtime. 1 8 anenergysystemwithnet-zero(ornet-negative) ofcarbon. Bycontrast,general-useairtransportationand emissionslaterthiscentury(Fig.1)(3). In2014,difficult-to-eliminateemissionsrelated long-distancetransportation,especiallybytrucks Energyservicessuchaslight-dutytranspor- toaviation,long-distancetransportation,and orships,haveadditionalconstraintsofrevenue tation,heating,cooling,andlightingmaybe shipping;structuralmaterials;andhighlyreliable cargospaceandpayloadcapacitythatmandate relatively straightforward todecarbonize by electricitytotaled~9.2GtCO,or27%ofglobal energysources with high volumetric and grav- 2 electrifyingandgeneratingelectricityfromvar- CO emissionsfromallfossilfuelandindustrial imetricdensity(10).Closed-cycleelectrochemical 2 iablerenewableenergysources(suchaswind sources(Fig.2).Yetdespitetheirimportance, batteriesmustcontainalloftheirreactantsand andsolar)anddispatchable(“on-demand”)non- detailedrepresentationoftheseservicesinin- products.Hence,fuelsthatareoxidizedwith 1DepartmentofEarthSystemScience,UniversityofCalifornia,Irvine,Irvine,CA,USA.2DepartmentofCivilandEnvironmentalEngineering,UniversityofCalifornia,Irvine,Irvine,CA,USA. 3DivisionofChemistryandChemicalEngineering,CaliforniaInstituteofTechnology,Pasadena,CA,USA.4NearZero,CarnegieInstitutionforScience,Stanford,CA,USA.5EnergyInnovation,San Francisco,CA,USA.6NationalRenewableEnergyLaboratory,Golden,CO,USA.7JointInstituteforStrategicEnergyAnalysis,Golden,CO,USA.8EngineeringandPublicPolicy,CarnegieMellon University,Pittsburgh,PA,USA.9GlobalClimateandEnergyProject,StanfordUniversity,Stanford,CA,USA.10PrecourtInstituteforEnergy,StanfordUniversity,Stanford,CA,USA.11Department ofEnergyResourceEngineering,StanfordUniversity,Stanford,CA,USA.12DepartmentofMechanicalEngineering,ColoradoStateUniversity,FortCollins,CO,USA.13DepartmentofMechanical andAerospaceEngineering,UniversityofCalifornia,Irvine,Irvine,CA,USA.14AdvancedPowerandEnergyProgram,UniversityofCalifornia,Irvine,CA,USA.15DepartmentofMaterialScienceand Engineering,MassachusettsInstituteofTechnology,Cambridge,MA,USA.16VibrantCleanEnergy,Boulder,CO,USA.17CleanAirTaskForce,Boston,MA,USA.18RockyMountainInstitute, Boulder,CO,USA.19PacificNationalNorthwesternLaboratory,CollegePark,MD,USA.20DepartmentofChemicalEngineering,SouthKensingtonCampus,ImperialCollegeLondon,London,UK. 21JointBioenergyInstitute,5885HollisStreet,Emeryville,CA,USA.22WoodsInstitutefortheEnvironment,StanfordUniversity,Stanford,CA,USA.23HolyCrossEnergy,GlenwoodSprings,CO, USA.24DepartmentofElectrical,Computer,andEnergyEngineering,UniversityofColoradoBoulder,Boulder,CO,USA.25DepartmentofChemicalandBiologicalEngineering,ColoradoSchoolof Mines,Golden,CO,USA.26DepartmentofPhysics,NewYorkUniversity,NewYork,NY,USA.27LucidStrategy,Cambridge,MA,USA.28TheCenterforNegativeCarbonEmissions,ArizonaState University,Tempe,AZ,USA.29DepartmentofEarthSystemScience,StanfordUniversity,Stanford,CA,USA.30EnvironmentalScienceandPolicy,UniversityofCalifornia,Davis,Davis,CA,USA. 31DepartmentofNuclearEngineering,UniversityofCalifornia,Berkeley,Berkeley,CA,USA.32DepartmentofGlobalEcology,CarnegieInstitutionforScience,Stanford,CA,USA.33Instituteof TransportationStudies,UniversityofCalifornia,Davis,Davis,CA,USA.34DepartmentofSustainabilityandEnergyManagement,StanfordUniversity,Stanford,CA,USA.35InstituteforData, Systems,andSociety,MassachusettsInstituteofTechnology,Cambridge,MA,USA.36SantaFeInstitute,SantaFe,NM,USA.37Independentresearcher. *Correspondingauthors:Email:[email protected](S.J.D.);[email protected](N.S.L.);[email protected](K.C.) Davisetal.,Science360,eaas9793(2018) 29June2018 1of9 RESEARCH | REVIEW ambientairandthenventtheirexhausttothe range, heavy-duty trucks powered by current andvolumetricenergydensitylikelypreclude atmospherehaveasubstantialchemicaladvan- lithium-ionbatteriesandelectricmotorscancar- battery-orhydrogen-poweredaircraftforlong- tageingravimetricenergydensity. ry ~40% less goods than can trucks powered distancecargoorpassengerservice(12).Auto- Battery-andhydrogen-poweredtrucksarenow bydiesel-fueled,internalcombustionengines. nomoustrucksanddistributedmanufacturing usedinshort-distancetrucking(11),butatequal The same physical constraints of gravimetric mayfundamentallyaltertheenergydemandsof D o w n lo a d e d fro m h ttp ://s c ie n c e .s c ie n c e m a g .o rg o / n J u n e 2 9 , 2 0 1 8 Fig.1.Schematicofanintegratedsystemthatcanprovide mission;blue,hydrogenproductionandtransport;purple, essentialenergyserviceswithoutaddinganyCO2totheatmo- hydrocarbonproductionandtransport;orange,ammoniaproduction sphere.(AtoS)Colorsindicatethedominantroleofspecific andtransport;red,carbonmanagement;andblack,endusesof technologiesandprocesses.Green,electricitygenerationandtrans- energyandmaterials. Davisetal.,Science360,eaas9793(2018) 29June2018 2of9 RESEARCH | REVIEW Table1.Keyenergycarriersandtheprocessesforinterconversion.Processeslistedineachcellconverttherowenergycarriertothecolumnenergy carrier.Furtherdetailsaboutcostsandefficienciesoftheseinterconversionsareavailableinthesupplementarymaterials. To From e– H2 CxOyHz NH3 ............................................................................................................................................................................................................................................................................................................................................ e– Electrolysis($5to6/kgH ) Electrolysis+methanation Electrolysis+Haber-Bosch ....................................................................................................................................2.................................................................................................................................................................................... Electrolysis+Fischer-Tropsch ............................................................................................................................................................................................................................................................................................................................................ H Combustion Methanation Haber-Bosch($0.50to 2 ............................................................................................................................................................................(..$...0.....0...7....t..o....0.....5..7.../..m....3...C....H...4..)..................................................0.....6..0.../...k..g....N....H...3..).............. Oxidationviafuelcell Fischer-Tropsch($4.40 to$15.00/gallonof gasoline-equivalent) ............................................................................................................................................................................................................................................................................................................................................ CxOyHz Combustion Steamreforming Steamreforming+ ($1.29to1.50/kgH) Haber-Bosch ............................................................................................................................2............................................................................................................................................................................................ Biomassgasification ($4.80to5.40/kgH ) ................................................................2............................................................................................................................................................................................................................................................................ NH3 Combustion Metalcatalysts Metalcatalysts+methanation/ (~$3/kgH ) Fischer-Tropsch ....................................................................................................................2.................................................................................................................................................................................................... D Sodiumamide o ............................................................................................................................................................................................................................................................................................................................................ w n lo a d e thefreightindustry,butifavailable,energy-dense may bedirectly used in anengine ormay be portationfuelsatcostsroughlycompetitivewith d liquidfuelsarelikelytoremainthepreferred cracked toproduce hydrogen. Its thermolysis gasoline(forexample,U.S.$19/GJorU.S.$1.51/ fro energysourceforlong-distancetransportation mustbecarefullycontrolledsoastominimize gallonofethanol)(22).Astechnologymatures hm services(13). productionofhighlyoxidizedproductssuchas andoveralldecarbonizationeffortsoftheenergy ttp Optionsforsuchenergy-denseliquidfuelsin- NOx (17). Furthermore, like hydrogen, ammo- systemproceed,biofuelsmaybeabletolargely ://s cludethehydrocarbonswenowuse,aswellas nia’sgravimetricenergydensityisconsiderably avoidfossilfuelinputssuchasthoserelatedto c ie hydrogen,ammonia,andalcoholsandethers. lowerthanthatofhydrocarbonssuchasdiesel on-farmprocessesandtransport,aswellasemis- n c In each case, there are optionsfor producing (Fig.3A). sions associated with induced land-use change e.s cbaerbinotne-gnreautterdaltooralonwet--czaerrboonemfuiseslsiotnhsatencoerugldy Biofuels (li2q3u,i2d4f)u.eTlhseinexatefunttutroewnheti-czherboioemmaissssiownilslesunperpglyy cien c system(Fig.1),andeachcanalsobeintercon- Conversionofbiomasscurrently provides the systemthusdependsonadvancesinconversion em vertedthroughexistingthermochemicalprocesses mostcost-effectivepathwaytononfossil,carbon- technology,competingdemandsforbioenergy ag (Table1). containingliquidfuels.Liquidbiofuelsatpresent andland,thefeasibilityofothersourcesofcarbon- .o Hydrogenandammoniafuels rceopnrseusemnetd~4b.2yEthJeoftrthanesrpoourgthlsye1c0to0rEwJoorfldenweirdgey. ntieountrwailtfhueoltsh,earndobijnetcetgivreastio(2n5)o.fbiomassproduc- on rg/ Thelowvolumetricenergydensityofhydrogen Currently,themainliquidbiofuelsareethanol Ju favorstransportandstorageatlowtemperatures fromgrainandsugarcaneandbiodieselandre- Synthetichydrocarbons ne (–253°Cforliquidhydrogenatatmosphericpres- newable diesel from oil seeds and waste oils. Liquidhydrocarbonscanalsobesynthesized 29 sure)and/orhighpressures(350 to700bar), Theyareassociatedwithsubstantialchallenges through industrialhydrogenationoffeedstock , 2 0 thusrequiringheavyandbulkystoragecontain- relatedtotheirlife-cyclecarbonemissions,cost, carbon,suchasthereactionofcarbonmonoxide 1 8 ers(14).Tocontainthesametotalenergyasa andscalability(18). andhydrogenbytheFischer-Tropschprocess dieselfuelstoragesystem,aliquidhydrogen Photosynthesisconverts<5%ofincidentra- (26).Ifthecarboncontainedinthefeedstock storagesystemwouldweighroughlysixtimes diationtochemicalenergy,andonlyafraction istakenfromtheatmosphereandnofossilen- moreandbeabouteighttimeslarger(Fig.3A). ofthatchemicalenergyremainsinbiomass(19). ergyisusedfortheproduction,processing,and However,hydrogenfuelcellorhybridhydrogen- Conversionofbiomasstofuelalsorequiresen- transport of feedstocks and synthesized fuels, batterytruckscanbemoreenergyefficientthan ergyforprocessingandtransportation.Land theresultinghydrocarbonswouldbecarbon- thosewithinternalcombustiondieselengines usedtoproducebiofuelsmusthavewater,nu- neutral(Fig.1).Forexample,emissions-freeelec- (15),requiringlessonboardenergystorageto trient,soil,andclimatecharacteristicssuitable tricitycouldbeusedtoproducedihydrogen(H) 2 achievethesametravelingrange.Toyotahas foragriculture,thusputtingbiofuelsincompeti- bymeansofelectrolysisofwater,whichwould recentlyintroducedaheavy-duty(36,000kg), tionwithotherlanduses.Thishasimplications bereactedwithCO removedfromtheatmo- 2 500-kWfuelcell/batteryhybridtruckdesigned forfoodsecurity,sustainableruraleconomies,and sphereeitherthroughdirectaircaptureorphoto- totravel200milesonliquidhydrogenandstored theprotectionofnatureandecosystemservices synthesis(whichinthelattercasecouldinclude electricity,andNikolahasannouncedasimilar (20).Potentialland-usecompetitionisheightened CO capturedfromtheexhaustofbiomassor 2 battery/fuelcellheavy-dutytruckwithaclaimed byincreasinginterestinbioenergywithcarbon biogascombustion)(27,28). rangeof1300to1900km,whichiscomparable captureandstorage(BECCS)asasourceofnega- Atpresent,thecostofelectrolysisisamajor with today’s long-haul diesel trucks (16). If hy- tiveemissions(thatis,carbondioxideremoval), barrier.Thiscostincludesboththecapitalcosts drogencanbeproducedaffordablywithoutCO whichbiofuelscanprovide(21). ofelectrolyzersandthecostofemissions-free 2 emissions,itsuseinthetransportsectorcould Advancedbiofueleffortsincludeprocessesthat electricity;60to70%ofcurrentelectrolytichy- ultimatelybebolsteredbythefuel’simportance seektoovercometherecalcitranceofcelluloseto drogencostiselectricity(Fig.3C)(28,29).The inprovidingotherenergyservices. allowuseofdifferentfeedstocks(suchaswoody cheapestandmostmatureelectrolysistechnology Ammoniaisanothertechnologicallyviable crops,agriculturalresidues,andwastes)inorder availabletodayusesalkalineelectrolytes[suchas alternative fuel that contains no carbon and toachievelarge-scaleproductionofliquidtrans- potassiumhydroxide(KOH)orsodiumhydroxide Davisetal.,Science360,eaas9793(2018) 29June2018 3of9 RESEARCH | REVIEW Fig.2.Difficult-to-eliminate emissionsincurrentcontext. (AandB)EstimatesofCO 2 emissionsrelatedtodifferent energyservices,highlighting [forexample,bylongerpie piecesin(A)]thoseservices thatwillbethemostdifficult todecarbonize,andthe magnitudeof2014emissions fromthosedifficult-to- eliminateemissions.The sharesandemissionsshown herereflectaglobalenergy systemthatstillrelies primarilyonfossilfuelsand thatservesmanydeveloping regions.Both(A)theshares and(B)thelevelofemissions relatedtothesedifficult-to- decarbonizeservicesare D likelytoincreaseinthefuture. o w Totalsandsectoralbreak- n downsshownarebased loa primarilyondatafromthe de d IanntderEnDatGioAnRal4E.n3edrgaytaAbagseenscy from (8,38).Thehighlightedironandsteelandcementemissionsarethoserelated commercialemissionsarethoseproduceddirectlybybusinessesand h tothedominantindustrialprocessesonly;fossil-energyinputstothose households,and“Electricity,”“Combinedheat&electricity,”and“Heat” ttp sectorsthataremoreeasilydecarbonizedareincludedwithdirectemissions representemissionsfromtheenergysector.Furtherdetailsareprovidedin ://s c fromotherindustriesinthe“Otherindustry”category.Residentialand thesupplementarymaterials. ie n c (NaOH)]togetherwithmetalcatalyststopro- of the relative simplicity of large, long-term frastructure.Between2000and2015,cementand e .s ducehydrogenatanefficiencyof50to60%and storageofchemicalfuels.Hence,usingemissions- steelusepersistentlyaveraged50and21tonsper c ie acostof~U.S.$5.50/kgH (assumingindustrial freeelectricitytomakefuelsrepresentsacritical milliondollarsofglobalGDP,respectively(~1kg n 2 c electricitycostsofU.S.$0.07/kWhand75%uti- opportunityforintegratingelectricityandtrans- perpersonperdayindevelopedcountries)(4). em lizationrates)(29,30).Atthiscostofhydrogen, portationsystemsinordertosupplyapersistent Globally,~1320and1740MtCO emissionsem- a 2 g theminimumpriceofsynthesizedhydrocarbons demandforcarbon-neutralfuelswhileboosting anatedfromchemicalreactionsinvolvedwiththe .o w[ooru$ld5.5b0et$o1.$560.5t0o/$ga1.l7lo0n/liatenrdo$f4d2ietsoel$e5q0upivearleGnJt, utilizationratesofsystemassets. m(Faign.u2f)ac(t8u,r3e8o,f3c9e)m;aelntotgaentdhesrt,etehl,isreesqpueactteivsetloy on rg/ assumingcarbonfeedstockcostsof$0to100per Directsolarfuels ~9% of global CO2 emissions in 2014 (Fig. 1, Jun tlfirotonemroofsrtCe$aO1m2.5ar0nefpdoervrmeGriynJgl(o2ow8f)fpo].rsosFicolerCssHcoc4moisnpttsaoroiCfsOo$n20,a.0Hn5d/2 Pptohhoopttrooocedaleutacctleyrosftcushedelmitrheiccrtaolluycgsehplllsiatorwtrifapitcaeirratlibcpyuhluaosttieno/gsmysonultenhcleuigslihasrt, po(4fu0cr,po4nl1e)s,tasrntuedcetlbidoluenmec)a.onAudlltdihsbopeurogsjhuebcmtsetadatnetortiigaarllolsywinrbetdyenu3sc.3iet%dy e 29, 20 H currentlycosts$1.30to1.50perkg(Fig.3D, withouttheland-useconstraintsassociatedwith peryearto2.4billiontonsin2025(42),andce- 1 2 8 red line) (29, 31). Thus, the feasibility of syn- biomass(35).Hydrogenproductionefficiencies mentproductionisprojectedtogrowby0.8to thesizinghydrocarbonsfromelectrolyticH may canbehigh,butcosts,capacityfactors,andlife- 1.2%peryearto3.7billionto4.4billiontonsin 2 dependondemonstratingvaluablecross-sector timesneedtobeimprovedinordertoobtainan 2050(43,44),continuinghistoricalpatternsof benefits,suchasbalancingvariabilityofrenew- integrated,cost-advantagedapproachtocarbon- infrastructureaccumulationandmaterialsuseseen ableelectricitygeneration,orelseapolicy-imposed neutralfuelproduction(36).Short-livedlabora- inregionssuchasChina,India,andAfrica(4). priceof~$400pertonofCO emitted(which torydemonstrations have also produced liquid Decarbonizingtheprovisionofcementand 2 wouldalsoraisefossildieselpricesby~$1.00/liter carbon-containingfuelsbyusingconcentrated steel will require major changes in manufac- or~$4.00/gallon). CO streams(Fig.1H)(37),insomecasesby turingprocesses,useofalternativematerials 2 Intheabsenceofpoliciesorcross-sectorcoor- usingbacteriaascatalysts. thatdonotemitCO duringmanufacture,or 2 dination,hydrogencostsof$2.00/kg(approaching carboncaptureandstorage(CCS)technologies thecostoffossil-derivedhydrogenandsynthe- Outlook tominimizethereleaseofprocess-relatedCO 2 sizeddieselof~$0.79/literor$3.00/gallon)could Large-scale production of carbon-neutral and totheatmosphere(Fig.1B)(45). beachieved,forexample,ifelectricitycostswere energy-denseliquidfuelsmaybecriticaltoachiev- $0.03/kWhandcurrentelectrolyzercostswere inganet-zeroemissionsenergysystem.Suchfuels Steel reducedby60to80%(Fig.3B)(29).Suchreduc- couldprovideahighlyadvantageousbridgebe- Duringsteelmaking,carbon(cokefromcoking tionsmaybepossible(32)butmayrequirecentral- tweenthestationaryandtransportationenergypro- coal)isusedtoreduceironoxideoreinblast izedelectrolysis(33)andusinglessmaturebut ductionsectorsandmaythereforedeservespecial furnaces, producing 1.6 to 3.1 tons of process promisingtechnologies,suchashigh-temperature priorityinenergyresearchanddevelopmentefforts. CO pertonofcrudesteelproduced(39).This 2 solidoxideormoltencarbonatefuelcells,or isinadditiontoCO emissionsfromfossilfuels Structuralmaterials 2 thermochemicalwatersplitting(30,34).Fuel burnedtogeneratethenecessaryhightemper- marketsarevastlymoreflexiblethaninstan- Economicdevelopmentandindustrialization atures(1100to1500°C).ReductionsinCO emis- 2 taneouslybalancedelectricitymarketsbecause arehistoricallylinkedtotheconstructionofin- sionspertonofcrudesteelarepossiblethrough Davisetal.,Science360,eaas9793(2018) 29June2018 4of9 RESEARCH | REVIEW theuseofelectricarcfurnace(EAF)“minimills” are high (40 to 50% and 35% by volume,re- assteelandcement,orclosesubstitutes,without thatoperatebyusingemissions-freeelectricity, spectively)(Fig.1,GandE)(51,52). addingCO totheatmosphere.Althoughalter- 2 efficiencyimprovements(suchastopgasrecovery), nativeprocessesmightavoidliberationanduse newprocessmethods(suchas“ultra-lowCO Cement ofcarbon,thecementandsteelindustriesare 2 directreduction,”ULCORED),processheatfuel- About40%oftheCO emissionsduringcement especiallyaversetotheriskofcompromisingthe 2 switching, and decreased demand via better productionarefromfossilenergyinputs,withthe mechanical properties of produced materials. engineering. For example, a global switch to remainingCO emissionsarisingfromthecalcina- Demonstrationandtestingofsuchalternatives 2 ultrahigh-strengthsteelforvehicleswouldavoid tionofcalciumcarbonate(CaCO)(typicallylime- atscaleisthereforepotentiallyvaluable.Unless 3 ~160MtCO annually.Theavailabilityofscrap stone)(53).Eliminatingtheprocessemissions anduntilsuchalternativesareproven,eliminating 2 steel feedstocks currently constrains EAF pro- requiresfundamentalchangestothecement- emissionsrelatedtosteelandcementwillde- ductionto~30%ofglobaldemand(46,47),and makingprocessandcementmaterialsand/or pendonCCS. theotherimprovementsreduce—butdonot installationofcarbon-capturetechnology(Fig.1G) Highlyreliableelectricity eliminate—emissions. (54).CO concentrationsaretypically~30%by 2 Prominentalternativereductantsincludechar- volumeincementplantfluegas[comparedwith Moderneconomiesdemandhighlyreliableelec- coal(biomass-derivedcarbon)andhydrogen. ~10to15%inpowerplantfluegas(54)],improv- tricity;forexample,demandmustbemet>99.9% Charcoalwasuseduntilthe18thcentury,andthe ingtheviabilityofpost-combustioncarboncap- ofthetime(Fig.1A).Thisrequiresinvestmentin Braziliansteelsectorhasincreasinglysubstituted ture.FiringthekilnwithoxygenandrecycledCO energygenerationorstorageassetsthatwillbe 2 charcoalforcoalinordertoreducefossilCO isanotheroption(55),butitmaybechallenging usedasmallpercentageofthetime,whendemand 2 emissions (48). However, the ~0.6 tons of char- tomanagethecompositionofgasesinexisting ishighrelativetovariableorbaseloadgeneration. coalneededpertonofsteelproducedrequire cement kilnsthatare not gas-tight,operate at Astheshareofrenewableelectricityhasgrown 0.1 to0.3haofBrazilianeucalyptusplantation veryhightemperatures(~1500°C),androtate(56). intheUnitedStates,naturalgas-firedgenerators (48, 49). Hundreds of millions of hectares of A substantialfraction of process CO2 emis- haveincreasinglybeenusedtoprovidegenerat- D o highlyproductivelandwouldthusbenecessary sionsfromcementproductionisreabsorbedon ingflexibilitybecauseoftheirrelativelylowfixed w tomeetexpectedcharcoaldemandsofthesteel a time scale of 50 years through natural car- costs(Fig.3B),theirabilitytorampupanddown nlo industry,andassociatedlandusechangeemis- bonationofcementmaterials(57).Hence,capture quickly(58),andtheaffordabilityofnaturalgas ad sionscouldoutweighavoidedfossilfuelemissions, ofemissionsassociatedwithcementmanufacture (59).Inothercountries,otherfossil-fuelsources ed ashashappenedinBrazil(48).Hydrogenmight mightresultinoverallnet-negativeemissions orhydroelectricityareusedtoprovideflexibility. fro alsobeusedasareductant,butqualitycouldbe asaresultofthecarbonationofproducedcement. WeestimatethatCO emissionsfromsuch“load- m compromisedbecausecarbonimpartsstrength Ifcompletecarbonationisensured,capturedpro- following”electricity2were~4000MtCO2in2014 http andotherdesirablepropertiestosteel(50). cessemissionscouldprovideanalternativefeed- (~12%of global fossil-fueland industry emis- ://s Costnotwithstanding,captureandstorageof stockforcarbon-neutralsyntheticliquidfuels. sions), based loosely on the proportion of elec- c ie processCO emissionshasbeendemonstrated tricitydemandinexcessofminimumdemand n andmaybe2feasible,particularlyindesignssuch Outlook (Fig.2)(60). ce .s astopgasrecyclingblastfurnaces,wherecon- Afuturenet-zeroemissionsenergysystemmust Thecentralchallengeofahighlyreliablenet- c ie centrationsandpartialpressuresofCOandCO provideawaytosupplystructuralmaterialssuch zeroemissionselectricitysystemisthustoachieve n 2 c e m Fig.3.Comparisonsofenergysourcesand a g technologies.A)Theenergydensityofenergy .o rg sourcesfortransportation,includinghydrocar- o / bons(purple),ammonia(orange),hydrogen n J (blue),andcurrentlithiumionbatteries(green). u n (B)Relationshipsbetweenfixedcapitalversus e 2 variableoperatingcostsofnewgeneration 9 resourcesintheUnitedStates,withshaded , 2 0 rangesofregionalandtaxcreditvariationand 1 8 contoursoftotallevelizedcostofelectricity, assumingaveragecapacityfactorsandequip- mentlifetimes.NGcc,naturalgascombined cycle.(113).(C)Therelationshipofcapitalcost (electrolyzercost)andelectricitypriceonthe costofproducedhydrogen(thesimplestpossi- bleelectricity-to-fuelconversion)assuminga 25-yearlifetime,80%capacityfactor,65% operatingefficiency,2-yearconstructiontime, andstraight-linedepreciationover10yearswith $0salvagevalue(29).Forcomparison,hydrogen iscurrentlyproducedbysteammethanerefor- mationatcostsof~$1.50/kgH (~$10/GJ;red 2 line).(D)Comparisonofthelevelizedcostsof dischargedelectricityasafunctionofcycles peryear,assumingconstantpowercapacity, 20-yearservicelife,andfulldischargeover 8hoursfordailycyclingor121daysforyearly cycling.Dashedlinesforhydrogenandlithium- ionreflectaspirationaltargets.Furtherdetails areprovidedinthesupplementarymaterials. Davisetal.,Science360,eaas9793(2018) 29June2018 5of9 RESEARCH | REVIEW theflexibility,scalability,andlowcapitalcosts Energystorage stationarybatteries.NotshowninFig.3D,less- ofelectricitythatcancurrentlybeprovidedby efficient(forexample,70%round-trip)batteries Reliableelectricitycouldalsobeachievedthrough naturalgas–firedgenerators—butwithoutemit- energystoragetechnologies.Thevalueoftoday’s basedonabundantmaterialssuchassulfurmight tingfossilCO2.Thismightbeaccomplishedbya energystorageiscurrentlygreatestwhenfrequent reducecapitalcostperunitenergycapacityto mixofflexiblegeneration,energystorage,and $8/kWh(withapowercapacitycostof$150/kW), cyclingisrequired,suchasforminute-to-minute demandmanagement. frequencyregulationorpricearbitrage(72).Cost- leadingtoalevelizedcostofdischargedelectri- effectivelystoringanddischargingmuchlarger cityforthegrid-scaleusecaseintherangeof Flexiblegeneration $0.06to0.09/kWh($17to25perGJ),assuming quantitiesofenergyoverconsecutivedaysandless Evenwhenspanninglargegeographicalareas, 20to100cyclesperyearover20years(81). frequent cycling may favor a different set of asysteminwhichvariableenergyfromwind Utilizationratesmightbeincreasedifelec- innovativetechnologies,policies,andvaluation andsolararemajorsourcesofelectricity will (72,73). tricvehiclebatterieswereusedtosupportthe haveoccasionalbutsubstantialandlong-term electricalgrid[vehicle-to-grid(V2G)],presuming mismatchesbetweensupplyanddemand.For Chemicalbonds thatthedisruptiontovehicleownersfromdim- example, such gaps in the United States are Chemicalstorageofenergyingasorliquidfuels inishedbatterychargewouldbelesscostlythan commonlytensofpetajoules(40PJ=10.8TWh= isakeyoptionforachievinganintegratednet- anoutagewouldbetoelectricityconsumers(82). 24hoursofmeanU.S.electricitydemandin2015) zeroemissionsenergysystem(Table1).Stored Forexample,ifallofthe~150millionlight-duty andspanmultipledays,orevenweeks(61).Thus, electrolytichydrogencanbeconvertedbackto vehiclesintheUnitedStateswereelectrified, evenwithcontinental-scaleorglobalelectricity electricityeitherinfuelcellsorthroughcom- 10%ofeachbattery’s100kWhchargewould interconnections(61–63),highlyreliableelectricity bustioningasturbines[power-to-gas-to-power provide1.5TWh,whichiscommensuratewith in such a system will require either verysub- (P2G2P)](Figs.1,FandP,and3D,redcurve); ~3hoursofthecountry’saverage~0.5TWpower stantialamountsofdispatchableelectricitysources commercial-scaleP2G2Psystemscurrentlyexhibit demand. It is also not yet clear how owners (eithergeneratorsorstoredenergy)thatoperate around-tripefficiency(energyoutdividedby wouldbecompensatedforthelong-termimpacts D less than 20% of the time or corresponding energyin)of>30%(74).Regenerativefuelcells, ontheirvehicles’batterycyclelife;whetherpe- ow amountsofdemandmanagement.Similarchal- inwhichthesameassetsareusedtointerconvert riodsofhighelectricitydemandwouldbeco- nlo lenges apply if most electricity were produced electricityandhydrogen,couldboostcapacity incidentwithperiodsofhightransportation ad e bynucleargeneratorsorcoal-firedpowerplants factorsbutwouldbenefitfromimprovements demand;whethertheubiquitouscharginginfras- d equippedwithcarboncaptureandstorage,sug- inround-tripefficiency(now40to50%inproton- tructureentailedwouldbecost-effective;whether fro gesting an important role for generators with exchangemembranedesigns)andchemicalsub- thescaleandtimingoftheconsent,control,and m h higher variable cost,suchasgasturbinesthat stitutesforexpensivepreciousmetalcatalysts payment transactions would be manageable at ttp u(Fsieg.sy1nPt)h(e6t4ic).hydrocarbonsorhydrogenasfuel (75H,y7d6)r.ogencanalsoeitherbecombinedwith gpreird-1r5elmeviannptesrciaolde)s;(o~r3h0omwiellmioenrgtirnagnstaeccthionnos- ://sc ie Equippingdispatchablenaturalgas,biomass, nonfossilCO viamethanationtocreaterenew- logiesandsocialnorms(suchassharedauton- n 2 c orsyngasgeneratorswithCCScouldallowcon- ablemethaneorcanbemixedinlowconcen- omousvehicles)mightaffectV2Gfeasibility. e .s tinuedsystemreliabilitywithdrasticallyreduced trations(<10%)withnaturalgasorbiogasfor c CO emissions.Whenfueledbysyngasorbio- combustioninexistingpowerplants.Existing Potentialandkineticenergy ien 2 c masscontainingcarboncapturedfromtheat- naturalgaspipelines,turbines,andend-useequip- Waterpumpedintosuperposedreservoirsfor em mosphere,suchCCSoffersanopportunityfor mentcouldberetrofittedovertimeforusewith laterreleasethroughhydroelectricgenerators a g negativeemissions.However,thecapitalcosts purehydrogenorricherhydrogenblends(77,78), isacost-effectiveandtechnologicallymature .o ofCCS-equippedgeneratorsarecurrentlyconsi- althoughtheremaybedifficulttrade-offsofcost optionforstoringlargequantitiesofenergywith o rg/ derablyhigherthanforgeneratorswithoutCCS andsafetyduringsuchatransition. highround-tripefficiency(>80%).Althoughcap- n (Fig.3B).Moreover,CCStechnologiesdesigned Currentmass-marketrechargeablebatteries italcostsofsuchpumpedstoragearesubstantial, Ju n for generators that operate a large fraction of servehigh-valueconsumermarketsthatprize whencycledatleastweekly,levelizedcostsof e thetime(withhigh“capacityfactors”),suchas round-tripefficiency,energydensity,andhigh dischargedelectricityarecompetitive(Fig.3D). 29 coal-burningplants,maybelessefficientand charge/dischargerates.Althoughthesebatteries Majorbarriersaretheavailabilityofwaterand , 2 0 effectivewhengeneratorsoperateatlowercapa- canprovidevaluableshort-durationancillary suitablereservoirs,socialandenvironmentalop- 1 8 city factors (65). Use of CCS-equipped gener- services(suchasfrequencyregulationandback- position,andconstraintsonthetimingofwater atorstoflexiblyproduceback-upelectricityand uppower),theircapitalcostperenergycapacity releases by nonenergy considerations such as hydrogenforfuelsynthesiscouldhelpalleviate andpowercapacitymakesthemexpensivefor floodprotection,recreation,andthestorageand temporalmismatchesbetweenelectricitygener- grid-scaleapplicationsthatstorelargequantities deliveryofwaterforagriculture(83).Under- ationanddemand. ofenergyandcycleinfrequently.Foranexample groundandunderseadesigns,aswellasweight- Nuclearfissionplantscanoperateflexiblyto grid-scale use case with an electricity cost of basedsystemsthatdonotusewater,mightexpand followloadsifadjustmentsaremadetocoolant $0.035/kWh (Fig. 3D), the estimated cost of thenumberofpossiblesites,avoidnonenergy flowrateandcirculation,controlandfuelrod dischargedelectricitybyusingcurrentlithium- conflicts,andallaysomesocialandenvironmental positions,and/ordumpingsteam(66–68).Inthe ionbatteriesisroughly$0.14/kWh($39/GJ)if concerns(84–86). UnitedStates,thedesignandhighcapitalcosts cycleddailybutrisesto$0.50/kWh($139/GJ) Electricitymayalsobestoredbycompressing ofnuclearplantshavehistoricallyobligatedtheir forweeklycycling.Assumingthattargetsfor airinundergroundgeologicformations,under- near-continuous“baseload”operation,oftenat halvingtheenergycapacitycostsoflithium-ion watercontainers,orabove-groundpressureves- capacityfactors>90%.Ifcapitalcostscouldbe batteriesarereached(forexample,~$130/kWh sels.Electricityisthenrecoveredwithturbines reducedsufficiently,nuclearpowermightalso ofcapacity)(73,79,80),thelevelizedcostofdis- whenairissubsequentlyreleasedtotheatmo- becomeacost-competitivesourceofload-following chargedelectricitywouldfallto~$0.29/kWh sphere.Diabaticdesignsventheatgenerated power,butcostsmayhaveincreasedovertimein ($81/GJ)forweeklycycling.Costestimatesfor duringcompressionandthusrequireanexternal someplaces(69–71).SimilartoCCS-equipped currentvanadiumredoxflowbatteriesareeven (emissions-free) source of heat when the air is gasgenerators,theeconomicfeasibilityofnext- higherthanforcurrentlithium-ionbatteries,but released,reducinground-tripefficiencyto<50%. generationadvancednuclearplantsmaydepend lowercostflowchemistriesareindevelopment Adiabaticandisothermaldesignsachievehigher on flexibly producing multiple energy products (81).Efficiency,physicalsize,charge/discharge efficiencies (>75%) by storingboth compressed suchaselectricity,high-temperatureheat,and/or rates,andoperatingcostscouldinprinciplebe airandheat,andsimilarlyefficientunderwater hydrogen. sacrificedtoreducetheenergycapacitycostsof systemshavebeenproposed(84). Davisetal.,Science360,eaas9793(2018) 29June2018 6of9 RESEARCH | REVIEW Thermalenergy Captureandstoragewillbedistinctcarbon cooperationamongregulatorsanddisparate,risk- managementservicesinanet-zeroemissions aversebusinesses.Wethussuggesttwoparallel Thermalstoragesystemsarebasedonsensible energy system (for example, Fig. 1, E and J). broad streams of R&D effort: (i) research in heat(suchasinwatertanks,buildingenvelopes, moltensalt,orsolidmaterialssuchasbricksand Carboncapturedfromtheambientaircouldbe technologiesandprocessesthatcanprovidethese used to synthesize carbon-neutral hydrocarbon difficult-to-decarbonizeenergyservices,and(ii) gravel),latentheat(suchassolid-solidorsolid- fuels or sequestered to produce negative emis- researchinsystemsintegrationthatwouldallow liquidtransformationsofphase-changematerials), orthermochemicalreactions.Sensibleheatstorage sions.Carboncapturedfromcombustionofbio- fortheprovisionoftheseservicesandproducts mass or synthesized hydrocarbons could be inareliableandcost-effectiveway. systemsarecharacterizedbylowenergydensities recycledtoproducemorefuels(98).Storageof Wehavefocusedonprovisionofenergyser- [36to180kJ/kgor10to50watt-hourthermal (Wh )/kg]andhighcosts(84,87,88).Future capturedCO2(forexample,underground)will vices without adding CO2 to the atmosphere. th costtargetsare<$15/kWh (89).Thermalstor- berequiredtotheextentthatusesoffossilcar- However,manyofthechallengesdiscussedhere th bonpersistand/orthatnegativeemissionsare couldbereducedbymoderatingdemand,such ageiswellsuitedtowithin-dayshiftingofheat- needed(20). asthroughsubstantialimprovementsinenergy ing and cooling loads, whereas low efficiency, ForindustrialCO capture,researchandde- andmaterialsefficiency.Particularlycrucialare heatlosses,andphysicalsizearekeybarriersto 2 fillingweek-long,large-scale(forexample,30%of velopmentareneededtoreducethecapitalcosts the rate and intensity of economic growth in andcostsrelatedtoenergyforgasseparation developingcountriesandthedegreetowhich dailydemand)shortfallsinelectricitygeneration. and compression (99). Future constraints on suchgrowthcanavoidfossil-fuelenergywhile Demandmanagement land,water,andfoodresourcesmaylimitbio- prioritizinghumandevelopment,environmental Technologiesthatallowelectricitydemandtobe logicallymediatedcapture(20).Themainchal- protection, sustainability, and social equity shiftedintime(load-shiftingorload-shaping)or lenges to direct air capture include costs to (4,107,108).Furthermore,manyenergyservices curtailedtobettercorrelatewithsupplywould manufacturesorbentsandstructures,energize relyonlong-livedinfrastructureandsystemsso improveoverallsystemreliabilitywhilereducing theprocess,andhandleandtransportthecap- thatcurrentinvestmentdecisionsmaylockin D theneedforunderused,flexibleback-upgenerators turedCO2(100,101).Despitemultipledemon- patterns of energy supply and demand (and ow (90,91).Smartchargingofelectricvehicles,shifted strations at scale [~15 Mt CO2/year are now thereby the cost of emissions reductions) for nlo heatingandcoolingcycles,andschedulingof being injected underground (99)], financing halfacenturytocome(109).Thecollectiveand ad e appliancescouldcost-effectivelyreducepeak carbon storage projects with high perceived reinforcinginertiaofexistingtechnologies,pol- d loads in the United States by ~6% and thus risks and long-term liability for discharge re- icies, institutions, and behavioral norms may fro avoid77GWofotherwiseneededgenerating mainsamajorchallenge(102). activelyinhibitinnovationofemissions-freetech- m capacity (~7% of U.S. generating capacity in Discussion nologies(110).EmissionsofCO2andotherra- http 2017)(92).Managinglargerquantitiesofenergy diativelyactivegasesandaerosols(111),fromland ://s demand for longer times (for example, tens of We have estimated that difficult-to-eliminate useandland-usechangecouldalsocausesub- c petajoulesoverweeks)wouldinvolveidlinglarge emissionsrelatedtoaviation,long-distancetrans- stantialwarming(112). ien c industrialusesofelectricity—thusunderutilizing portationandshipping,structuralmaterials,and e othervaluablecapital—oreffectivelycurtailing highlyreliableelectricityrepresentedmorethan Conclusion .sc ie service.Exploringanddevelopingnewtechnol- aquarterofglobalfossilfuelandindustryCO Wehaveenumeratedhereenergyservicesthat n 2 c ogiesthatcanmanageweeklyorseasonalgaps emissions in 2014(Fig. 2). But economic and mustbeservedbyanyfuturenet-zeroemissions em in electricity supply is an important area for human development goals,trends ininterna- energysystemandhaveexploredthetechnolo- a g furtherresearch(93). tionaltradeandtravel,therapidlygrowingshare gicalandeconomicconstraintsofeach.Asuccess- .o Outlook oscfavlaereialebclteriefniceartgioynsooufroctehse(r10se3c),toarnsdatlhlseulgagrgeest- fsuylsttermansiistiolinketloyatofutduerpeennedt-zoenrothemeiasvsiaoilnasbielniteyrgoyf on rg/ Nonemittingelectricitysources,energy-storage thatdemandfortheenergyservicesandpro- vastamountsofinexpensive,emissions-freeelec- Ju n technologies,anddemandmanagementoptions cessesassociatedwithdifficult-to-eliminateemis- tricity;mechanismstoquicklyandcheaplybal- e thatarenowavailableandcapableofaccom- sionswillincreasesubstantiallyinthefuture.For ancelargeanduncertaintime-varyingdifferences 29 modatinglarge,multidaymismatchesinelec- example, in some of the Shared Socioeconomic betweendemandandelectricitygeneration;elec- , 2 0 tricitysupplyanddemandarecharacterizedby Pathwaysthatwererecentlydevelopedbythe trifiedsubstitutesformostfuel-usingdevices; 1 8 high capital costs compared with the current climatechangeresearchcommunityinorderto alternative materials and manufacturing pro- costsofsomevariableelectricitysourcesorna- frameanalysisoffutureclimateimpacts,global cessesincludingCCSforstructuralmaterials;and turalgas–firedgenerators.Achievingaffordable, finalenergydemandmorethandoublesby2100 carbon-neutralfuelsforthepartsoftheeconomy reliable, and net-zero emissions electricity sys- (104);hence,themagnitudeofthesedifficult-to- thatarenoteasilyelectrified.Thespecifictech- temsmaythusdependonsubstantiallyreducing eliminateemissionscouldinthefuturebecom- nologiesthatwillbefavoredinfuturemarket- suchcapitalcostsviacontinuedinnovationand parablewiththeleveloftotalcurrentemissions. places are largely uncertain, but only a finite deployment, emphasizing systems that can be Combinationsofknowntechnologiescould number of technology choices exist today for operatedtoprovidemultipleenergyservices. eliminateemissionsrelatedtoallessentialen- eachfunctionalrole.Totakeappropriateactions ergy services and processes (Fig. 1), but sub- inthenear-term,itisimperativetoclearlyiden- Carbonmanagement stantial increases in costs are an immediate tify desired endpoints. If we want to achieve a Recyclingandremovalofcarbonfromtheatmo- barriertoavoidingemissionsineachcategory. robust,reliable,affordable,net-zeroemissions sphere(carbonmanagement)islikelytobeanim- Insomecases,innovationanddeploymentcan energy system later this century, we must be portantactivityofanynet-zeroemissionsenergy beexpectedtoreducecostsandcreatenewop- researching,developing,demonstrating,andde- system.Forexample,synthesizedhydrocarbons tions(32,73,105,106).Morerapidchangesmay ployingthosecandidatetechnologiesnow. thatcontaincarboncapturedfromtheatmosphere dependoncoordinatingoperationsacrossenergy willnotincreaseatmosphericCO whenoxidized. andindustrysectors,whichcouldhelpboost 2 Integrated assessment models also increasingly utilizationratesofcapital-intensiveassets.In REFERENCESANDNOTES requirenegativeemissionstolimittheincrease practice,thiswouldentailsystematizingand 1. M.I.Hoffertetal.,Energyimplicationsoffuturestabilization inglobalmeantemperaturesto2°C(94–97)— explicitlyvaluingmanyoftheinterconnections ofatmosphericCO2content.Nature395,881–884(1998). for example, via afforestation/reforestation, en- depictedinFig.1,whichwouldalsomeanover- doi:10.1038/27638 2. H.D.Matthews,K.Caldeira,Stabilizingclimaterequires hancedmineralweathering,bioenergywithCCS, coming institutional and organizational chal- near-zeroemissions.Geophys.Res.Lett.35,L04705(2008). ordirectcaptureofCO2fromtheair(20). lengesinordertocreatenewmarketsandensure doi:10.1029/2007GL032388 Davisetal.,Science360,eaas9793(2018) 29June2018 7of9 RESEARCH | REVIEW 3. J.Rogeljetal.,Zeroemissiontargetsaslong-termglobal 27. F.S.Zeman,D.W.Keith,Carbonneutralhydrocarbons. manufactureandCO2abatementusingthecalciumlooping goalsforclimateprotection.Environ.Res.Lett.10,105007 Philos.Trans.AMathPhys.Eng.Sci.366,3901–3918(2008). cycle.EnergyEnviron.Sci.4,2050–2053(2011). (2015).doi:10.1088/1748-9326/10/10/105007 doi:10.1098/rsta.2008.0143;pmid:18757281 doi:10.1039/c1ee01282g 4. J.C.Steckel,R.J.Brecha,M.Jakob,J.Strefler, 28. C.Graves,S.D.Ebbesen,M.Mogensen,K.S.Lackner, 54. D.Barkeretal.,“CO2captureinthecementindustry” G.Luderer,Developmentwithoutenergy?Assessingfuture SustainablehydrocarbonfuelsbyrecyclingCO2andH2Owith (IEAGreenhouseasR&DProgramme,2008). scenariosofenergyconsumptionindevelopingcountries. renewableornuclearenergy.Renew.Sustain.EnergyRev.15, 55. F.S.Zeman,K.S.Lackner,Thezeroemissionkiln.Int. Ecol.Econ.90,53–67(2013).doi:10.1016/ 1–23(2011).doi:10.1016/j.rser.2010.07.014 CementRev.2006,55–58(2006). j.ecolecon.2013.02.006 29. M.R.Shaner,H.A.Atwater,N.S.Lewis,E.W.McFarland,A 56. L.Zheng,T.P.Hills,P.Fennell,Phaseevolution, 5. S.Collinsetal.,Integratingshorttermvariationsofthepower comparativetechnoeconomicanalysisofrenewablehydrogen characterisation,andperformanceofcementpreparedinan systemintointegratedenergysystemmodels:A productionusingsolarenergy.EnergyEnviron.Sci.9, oxy-fuelatmosphere.FaradayDiscuss.192,113–124 methodologicalreview.Renew.Sustain.EnergyRev.76, 2354–2371(2016).doi:10.1039/C5EE02573G (2016).doi:10.1039/C6FD00032Kpmid:27477884 839–856(2017).doi:10.1016/j.rser.2017.03.090 30. J.D.Holladay,J.Hu,D.L.King,Y.Wang,Anoverviewof 57. F.Xietal.,Substantialglobalcarbonuptakebycement 6. S.Yehetal.,Detailedassessmentofglobaltransport-energy hydrogenproductiontechnologies.Catal.Today139, carbonation.Nat.Geosci.9,880–883(2016).doi:10.1038/ models’structuresandprojections.Transp.Res.PartD 244–260(2009).doi:10.1016/j.cattod.2008.08.039 ngeo2840 Transp.Environ.55,294–309(2017).doi:10.1016/ 31. U.S.DepartmentofEnergy(DOE),H2A(HydrogenAnalysis) 58. M.Jarre,M.Noussan,A.Poggio,Operationalanalysisof j.trd.2016.11.001 Model(DOE,2017). naturalgascombinedcycleCHPplants:Energyperformance 7. S.C.Davis,S.W.Diegel,R.G.Boundy,TransportationEnergy 32. O.Schmidtetal.,Futurecostandperformanceofwater andpollutantemissions.Appl.Therm.Eng.100,304–314 DataBook.(CenterforTransportationAnalysis,ed.34,2015). electrolysis:Anexpertelicitationstudy.Int.J.Hydrogen (2016).doi:10.1016/j.applthermaleng.2016.02.040 8. InternationalEnergyAgency(IEA),“CO2emissionsfromfuel Energy42,30470–30492(2017).doi:10.1016/ 59. Q.Wang,X.Chen,A.N.Jha,H.Rogers,Naturalgasfrom combustion,”(IEA,2016). j.ijhydene.2017.10.045 shaleformation–Theevolution,evidencesandchallengesof 9. IEA,EnergyTechnologyPerspectives2017(IEA,2017). 33. DOE,“Technicaltargetsforhydrogenproductionfrom shalegasrevolutioninUnitedStates.Renew.Sustain. 10. L.M.Fulton,L.R.Lynd,A.Körner,N.Greene,L.R.Tonachel, electrolysis”(2018);www.energy.gov/eere/fuelcells/doe- EnergyRev.30,1–28(2014).doi:10.1016/j.rser.2013.08.065 Theneedforbiofuelsaspartofalowcarbonenergyfuture. technical-targets-hydrogen-production-electrolysis. 60. U.S.EnergyInformationAdministration(EIA),“Monthly BiofuelsBioprod.Biorefin.9,476–483(2015).doi:10.1002/ 34. S.M.Saba,M.Muller,M.Robinius,D.Stolten,Theinvestment generatorcapacityfactordatanowavailablebyfueland bbb.1559 costsofelectrolysis—Acomparisonofcoststudiesfromthe technology”(EIA,2014). 11. J.Impullitti,“ZeroemissioncargotransportII:SanPedroBay past30years.Int.J.HydrogenEnergy43,1209–1223(2018). 61. M.R.Shaner,S.J.Davis,N.S.Lewis,K.Caldeira,Geophysical portshybrid&fuelcellelectricvehicleproject”;www.energy. doi:10.1016/j.ijhydene.2017.11.115 constraintsonthereliabilityofsolarandwindpowerinthe D gov/sites/prod/files/2016/06/f33/ 35. A.C.Nielander,M.R.Shaner,K.M.Papadantonakis, UnitedStates.EnergyEnviron.Sci.11,914–925(2018). o w vs158_impullitti_2016_o_web.pdf. S.A.Francis,N.S.Lewis,Ataxonomyforsolarfuels doi:10.1039/C7EE03029K n 12. D.Cecere,E.Giacomazzi,A.Ingenito,Areviewon generators.EnergyEnviron.Sci.8,16–25(2015). 62. A.E.MacDonaldetal.,Futurecost-competitiveelectricity lo a hEynderrgoyge3n9,in1d0u7s3tr1i–a1l0a7e4ro7s(p2a0c1e4)a.pdpoliic:a1t0io.1n0s1.6In/t.J.Hydrogen 36. Jd.oRi:.1M0.c10K3on9e/,CN4E.ES0.2L2e5w1iCs,H.B.Gray,Willsolar-driven Csyhsatnegm.s6,an5d26t–h5e3ir1im(2p0a1c6t).odnoUi:S10C.1O023e8m/niscsliimonast.e2N9a2t.1Clim. ded 13. jM.ij.hMyduernaeto.2ri0e14t.a0l4.,.1R2o6leoftheFreightSectorinFuture w40a7te–r4-s1p4li(t2ti0n1g4d).evdiocie:s10se.1e02th1e/clmigh4t0o2f15d1a8y?Chem.Mater.26, 63. NReRnEeLw,a“bRleenEewnearbglyeLealebcotrraictiotyryf,u2t0ur1e2s).study,”(National from ClimateChangeMitigationScenarios.Environ.Sci.Technol. 37. N.S.Lewis,Researchopportunitiestoadvancesolarenergy 64. L.Hirth,J.C.Steckel,Theroleofcapitalcostsin h 51,3526–3533(2017).doi:10.1021/acs.est.6b04515; utilization.Science351,aad1920(2016).doi:10.1126/ decarbonizingtheelectricitysector.Environ.Res.Lett.11, ttp 14. Spm.Sida:ty2a8p2a4l,0i0n2H2ydrogenandFuelCellsProgram,FuelCell 38. Gsc.ieJnacnes.saeands1-9M2a0e;nphmouidt:e2t6a7l.9,8E0D2G0ARv4.3.2GlobalAtlasof 65. E11.4M01e0ch(l2er0i,16P)..Sd.oFi:e1n0n.e10ll,8N8/.1M74ac8-D93ow26e/ll1,1O/p11t/im11i4sa0t1i0onand ://sc TechnologiesOffice,U.S.DepartmentofEnergy,AnnualMerit thethreemajorgreenhousegasemissionsfortheperiod evaluationofflexibleoperationstrategiesforcoal-and ie n ReviewandPeerEvaluationMeeting(Washington,DC,2017). 1970-2012.EarthSystemScienceData,(2017). gas-CCSpowerstationswithamulti-perioddesignapproach. c 15. Htr.ucZkhatoe,chAn.oBlougrkiees,Lu.siZnhgud,iAenseall,ysLiNsGo,feClelacstsric8ithy,ybanridd-electric 39. IsEoAu,rc“eGsr—eeIInI:hoIruosneagnadssetmeeislspiorondsufcrtoiomn”m(aIEjoAr,i2n0du0s0t)r.ial Ij.nijtg.gJc..2G0re16en.0h9..G01a8sControl59,24–39(2017).doi:10.1016/ e.sc hydrogen,asthefuelforvariousapplications.EVS27 40. A.Denis-Ryan,C.Bataille,F.Jotzo,Managing 66. EPRI,“Programontechnologyinnovation:Approachto ien InternationalBattery,HybridandFuelCellElectricVehicle carbon-intensivematerialsinadecarbonizingworldwithouta transitionnuclearpowerplantstoflexiblepoweroperations” ce Symposium,17–20November2013(IEEE,2014). globalpriceoncarbon.Clim.Policy16(sup1),S110–S128 (ElectricPowerResearchInstitute,2014). m 16. D.Z.Morris,NikolaMotorsintroduceshydrogen-electricsemi (2016).doi:10.1080/14693062.2016.1176008 67. R.Poncirolietal.,Profitabilityevaluationofload-following ag truck.Fortune(4December2016);http://fortune.com/ 41. J.Tollefson,Thewoodenskyscrapersthatcouldhelptocool nuclearunitswithphysics-inducedoperationalconstraints. .o 2016/12/04/nikola-motors-hydrogen-truck. theplanet.Nature545,280–282(2017).doi:10.1038/ Nucl.Technol.200,189–207(2017).doi:10.1080/ rg 17. J.Li,H.Huang,N.Kobayashi,Z.He,Y.Nagai,Studyonusing 545280a;pmid:28516941 00295450.2017.1388668 o / hadnyoddi:rN1o0gO.e1xn0f0oa2rnm/deaart.mi3o1nm4.1oInntia.Ja.sEfnueerlgsy:CRoems.b3u8s,ti1o2n14c–h1a2r2a3cte(2ri0s1t4ic)s. 4423.. PIAEWgAe,Cn“-cMCye;emtWaelosnr,tld“TSBetecuehslinnionelso2sg0yC2oR5uo:naqcduimlofaovpar”dSi(suI?ns”ttae(irnPnaEabCtilo,en2a0l1E5n).ergy 68. 8Js.y7sD2t–.e8Jme8n4okpi(ne2sr0ae1t8tio)an.ls.d,owTih:iteh10br.e1e0nn1ee6fwi/tasj.baolpefenenunecerlrgegyay.r2.0fAl1ep8xp.i0bl.i3lEi.t0nye0ir2ngypo2w2e2r, n June 18. D.Tilmanetal.,Beneficialbiofuels—Thefood,energy,and Development,2009). 69. J.R.Lovering,A.Yip,T.Nordhaus,Historicalconstruction 2 denovi:ir1o0n.1m12e6nt/stcriileenmcme.1a1.7S7c9i7e0nc;epm32id5:,1297600–8297010(2009). 44. eBn.eJr.gvyanusReuiajvnednCeOt2ale.,mLoisnsgio-tnesrmfrommodtheel-bgalosbedalpsrtoejeelctainodnsof c3o7s1–ts38o2fg(l2o0b1a6l)n.udcolei:a1r0p.1o0w1e6r/jr.eeancptoolr.2s0.1E6n.e0r1g.y01P1olicy91, 9, 20 19. E.H.DeLuciaetal.,Thetheoreticallimittoplantproductivity. cementindustries.Resour.Conserv.Recycling112,15–36 70. A.Grubler,ThecostsoftheFrenchnuclearscale-up:Acase 18 Environ.Sci.Technol.48,9471–9477(2014).doi:10.1021/ (2016).doi:10.1016/j.resconrec.2016.04.016 ofnegativelearningbydoing.EnergyPolicy38,5174–5188 es502348e;pmid:25069060 45. NETL,“CostofcapturingCO2fromIndustrialSources” (2010).doi:10.1016/j.enpol.2010.05.003 20. P.Smithetal.,Biophysicalandeconomiclimitstonegative (NETL,2014). 71. J.Koomey,N.E.Hultman,Areactor-levelanalysisofbusbar CO2emissions.Nat.Clim.Chang.6,42–50(2016). 46. IEA,“EnergyTechnologyPerspectives:Iron&SteelFindings,” costsforUSnuclearplants,1970–2005.EnergyPolicy35, doi:10.1038/nclimate2870 (IEA,2015). 5630–5642(2007).doi:10.1016/j.enpol.2007.06.005 21. N.Johnson,N.Parker,J.Ogden,Hownegativecanbiofuels 47. A.Carpenter,“CO2abatementintheironandsteelindustry” 72. W.A.Braff,J.M.Mueller,J.E.Trancik,Valueofstorage withCCStakeusandatwhatcost?Refiningtheeconomic (IEACleanCoalCentre,2012). technologiesforwindandsolarenergy.Nat.Clim.Chang.6, potentialofbiofuelproductionwithCCSusingspatially- 48. L.J.Sonter,D.J.Barrett,C.J.Moran,B.S.Soares-Filho, 964–969(2016).doi:10.1038/nclimate3045 explicitmodeling.EnergyProcedia63,6770–6791(2014). Carbonemissionsduetodeforestationfortheproductionof 73. N.Kittner,F.Lill,D.Kammen,Energystoragedeployment doi:10.1016/j.egypro.2014.11.712 charcoalusedinBrazil’ssteelindustry.Nat.Clim.Chang.5, andinnovationforthecleanenergytransition.Nat.Energy2, 22. L.R.Lyndetal.,Cellulosicethanol:Statusandinnovation. 359–363(2015).doi:10.1038/nclimate2515 17125(2017).doi:10.1038/nenergy.2017.125 Curr.Opin.Biotechnol.45,202–211(2017).doi:10.1016/ 49. M.-G.Piketty,M.Wichert,A.Fallot,L.Aimola,Assessingland 74. M.Sterner,M.Jentsch,U.Holzhammer, j.copbio.2017.03.008;pmid:28528086 availabilitytoproducebiomassforenergy:Thecaseof EnergiewirtschaftlicheundökologischeBewertungeines 23. O.Cavalett,M.F.Chagas,T.L.Junqueira,M.D.B.Watanabe, Braziliancharcoalforsteelmaking.BiomassBioenergy33, Windgas-Angebotes(FraunhoferInstitutfürWindenergieund A.Bonomi,Environmentalimpactsoftechnologylearning 180–190(2009).doi:10.1016/j.biombioe.2008.06.002 Energiesystemtechnik,2011). curveforcellulosicethanolinBrazil.Ind.CropsProd.106, 50. H.Hiebler,J.F.Plaul,Hydrogenplasmasmelting 75. Y.Wang,D.Y.C.Leung,J.Xuan,H.Wang,Areviewon 31–39(2017).doi:10.1016/j.indcrop.2016.11.025 reduction—Anoptionforsteelmakinginthefuture. unitizedregenerativefuelcelltechnologies,partA:Unitized 24. N.Pavlenko,S.Searle,AComparisonofInducedLandUse Metalurgija43,155–162(2004). regenerativeprotonexchangemembranefuelcells.Renew. ChangeEmissionsEstimatesfromEnergyCrops(International 51. T.Kuramochi,A.Ramírez,W.Turkenburg,A.Faaij, Sustain.EnergyRev.65,961–977(2016).doi:10.1016/ CouncilonCleanTransportation,2018). ComparativeassessmentofCO2capturetechnologiesfor j.rser.2016.07.046 25. L.R.Lynd,Thegrandchallengeofcellulosicbiofuels. carbon-intensiveindustrialprocesses.Pror.EnergyCombust. 76. D.McVay,J.Brouwer,F.Ghigliazza,Criticalevaluationof Nat.Biotechnol.35,912–915(2017).doi:10.1038/nbt.3976; Sci.38,87–112(2012).doi:10.1016/j.pecs.2011.05.001 dynamicreversiblechemicalenergystoragewithhigh pmid:29019992 52. M.C.Romanoetal.,Applicationofadvancedtechnologiesfor temperatureelectrolysis.Proceedingsofthe41st 26. N.MacDowell,P.S.Fennell,N.Shah,G.C.Maitland,Therole CO2capturefromindustrialsources.EnergyProcedia37, InternationalConferenceonAdvancedCeramicsand ofCO2captureandutilizationinmitigatingclimatechange. 7176–7185(2013).doi:10.1016/j.egypro.2013.06.655 Composites38,47–53(2018). Nat.Clim.Chang.7,243–249(2017).doi:10.1038/ 53. C.C.Dean,D.Dugwell,P.S.Fennell,Investigationinto 77. M.Melaina,O.Antonia,M.Penev,“Blendinghydrogenintonatural nclimate3231 potentialsynergybetweenpowergeneration,cement gaspipelinenetworks:Areviewofkeyissues”(NREL,2013). Davisetal.,Science360,eaas9793(2018) 29June2018 8of9 RESEARCH | REVIEW 78. AmaericanGasAssociation,TransitioningtheTransportation 95. D.P.vanVuurenetal.,TheroleofnegativeCO2emissions 109. S.J.Davis,K.Caldeira,H.D.Matthews,FutureCO2emissions Sector:ExploringtheIntersectionofHydrogenFuelCelland forreaching2°C—Insightsfromintegratedassessment andclimatechangefromexistingenergyinfrastructure. NaturalGasVehicles(SandiaNationalLaboratory,2014). modelling.Clim.Change118,15–27(2013).doi:10.1007/ Science329,1330–1333(2010).doi:10.1126/ 79. DOE,“Goalsforbatteries”(DOE,VehicleTechnologiesOffice, s10584-012-0680-5 science.1188566;pmid:20829483 2018);https://energy.gov/eere/vehicles/batteries. 96. E.Kriegleretal.,Theroleoftechnologyforachievingclimate 110. K.C.Setoetal.,Carbonlock-in:Types,causes,andpolicy 80. R.E.Ciez,J.F.Whitacre,Thecostoflithiumisunlikelyto policyobjectives:OverviewoftheEMF27studyonglobal implications.Annu.Rev.Environ.Resour.41,425–452(2016). upendthepriceofLi-ionstoragesystems.J.PowerSources technologyandclimatepolicystrategies.Clim.Change123, doi:10.1146/annurev-environ-110615-085934 320,310–313(2016).doi:10.1016/j.jpowsour.2016.04.073 353–367(2014).doi:10.1007/s10584-013-0953-7 111. D.E.H.J.Gernaatetal.,Understandingthecontributionof 81. Z.Lietal.,Air-breathingaqueoussulfurflowbatteryfor 97. C.Azaretal.,ThefeasibilityoflowCO2concentrationtargets non-carbondioxidegasesindeepmitigationscenarios. ultralowcostelectricalstorage.Joule1,306–327(2017). andtheroleofbio-energywithcarboncaptureandstorage Glob.Environ.Change33,142–153(2015).doi:10.1016/ doi:10.1016/j.joule.2017.08.007 (BECCS).Clim.Change100,195–202(2010).doi:10.1007/ j.gloenvcha.2015.04.010 82. C.Quinn,D.Zimmerle,T.H.Bradley,Theeffectof s10584-010-9832-7 112. D.P.vanVuurenetal.,Energy,land-useandgreenhousegas communicationarchitectureontheavailability,reliability,and 98. J.M.D.MacElroy,Closingthecarboncyclethroughrational emissionstrajectoriesunderagreengrowthparadigm. economicsofplug-inhybridelectricvehicle-to-gridancillary useofcarbon-basedfuels.Ambio45(Suppl1),S5–S14 Glob.Environ.Change42,237–250(2017).doi:10.1016/ services.J.PowerSources195,1500–1509(2010). (2016).doi:10.1007/s13280-015-0728-7;pmid:26667055 j.gloenvcha.2016.05.008 doi:10.1016/j.jpowsour.2009.08.075 99. H.deConinck,S.M.Benson,Carbondioxidecaptureand 113. EIA,“LevelizedCostandLevelizedAvoidedCostofNew 83. J.I.Pérez-Díaz,M.Chazarra,J.García-González,G.Cavazzini, storage:Issuesandprospects.Annu.Rev.Environ.Resour.39, GenerationResourcesintheAnnualEnergyOutlook2018” A.Stoppato,Trendsandchallengesintheoperationof 243–270(2014).doi:10.1146/annurev-environ-032112-095222 (2018);www.eia.gov/outlooks/aeo/pdf/ pumped-storagehydropowerplants.Renew.Sustain.Energy 100. R.Socolowetal.,“DirectaircaptureofCO2withchemicals:A electricity_generation.pdf. Rev.44,767–784(2015).doi:10.1016/j.rser.2015.01.029 technologyassessmentfortheAPSPanelonPublicAffairs,” 84. A.B.Gallo,J.R.Simões-Moreira,H.K.M.Costa, (AmericanPhysicalSociety,2011). ACKNOWLEDGMENTS M.M.Santos,E.MoutinhodosSantos,Energystorageinthe 101. K.S.Lackneretal.,TheurgencyofthedevelopmentofCO2 TheauthorsextendaspecialacknowledgmenttoM.I.H.for energytransitioncontext:Atechnologyreview.Renew. capturefromambientair.Proc.Natl.Acad.Sci.U.S.A.109, inspirationonthe20thanniversaryofpublicationof(1).The Sustain.EnergyRev.65,800–822(2016).doi:10.1016/ 13156–13162(2012).doi:10.1073/pnas.1108765109; authorsalsothankM.Dyson,L.Fulton,L.Lynd,G.Janssens-Maenhout, j.rser.2016.07.028 pmid:22843674 M.McKinnon,J.Mueller,G.Pereira,M.Ziegler,and 85. T.Letcher,StoringEnergywithSpecialReferenceto 102. Z.Kapetaki,J.Scowcroft,Overviewofcarboncaptureand M.Wangforhelpfulinput.ThisReviewstemsfroman RenewableEnergySources(Elsevier,2016). storage(CCS)demonstrationprojectbusinessmodels:Risks AspenGlobalChangeInstitutemeetinginJuly2016convened D 86. MGHDeepSeaEnergyStorage;www.mgh-energy.com. andenablersonthetwosidesoftheAtlantic.Energy withsupportfromNASA,theHeising-SimonsFoundation, ow 87. A.Hauer,“Thermalenergystorage,”TechnologyPolicyBrief Procedia114,6623–6630(2017).doi:10.1016/ andtheFundforInnovativeClimateandEnergyResearch.S.J.D. n E17(IEA-ETSAPandIRENA,2012). j.egypro.2017.03.1816 andJ.B.alsoacknowledgesupportoftheU.S.NationalScience loa 88. Aen.eArbgeydsinto,rMag.eRosysestne,mAsc.rOitpiceanlRreevnieeww.oEfntehr.erJm.4oc,h4e2m–4ic6al 103. 2IE0A1,7R).enewables2017:AnalysisandForecaststo2022(IEA, Facokunnodwatleiodnge(INAFlliEaWncSegfroarnStuEsAtaRin1a6b3le93E1n8e)r.gDy.,At.h,eB.mH.a,naangderBa-Mnd.H. ded 89. (D2O0E1,0“)T.hdeori:m1a0l.2s1to7r4a/g1e87R6&3D87f1o0r1C0S0P40s1y0s0te4m2s,”(DOE,Solar 104. Nen.eBrgauyesreecttoarl-.q,uSahnatriefydinsgocthioe-encaornraotmiviecsp.aGtlhowb.ayEsnvoirfotnh.e oDpeepraarttomreonfttohfeENneartgioyna(DlOREen)euwnadbelrecEonnetrragcytLDaEb-oArCa3to6r-y08foGrOt2h8e3U08.S.. from EnergyTechnologiesOffice,2018);www.energy.gov/eere/ Change42,316–330(2017).doi:10.1016/ FundingwasinpartprovidedbytheDOEOfficeofEnergyEfficiency h solar/thermal-storage-rd-csp-systems. j.gloenvcha.2016.07.006 andRenewableEnergy.Theviewsexpressedinthearticledonot ttp 90. dEe.tHaailleedebtuaill.d,i“nDgeemnaenrdgyremspoodneslse”r(eNsRouErLc,e2q0u16an).tificationwith 105. Jp.roDg.rFesasrm?eRre,sF..PLoalficoynd4,5H,o6w47p–r6e6d5ict(a2b0le16i)s.tdeocih:n10ol.o10gi1c6a/l nTehceeUss.Sar.ilgyorveeprnremseennttrtheteaivnisewasndofththeepDuOblEishoerr,thbeyUa.cSc.egpotivnegrntmheent. ://sc 91. Pst.uAdlys”to(nCePeUtCa/lL.,B“NCLa,li2fo0r1n6ia).demandresponsepotential 106. jL.r.eMsp.oAl..2B0e1t5t.e1n1.c0o0u1rt,J.E.Trancik,J.Kaur,Determinantsof aartnioclneefxocrlupsuivbeli,cpaatiiodn-u,pac,kirnreovwolecdabgeles,twhoartldthweidUe.Slic.egnosveertnompeunbtlirsehtaoinrs ienc 92. P“gfr.liedBx”riwo(nRastotkcsik”eytcrMaeloa.,ute“nTtqhauienaenInctiosfitnaiotbumleteic,vsa2l0oufe15df)oe.mrcaunsdtofmlexeirbsiliatyn:dHtohwe tPphoLenOeSp.a0Oc0eN6E7o8f86g,4leo;6bp7am8l6iind4n:o(22v4a01t51io35n)8.6idn7oei:n1e0r.g1y37t1e/cjhonuornloagl.ies. rfoerprUo.dSu.cgeovtheernpmuebnlitshpeudrpfoosrems.ofthiswork,orallowotherstodoso, e.scien 93. B.Pierpont,D.Nelson,A.Goggins,D.Posner,“Flexibility:Thepathto 107. K.Riahietal.,TheSharedSocioeconomicPathwaysandtheir SUPPLEMENTARYMATERIALS ce low-carbon,low-costelectricitygrids”(ClimatePolicyInitiative, energy,landuse,andgreenhousegasemissionsimplications: m 94. 2Lo.f01CW7l)oa.rrkkiengetGarlo.,upinIIMIittoigtahteionIPoCfCC5litmhaFtiefthChAasnsgees.smCoennttriRbeuptioornt 108. AdEo.niH:oo1v0led.re1v0nie1,w6K/..jG.Lglilonobne.enrEvuncdhv,iarD.o2n.0.B1C6ahn.0ais5nt.ge0er0,49T2h,e1i5m3p–e1r6a8tiv(e2s01o7f). wMRewaftweer.rseicanilcesenascne(dm11M4ag–e.1to6hro1g)d/scontent/360/6396/eaas9793/suppl/DC1 ag.org oftheIntergovernmentalPanelonClimateChange. sustainabledevelopment.Sustain.Dev.10.1002/sd.1647 11January2018;accepted25May2018 o / (CambridgeUniv.Press,2014). (2016). 10.1126/science.aas9793 n J u n e 2 9 , 2 0 1 8 Davisetal.,Science360,eaas9793(2018) 29June2018 9of9
Description: