ebook img

Neonicotinoids, bee disorders and the sustainability of pollinator services PDF

13 Pages·2013·0.53 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Neonicotinoids, bee disorders and the sustainability of pollinator services

COSUST-311;NO.OFPAGES13 Availableonlineat www.sciencedirect.com Neonicotinoids, bee disorders and the sustainability of pollinator § services Jeroen P van der Sluijs1, Noa Simon-Delso1, Dave Goulson2, Laura Maxim3, Jean-Marc Bonmatin4 and Luc P Belzunces5 Inlessthan20years,neonicotinoidshavebecomethemost CurrentOpinioninEnvironmentalSustainability2013,5:xx–yy widelyusedclassofinsecticideswithaglobalmarketshare ThisreviewcomesfromathemedissueonOpenissue2013 of more than 25%. For pollinators, this has transformed the EditedbyRikLeemansandWilliamDSolecki agrochemical landscape. These chemicals mimic the acetylcholine neurotransmitter and are highly neurotoxic to insects. Their systemic mode of action inside plants means phloemic and xylemic transport that results in translocation 1877-3435/$–seefrontmatter,#2013TheAuthors.Publishedby to pollen and nectar. T heir wide app lication , p ersistence in ElsevierB.V. A llrig htsre served. soilandwaterandpotentialforuptakebysucceedingcrops http://dx.doi.org/10.1016/j.cosust.2013.05.007 and wild plants make neonicotinoids bioavailable to pollinators at sublethal concentrations for most of the year. This results in the frequent presence of neonicotinoids in Introduction honeybeehives.Atfieldrealisticdoses,neonicotinoidscause a wide ran ge of ad vers e subleth al effe cts in honeybe e and The introduction to the market in the early 1990s of b umble bee c olo nies, affe cting colo ny perf or mance thro ugh imid acloprid and thi aclop rid ope ned the neon icotino id impairment of foragin g succes s, broo d and larval eraofinsectp estc ontrol[1].A ctingsys tem ically,thisnew development, memory and learning, damage to the central class of neurotoxic insecticides is taken up by plants, nervoussystem,susceptibilitytodiseases,hivehygieneetc. primarilythroughtheroots,andtranslocatestoallpartsof Neonicotinoids exhibit a toxicity that can be amplified by the plant through xylemic and phloemic transport [2]. various other agrochemicals and they synergistically Thissystemicpropertycombinedwithveryhightoxicity reinforce infectious agents such as Nosema ceranae which to insects enabled formulating neonicotinoids for soil together can produce colony collapse. The limited available treatment and seed coating with typical doses from 10 datasug gest thatthey arelik elytoexh ibit s imilar t oxicityto to200gha (cid:2)1h ighen oughto prov idelong lastin gprot ec- virtually all other wild insect pollinators. The worldwide tion of the whole plant from pest insects. production of neonicotinoids is still increasing. Therefore a transitiontopollinator-friendlyalternativestoneonicotinoids Neonicotinoids interact with the nicotinic acetylcholine is urgently needed for the sake of the sustainability of receptors(nAChRs)oftheinsectcentralnervoussystem. pollinator ecosystem services. They act mainly agonistically on nAChRs on the post- synaptic membrane, mimicking the natural neurotrans- Addresses 1EnvironmentalSciences,CopernicusInstitute,UtrechtUniversity, mitter acetylcholine by binding with high affinity [3– Heidelberglaan 2,3584CS Utrecht,Th eNether lands 5,6(cid:3)(cid:3),7 (cid:3),8(cid:3)(cid:3)]. This in duc es a neu ronal hype r-excitat ion, 2SchoolofLife Sc ience s,U niversity ofS ussex,UK whichcanle adtot heinsec t’s deathwit hinminutes[6,9]. 3Institut de sSc iencesde laCommu nic ation,CN RSUPS3088,Paris, Some of the major metabolites of neonicotinoids are France 4CentredeBiophysiqueMole´culaire,UPR4301CNRSaffiliatedto equally neurotoxic, acting on the same receptors [10– Orle´ans Un iversityandto INSERM,4 5071 Orle´a nscede x02,Fra nce 12] the reby prolon ging th e e ffec tivene ss as syst emic 5INRA, UR406Ab eille s& Environn ement, Laborat oirede Tox icologie inse cticide. T he nAChR bin ding sites in th e v ertebrate Environnementale,CS40509,Avignon,France nervoussystemaredifferentfromthoseininsects,andin general they have lower numbers of nicotinic receptors Correspondingauthor:vanderSluijs,JeroenP([email protected]) withhig haffi nityto neon icotinoids ,w hichareth ereasons that neonicotinoids show selective toxicity for insects over vertebrates [9,13]. The main neonicotinoids presently on the market are §This is an open-access article distributed under the terms of the imid aclopr id, thiamethox am, clothi anid in, thiaclop rid, CreativeCommonsAttribution-NonCommercial-NoDerivativeWorks dinotefuran, acetamiprid, nitenpyram and sulfoxaflor License, which permits non-commercial use, distribution, and repro- [12,14,15]. Since their introduction, neonicotinoids have duction in any medium, provided the original author and source are credited . grown to becom e th e most wide ly used and fa stest www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2013,5:1–13 Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 2 Openissue2013 growing class of insecticides with a 2010 global market wild flowers results from systemic uptake from polluted share of 26% of the insecticide market [16] and imida- soilandwaterorfromdirectcontaminationoftheflowers clopridthesecondmostwidelyused(2008)agrochemical by contaminated dust from seed drilling. in the world [17]. The worldwide production of neoni- cotinoidsisstillincreasing[18].Large-scaleuseinEurope Attheirintroduction,neonicotinoidswereassumedtobe and US started around 2004. Neonicotinoids are nowa- moreefficientthantheorganophosphatesandcarbamates daysauthorisedinmorethan120countriesformorethan thattheyreplaced[37].Asaseedtreatment,theycouldbe 1000uses[19]forthetreatmentsofawiderangeofplants used in much lower quantities and they promised to be including potato, rice, maize, sugar beets, cereals, oil less polluting to the environment. It is however not the rapeseed, sunflower, fruit, vegetables, soy, ornamental quantity that is relevant but the potency to cause harm, plants, tree nursery, seeds for export, and cotton. which results from toxicity,persistence and bioavailabil- itytonon-targetspecies.Indeed,soonaftertheintroduc- Whenusedasaseedcoating,only1.6–20%oftheamount tionofneonicotinoids,exposuretoitsresiduesinpollen, of active substance applied actually enters the crop to nectar,sowingdustetc.,ofnon-targetpollinatinginsects protectit[20],andtheremaining80–98.4%pollutesthe became clear. This led to various harmful effects environ m ent with out any inten ded actio n to p lant [10,37,3 8,39(cid:3)(cid:3),4 0,41,4 2(cid:3)(cid:3),43 (cid:3)(cid:3)]. pests. Diffusion and transformation of pesticides in the enviro nment le ad t o various envi ron mental co nc en- Ecosystem services of pollinators trations and bioavailability, all strongly dependent on Amongst the wide diversity of pollinating species [44], thepropertiesofthesubstance[21].Becauseoftheirhigh bees are the most important. Although bee research leaching potential, neonicotinoids tend to contaminate mostly focuses on the domesticated Apis mellifera, over surfacewaterandgroundwater[22–25].Owingtosorp- 25,000differentbeespecieshave been identified(FAO: tiontoorganicmatter insoilandsediments[24,26],the Pollination; URL: http://www.fao.org/agriculture/crops/ equilibrium partitioning over soil and water varies with core-themes/theme/biodiversity/pollination/en/). Bees soil type and is typically 1:3 (logP=0.57) [25]. In provide a vital ecosystem service, playing a key role in countries where monitoring data are available, high the maintenance of biodiversity and in food and fibre levels of neonico tinoid pollu tion in sur face water have pro duction [45–4 7,48 (cid:3)(cid:3),49–51]. P ollina tio n com pris es an beenreported[27–30].IntheNetherlands,45%of9037 integrated system of interactions that links earth’s veg- water samples taken from 801 different locations in a etation,wildlifeandhumanwelfare[52].Ofallflowering nation-wide routine water quality monitoring scheme, plants on earth, 87.5% benefits from animal pollination over the period 1998 and 2003–2009, exceeded the [53].Globally,87oftheleadingfoodcrops(accountingfor 13ng l(cid:2)1 imidac loprid wa ter quality standard, the 35% of the w orld f ood produc tion volum e) depend on me dia nconcentrationb eing80 ngl(cid:2)1an dthemaxim um anim al polli nation [45]. Pollinator m ediated crops are of concent ration found b eing 3 20 mg l(cid:2)1, wh ich is acutely key im portance in prov iding esse ntial nutr ients in t he toxictohoney bees[2 7].In the US ,neo nicotin oi dswere hum an food sup ply [54(cid:3)].The historyo f apicultu re g oes also found in surface water. In 108 water samples col- backtopre-agricultural times [55,56]and later co-devel- lectedin2005fromplayawetlandsontheSouthernHigh oped with agriculture [57,58]. In addition, wild bees Plains, thiamethoxam was found at an average concen- deliver a substantial and often unappreciated portion of tration of 3.6mgl(cid:2)1 an d ac etamip rid at 2.2mgl (cid:2)1 [30]. pollinat io nservicest oagr icultur eandwildflowe rs[59,6 0]. Beesandapiaryproductshaveapharmacological[61,62], Neonicotinoids and their metabolites are highly persist- scientific and technological [63], poetic [64], aesthetic ent in soil, aquatic sediments and water. To give an (springs filled with buzzing bumblebees) culinary (e.g., example: Six years after a single soil drench application keeping alive traditional cuisine of patisseries with hon- ofimidac lopr id,res iduel ev elsup to1 9mgkg (cid:2)1couldbe ey) and cultur al value. recovered in Rhododendron shrub blossoms [31]. Clothia- nidin has a h alf-life in soil betwe en 148–6 900 d ays [32], Global pollinator decline and emerging bee and i mida c loprid 40 –9 97 d ays [33]. Conseque ntly, neo- disorde rs nicotinoids exhibit a potential for accumulation in soil Long-term declines have been observed in wild bee followingrepeatedapplications[23]andcanbetakenup populations around the world [47,65–70]. Over the past by succeeding crops up to at least two years after appli- decades,aglobaltrendofincreasinghoneybeedisorders cation[34].Imidaclopridhasbeendetectedin97%of33 andcolonylosseshasemerged[71–77].Wintermortality soil samples from untreated fields on which treated corn ofentirehoneybeecolonieshasriseninmanypartsofthe seed s were used 1 or 2 yea rs bef ore the sa mpling [34]. wo rld [7 2(cid:3),73,74,75 (cid:3)]. Whe n n eonic ot inoids were first Concentrations in these soil samples ranged from 1.2 to used, beekeepers started describing different disorders 22mgkg(cid:2)1[34] .Se veral stud iesrecov eredneo nicot inoi ds and s igns ranging from: b ees not ret urning to the hive, in wil d flowers n ear trea ted fiel ds [35,36(cid:3) (cid:3)]. However, it diso riente d bees, bees g ather ed c lose toget he r in small remainsaknowledgegaptowhatextentthepresencein groups on the ground, abnormal foraging behaviour, the CurrentOpinioninEnvironmentalSustainability2013,5:1–13 www.sciencedirect.com Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 Neonicotinoids,beedisordersandpollinatorservicesvanderSluijsetal. 3 occurrenceofmassivebeelossesinspring,queenlosses, viaintakeoffood.Foodwithresiduescanbesubdivided increasedsensitivitytodiseasesandcolonydisappearance into self-collected raw food (nectar, pollen, water, hon- [38,40–43,77].Noneoftheseindividualsignsisaunique eydew,extrafloralnectar,guttationdroplets,variousother effect of neonicotinoids, other causal factors or other edible substances available in the foraging area etc.), in- agrochemicals could produce similar signs, which com- hive processed food (honey, beebread, royal jelly, wax plicates the establishment of a causal link. etc.), and food supplied by bee keepers (high fructose corn syrup, sugar water, sugar dough, bee candy, pollen, Scientific research appears to indicate no single cause pollen substitutes based on soybean flower and other explainingtheincreaseinwintercolonylosses.Allviruses vegetable protein supplements etc.). and other pathogens that have been linked to colony collapse have been found to be present year-round also Giventhelargenumbersofcropsinwhichneonicotinoids in healthy colonies [78]. That colonies remain healthy are used and the large scale of use, there is a huge despitethepresenceoftheseinfectiousagents,supports variability in space and time for each possible exposure thetheorythatcolonycollapsemaybecausedbyfactors pathway as well as in their relative importance for the wor kingin com binatio n.Farooq ui[7 9(cid:3)] hasan alys edthe overalle xpo sure ata gi venp laceand time.Thisis fur ther differenthypothesesprovidedbysciencewhensearching complicated by the fact that the foraging area of a hon- for an explanation of Colony Collapse Disorder (CCD). eybeecolonycanextendtoaradiusofupto9kmaround Research points in the direction of a combination of the hive which is never a homogenous landscape [86]. reciprocallyenhancingcauses.Amongthose,theadvance Additionally, suburban areas have become a stronghold of neonicotinoid insecticides has gained more weight forsomewildbeespeciesduetotheabundanceoffloral in light of the latest independent scientific results resources in gardens and parks [87]. Thus, bees may be [8 0,81(cid:3)(cid:3), 82(cid:3)(cid:3) ]. In the pr esent article, we synthe sise the exposed t o s ystemic inse cticide s wh ich are wide ly us ed state of knowledge on the role of neonicotinoids in on garden flowers, vegetables, ornamental trees, and pollinator decline and emerging bee disorders. lawns. The relative importance of exposure pathways will also vary according to bee species as they have Multiple ways of exposure diffe rent forag ing ranges , ph enol ogies, an d flight times Neonicotinoidsareauthorisedforawiderangeofagricul- ina day. This can be exemplified by Osmia bees in corn turalandhorticulturalplantsthatfloweratdifferenttimes growingareasforwhichintakeofguttationdropletsmay of the year. The systemic properties of neonicotinoids be more important than for honeybees. imply translocation to pollen, nectar, and guttation droplets [34,37,83,84]. The persistency and potential Different categories of honeybees could be exposed in contamination of wild plants and trees surrounding the differentways and to varying extents [42].For example, treated crops [36] and the possibility for travelling far pollenforagers(whichdifferfromnectarforagers)donot outside the fields via surface and ground water [27] and consume pollen, merely bringing it to the hive. The the potential to contaminate wild plants and crops that pollen is consumed by nurse bees and to a lesser extent takeuppollutedwater,meansthatpollinatinginsectsare by larvae which are thus the ones that are exposed to likely to be exposed for much of the year to multiple residues of neonicotinoids and their metabolites [88]. sourcesofmultipleneonicotinoidsintheirforagingarea, The exposure of nectar foragers to residues of neonico- but often at very low doses. tinoidsandmetabolitesinthenectartheygathercanvary dependingontheresourcesavailableinthehiveenviron- Honeybees’ exposure to neonicotinoids can occur ment.Inaddition,foragerstakesomehoneyfromthehive through ingestion, contact and inhalation (aerosols). beforetheyleaveforforaging.Dependingonthedistance Many po ssible expo sure pat hway s can exist [ 85(cid:3)]. Here, from t he h ive w her e they f orage, the hon eyb ees are weaggregateexposurepathwaysinto:first,intakeoffood obliged to consume more or less of the nectar/honey thatcontainresidues;second,nestingmaterial(resin,wax taken from the hive and/or of the nectar collected, for etc.); third, direct contact with spray drift and dust drift energyforflyingandforaging.Theycanthereforeingest during application; fourth, contact with contaminated more or less neonicotinoid residues, depending on the plants, soil, water; fifth, use ofcoolingwater inthe hive; foragingenvironment[42].Oraluptakeisestimatedtobe and sixth, inhalation of contaminated air. For bumble highest for forager honeybees, winter honeybees and bees and other wild bees that nest in soil, contact with larvae [85]. contaminated soil is an additional pathway of concern. Leafcutterbeesusecutleaffragmentstoformnestcells Littleisknownabouttherealexposuretocontaminated andcanthusbeexposedtoresiduesinleaves.Thereare food for different categories of honeybees in a colony, many other conceivable exposure routes, for instance, a eitherintermsofcontactwithpollenorcontactwith,and bee hive could have been made from timber from trees possibleconsumptionof,nectarifneeded.Forwildbees treated with neonicotinoids and may thus contain resi- veryfewdataexistonexposureinthefield.Theamount dues.However,thebestresearchedexposurepathwayis thatwildbeesactuallyconsumeinthefieldhasnotbeen www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2013,5:1–13 Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 4 Openissue2013 measured.EFSAestimatedthatworkerbees,queensand have high acute toxicity to all other bee species so far larvae of bumblebees and adult females and larvae of tested, including various Bombus species, Osmia lignaria solitarybeesarelikelytohavethehighestoraluptakeof and Megachile rotundata [99–102]. O. lignaria is more residues [85]. sensitive to both clothianidin and imidacloprid than is B. impatiens, with M. rotundata more sensitive still [100]. In2002,69%ofpollensamplescollectedbyhoneybeesat Inanacutetoxicitytestundersemifieldconditionsonthe variousplacesinFrancecontainedresiduesofimidacloprid Indian honeybee Apis cerana indica, clothianidin showed anditsmetabolites[89].Inasystematicsamplingscheme the highest toxicity, followed by imidacloprid and thia- covering5locationsover3years,imidaclopridwasfoundin methoxam [103]. 40.5% of the pollen samples and in 21.8% of the honey samples [90,91]. On the basis of data from authorisation For mass-dying of bees in spring nearby and during authorities,neonicotinoidresiduesinnectarandpollenof sowing of corn seeds coated with neonicotinoids there treatedcropplantsareestimatedtobeintherangeofbelow nowisaonetooneprovencausallinkwithacuteintoxi- analytic al de tectio n li mit (0.3m gk g(cid:2) 1) to 5.4mg k g(cid:2)1 in catio n th oug h cont act with the d ust cloud arou nd the nectar,thehighestvaluecorrespondingtoclothianidinin pneumatic sowing machines during foraging flights to oilseed rape nectar, and a range of below detection limit adjacent forests (providing honeydew) or nearby flower- (0.3mg kg(cid:2)1 ) to 51 mgk g(cid:2) 1 in p ol len, the highest value ing field s [104 (cid:3)(cid:3),105–109] . Such ma ss colony losses corresponding to thiamethoxam in alfalfa pollen [85]. A during corn sowing have also been documented in recent review r eports wider r an ges fo r polle n: 0. 2– Italy, G erma ny, Aus tria a nd Sl ovenia [110,111,104 (cid:3)(cid:3)]. 912mg kg(cid:2)1for imidaclo pridan d1.0–11 5mg kg(cid:2)1fo rthia- In res ponse to th e incide nts, the adher ence of the seed cloprid [92]. Residues of imidacloprid, dinotefuran, and coating has been improved owing to better regulations, thiamethoxam plus metabolites in pumpkin treated with andanimproved sowing-techniquehasrecentlybecome United States label rates reach average levels up to compulsory throughout Europe, [112]. Despite the 122mg kg(cid:2)1 in polle n and 17.6m gkg(cid:2)1 i n necta r [9 3]. deployment of air deflec tors in th e drillin g machin es or Up to 346mg l(cid:2)1 for imid aclop rid and 14 6mgl(cid:2) 1 for improved se ed co ating tech niq ues , emissi ons are s till thia me thox ama nd102 mgl(cid:2)1clothia nidin and hav ebeen substantia l and the dus t cloud is st ill acutely tox ic to foundinguttationdropsfromleavesofplantsgerminated bees [105,109,111,113–115]. Acute lethal effects of neo- fromneonicotinoid-coatedseeds[84,94].Inmelon,gutta- nicotinoidsdispersedasparticulatematterintheairseem tionl evelsupto4.1mgl(cid:2)1 imidac lopridw ere found 3days to be prom oted by h igh environm ental h um idit y w hich afteratop(US)labelratesoilapplication[95].InaUSwide accelerates mortality [105]. Honeybees also bring the survey of pesticide residues in beeswax, pollen and hon- toxic dust particles they gather on their body into the eybeesduringthe2007–2008growingseasons,highlevels hive[106].Sunnyandwarmdaysalsoseemtofavourthe ofneonicotinoidswerefoundinpollen(includedin[92]) dispersal of active substances [35]. bu timidaclopridw asal sofoun du pto13 .6mgkg(cid:2) 1in wax [96]. In Spain, neonicotinoids were found in beeswax Lethal effects from chronic exposure refer to honeybee samples from apiaries near fruit orchards: 11 out of 30 mortalitythatoccursafterprolongedexposure.Incontrast samples tested positive in r anges from 11m gk g(cid:2)1 (ac et- toacutel ethal effect s,the rearenost andardise dp rotocols amiprid) to153 mgkg(cid:2)1 (t hiaclop rid)[9 7]. fo r mea suring chron ic le thal e ffects. Ther efore, in traditional risk assessment of pesticides they are usually Little is known on the presence of neonicotinoids in expressedinthreeways:LD50:thedoseatwhich50%of honeydew. Given differences in life span of aphids and theexposedhoneybeesdie(often,butnotalways,within bees, concentrations in plant sap too low to kill aphids 10 days); NOEC (No Observed Effect Concentration): could translocate to honeydew and could still produce the highest concentration of imidacloprid producing no sublethal effects and chronic toxicity mortality in bees observed effect; and LOEC (Lowest Observed Effect and bee colonies. Concentration):thelowestconcentrationofimidacloprid producing an observed effect. However, for neonicoti- Acute and chronic effects of lethal and noids and its neurotoxic metab olites, leth al t oxicity can sublet hal e xposure increa se u p to 100,000 ti mes compare d to a cute toxi city Pesticides can produce four types of effects on honey- when the exposure is extended in time [10]. There has bees: lethal effects and sublethal effects from acute or been some controversy on the findings of that study, chronic exposures. whichisdiscussedindetailbyMaximandVanderSluijs [40,42]. However, the key finding that exposure time Acute toxicity is expressed as the lethal dose (LD) at amplifiesthetoxicityofneonicotinoidsisconsistentwith which50%oftheexposedhoneybeesdiewithin48hours: later findings. Micro-colonies of bumblebees fed with abbreviated to ‘LD50 (48hours)’. Neonicotinoids are imidacloprid showed the same phenomenon [102]: at highly toxic (in the range of ng/bee) to honeybees [98], one tenth of the concentration of the toxin in feed, bothwhenadministeredorallyandbycontact.Theyalso it took twice as long to produce 100% mortality in a CurrentOpinioninEnvironmentalSustainability2013,5:1–13 www.sciencedirect.com Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 Neonicotinoids,beedisordersandpollinatorservicesvanderSluijsetal. 5 bumblebee microcolony. At a 100 times lower dose, it level, population level and community level impacts on tookca.fourtimeslongertoproduce100%mortality.The pollinators. measurable shortening of the life span ceases to occur only when a dose w as adm inist ered, for w hic h the At field realistic concentrations (1mgl(cid:2)1) imidacloprid (extrapolated)chronicintoxicationtimewouldbelonger repels pollinating beetles while at concentrations well than the natur al life s pan of a wor ker b umble bee . This below theanalytic aldetect ionlim it( 0.01mgl(cid:2)1)itr epels implies that the standard 10 day chronic toxicity test for pollinating flies [125]. This implies that imidacloprid bees is far too short for testing neonicotinoids. Indeed, pollutionmaydisruptpollinationbothinpollutednature honeybees fed with one tenth of the LC50 of thia- andinagriculturallands.Onhoneybees,imidaclopridhas methoxam showed a 41.2% reduction of life span [116]. norepellingeffectatfieldrealisticconcentrations:itstarts Recent stu dies hav e shown that chron ic toxi city o f neo- be ingrepell entat 50 0mg l(cid:2)1[126] .Insomeplant pr otec- nicotinoidscanmoreadequatelybeexpressedbytimeto tion formulations, neonicotinoids are mixed with bee 50% mortality instead of by the 10 day LD50 [117– repellents. However, the persistence of neonicotinoids 120,1 21(cid:3),122].T hereis ali near rela tion betw eenlo gdaily exceedsth atofthere pelle nceandthe irs ystemicproper- dose and log time t o 50 % mo rtality [ 118,120,1 21(cid:3) ]. In ties diffe r. B es ides , if bees ar e ef fectiv ely repel led and experiments with honeybee colonies, similar long term avoid the contaminated flowers, pollination is disrupted chronic effects have indeed been found with typical because plants are not visited by bees. times of 14–23 weeks to collapse 25–100% of the colonies exposed to imidacloprid-contaminated food at Sublethal doses of neonicotinoids impair the olfactory 20mgkg (cid:2)1 [123] and 80–120 days for 1mgkg(cid:2)1 dino te- memory a nd lea rni ng capacity of honeyb ees [127,128, fur an and400mg kg(cid:2) 1clothia nidin [76 ]. No tethatthese 129(cid:3),130 ] an d the o rientation a nd foraging activity studies used concentrations that are on the high end of [131]. The impact of sublethal exposure on the flying the currently reported ranges of concentrations found in behaviour and navigation capacity has been shown thefield.However,suchdataaresparseandlimitedtoa through homing flight tests [82,126,132,133]. Exposed few crops , so it can not y et b e co nclude d w hether s uc h to a ver y low co ncentr ation (0.05mgkg(cid:2)1) imi dacloprid concentrations are rare or common in the field. honeybees show an initial slight increase in travel dis- tance.However,withincreasingconcentration,startingat Atlowconcentrationsofneonicotinoids,sublethaleffects 0.5mg kg(cid:2)1imid aclop riddecreas esdistancetra velledan d canoccur.Sublethaleffectsinvolvemodificationsofhon- interaction time between bees, while time in the food eyb ee beh aviour and physi ology (e .g., immune s yst em). zone incre ases w ith conc entrati on [13 4(cid:3)]. I mi dacl oprid Theydonotdirectlycausethedeathoftheindividualor disrupts honeybee waggle dancing and sucrose respon- theco llap seo ftheco lonyb utm aybe co mel ethalintim e siveness at doses o f 0.21 an d 2.16n gbe e(cid:2)1 [135 ]. and/or may make the colony more sensitive (e.g., more pronetodiseases),whichmaycontributetoitscollapse.For If honeybee brood is reared at suboptimal temperatures instance,anindividualwithmemory,orientationorphys- (thenumberofadultbeesisnotsufficienttomaintainthe iologicalimpairmentsmightfailtoreturntoitshive,dying optimal temperature level), the new workers will be from hunger or cold. This would not be detected in characterised by reduced longevity and increased standard pesticide tests, which focus on acute mortality. susceptibility to pesticides (bee-level effect) [136]. This A distinction can be made between acute and chronic willagainresultinanumberofadultbeesinsufficientto sublethal effects. Acute sublethal effects are assessed by maintain the brood at the optimal temperature, which exposingbeesonlyoncetothesubstance(byingestionor maythenleadtochroniccolonyweakeninguntilcollapse by contact), and observing them for some time (variable (colony-level effect). from one laboratory to another, from several minutes to fourdays).Chronicsublethaleffectsareassessedbyexpos- Sublethal effects seem to be detected more frequently inghoneybeesmorethanoncetoneonicotinoidsduringan and at lower concentrations when bumblebees (Bombus extendedperiodoftime(e.g.,every24hours,for10days). terrestris) have to travel to gather food, even when the Bothacuteandchronicsublethaleffectsareexpressedas distancesaretiny.Noobservableimpactsofimidacloprid NOEC and/or LOEC (No or Lowest Observable Effect at field realistic concentrations on micro-colonies of B. Concentration,respectively)[42]. terrestris provided with food in the nest were found, but when workers had to walk just 20cm down a tube to In an extensive review Desneux et al. found that sub- gather food, they exhibited significant sublethal effects lethaleffectsofneonicotinoidsexistonneurophysiology, on foraging activity, with a median sublethal effect con- larval develo pm ent, moulting , adu lt l ongevity, immu- cen tration ( EC ) o f 3.7 m gkg(cid:2)1 [102]. In queen right 50 nology, fecundity, sex ratio, mobility, navigation and bumblebeecolonies foraging in aglasshousewhere food orientat ion, feedin g be havio ur, ovipos ition behav iour, was3mawa yfromth eirnest, 20 m gkg(cid:2)1ofi midaclo prid and learning [124]. All these effects have been reported caused significant worker mortality, with bees dying at forpollinatorsandallhavethepotentialtoproducecolony the feeder. Significant mortality was also observed at www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2013,5:1–13 Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 6 Openissue2013 10mgkg(cid:2)1, but not at 2mgkg(cid:2)1 [102]. Bumblebees performances of colonies after experimental exposure do exhibit concentration-dependent sublethal responses not last long enough [85]. Major weaknesses of existing (declining feeding rate) to imidacloprid starting at field studies are the small size of the colonies, the very 1mgl(cid:2)1 in syrup, w hile h one ybees seemed unaffec ted smal ldistanc ebe twe enthe hive sa ndth etreated field and [137]. theverylowsurfaceofthetestfield.Asaconsequenceof these weaknesses, the real exposures of the honey bees Field-relevantconcentrationsofimidacloprid,usedalone during these field tests are highly uncertain and may in or in mixture with l-cyhalothrin, were shown to impair reality be much smaller than what has been assumed in po lle n foragin g effi ciency in bum blebee colon ies [138(cid:3)]. thesefi eld studi es.[85] In an attempt to fulfill colony needs for pollen, more wo rke rswerer ecr uitedt oforage instead of takingc areof In addition, the meta-analysis [146(cid:3)] demonstrates that brood. This seemed to affect brood development result- field tests published until now on which European and ing in redu ced wor ke r prod uction [138(cid:3)]. Bum blebee Nort h Am erican aut horiza tions are based , lack the sta- colonies have been exposed to field realistic levels of tistical power required to detect the reduction in colony imidaclo prid( 0.7mg kg(cid:2)1inn ec tar, 6 mgkg(cid:2)1 inpolle n) perform ance p redicted fro m the dos e–response re lation- for two weeks in the laboratory. When subsequently ship derived from that meta-analysis. For this purpose, placedbackinthefieldandallowedtodevelopnaturally the tests were wrongly designed, there were too few for the following six weeks, treated colonies showed an colonies in each test group, and the follow up time 85% reduction in queen production and a significantly monitoring the long term colony level impacts were too redu cedgrowth ra te[81(cid:3)(cid:3) ].Effectson bum b lebeerepro- short to de tect man y of the ef fects describe d abo ve. duction occur at imidacloprid concentrations as low as Nonetheless, these field studies have been the basis 1mgl(cid:2)1 [139(cid:3) ] w hich is highly field-realistic. forgrantingth epres entm arketaut horiza tionsb yna tional and European safety agencies. The meta-analyses com- Ithasalsobeenshownthatpesticideslikeimidaclopridact bined data from 14 previous studies, and subsequently on the hypopharyngeal glands of honeybee nurses by demonstrated that, at exposure to field realistic doses, de gene rating the tissues [140,1 41,1 42(cid:3)(cid:3)], whi ch indu ces imidaclopridd oesh ave significan tsu bleth aleffect s,even ashiftfromnesttofieldactivities.Inthenativestingless atauthorisedlevelsofuse,impairsperformanceandthus b ee M elipo na q ua drifas ciata anth idi oide s, imid acloprid we akens hon eybee co lonie s [146(cid:3)] . causes impairment of the mushroom bodies which are involved in learning [143]. Imidacloprid and clothianidin Afurtherlimitationoffieldstudiesistheirlimitedrepro- have been shown to be potent neuromodulators of the ducibility due to the high variability in environmental honeybeebrain,causingmushroombodyneuronalinacti- conditions in the foraging area of honeybees, which vationinhoneybees,whichaffecthoneybeecognitionand extendsuptoa9kmradiusaroundthehive.Observations behaviouratconcentrationsthatareencounteredbyfora- made in a particular field experiment might not be ginghoneybeesandwithinthehive[8].Sublethaldosesof representative of the range of effects that could occur imidaclopridwerealsofoundtohavecytotoxicactivityin inrealconditions.Owingtothelargevariabilityoffactors the Malpighian tubules in honeybees that make up the that cannot be controlled (e.g. other stressors, soil struc- excretory and osmoregulatory system [144]. Exposure to ture, climate, combination of plants attractive to bees thiamethoxam has also been shown to result in morpho- etc.), current field experiments only give information logicalimpairmentofthebeebrainandbeemidgut[116]. about the particular situation in which they were done. Exposure to neonicotinoid residues leads to a delayed The challenges of field studies became also clear in the development of honeybee larvae, notably in the early debates over the highly contested field study recently stages (day 4 to day 8) [145]. This can favour the de- conductedbytheFoodandEnvironmentResearchAgen- velopment of the Varroa destructor parasitic mite within cy (FERA) which resorts under the UK Department for thecolony.Likewise,thelifespanofadultbeesemerging Environment, Food and Rural Affairs (DEFRA). This from the exposed brood proved to be shorter. studywassetupinresponsetotheSciencepublicationthat showedthatashorttermexposureofbumblebeestofield Short-termandmid-termsublethaleffectsonindividuals realistic imidacloprid concentrations causes a long term oragegroup sre sultinlong -termeffe ctsatth ec olonylevel, 85%red uctioninque enproduction[ 81(cid:3)(cid:3)].A t three sites whichfollowweekstomonthsaftertheexposure,suchas 20bumblebeecolonieswereexposedtocropsgrownfrom honeybee colony depopulation and bumblebee colony untreated, clothianidin-treated or imidacloprid-treated queen pro duction [76,81(cid:3)(cid:3),123,1 38(cid:3)] . As it has r ecently seeds. The agency concluded tha t ‘no clear consistent beenacknowledged,thefieldtestsonwhichthemarketing relationships’ between pesticide levels and harm to the authorisation of the use of neonicotinoids is essentially insects could be found [FERA: URL: http://www.fera. based were not developed to detect sublethal nor long- defra.gov.uk/scienceResearch/scienceCapabilities/che- termeffectsonthecolonylevel,andtheobservationofthe micalsEnvironment/documents/reportPS2371V4a.pdf]. CurrentOpinioninEnvironmentalSustainability2013,5:1–13 www.sciencedirect.com Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 Neonicotinoids,beedisordersandpollinatorservicesvanderSluijsetal. 7 However, it turned out that the control colonies them- the subject of patents by agrochemical companies selves were contaminated with the pesticides tested [152,153]. [147]. Further, thiamethoxam was detected in two out of the three bee groups tested, even though it was not Synergy has also been demonstrated for neonicotinoids used in the experiment. The major studies that have andinfectiousagents.Prolongedexposuretoanon-lethal measured neonicotinoid residues in pollen collected by doseofneonicotinoidsrendersbeehivesmoresusceptible honeybee sclearlyshow that neon ico tinoids are found in topa ras itessuchasNo semacera naeinfec tions [39(cid:3)(cid:3),154(cid:3)(cid:3), pollenallo verthe yeara ndin allstudiedregi ons ,noton ly 15 5(cid:3),156].T hisc an beexpla inedei therbyan alterationof afterthesowingorduringthefloweringperiod[89,91,96]. theimmunesystemorbyanimpairmentofgroomingand With the present scale of use, it will be very difficult to allogrooming that leads to reduced hygiene at the indi- find a control site where bees cannot come into contact vidual level and in the nest, which gives the pathogens with neonicotinoids. more chances to infect the bees. The same mechanism, where the balance between an insect and its natural Given all the major limitations to the reliability of out- enemies is disturbed by sublethal exposures to neonico- comesoffieldstudies,itisrecommendabletogivemore tinoids that impairs grooming, is well known and often weightintheriskassessmenttoreproducibleresultsfrom used in pest management of target insects [157–161]. controlled lab studies and use the ratio between the environme ntal concent ratio n an d th e no e ffect con cen- Conclusion and prospects trationasthemainriskindicator[40,42].Itcouldperhaps In less than 20 years, neonicotinoids have become the be linked to modelling to explore how, and to what the mostwidelyusedclassofinsecticides.Beingusedinmore degree,thevariouswell-knownsublethaleffectsonindi- than120countriesinmorethan1000differentcropsand vidual bees can weaken the colony [148]. applications,theynowaccountforatleastonequarterof the world insecticide market. For pollinators, this has A key aspect in honeybee biology is that the colony transformedtheagrochemicallandscape tooneinwhich behavesasa‘superorganism’[149].Inacolony,sufficient mostfloweringcropsandanunknownproportionofwild membership,sothatthenumberoforganismsinvolvedin flowers contain varying concentrations of neonicotinoids the various tasks to maintain that colony, is critical, not intheirpollenandnectar.Mostneonicotinoidsarehighly theindividualqualityofataskperformedbyanindividual persistentinsoil,waterandsedimentsandtheyaccumu- bee. Varying between winter and summer, the 10,000– late in soil after repeated uses. Severe surface water 60,000honeybeesthattypicallyformacolonyfunctionas pollutionwithneonicotinoidsiscommon.Theirsystemic a cooperative unit, maintaining intraorganismic homeo- modeofactioninsideplantsmeansphloemicandxylemic stasisaswellasfoodstorage,nesthygienic,defenceofthe transportthatresultsintranslocationtopollenandnectar. hive,rearingofbroodetc.Hence,sublethaleffectsaffect- Theirwideapplication,persistenceinsoilandwaterand ingthenumberofindividualsthatperformspecificfunc- potentialforuptakebysucceedingcropsandwildplants tions,caninfluencethefunctioningofthewholecolony. make neonicotinoids bioavailable to pollinators in sub- In a simplified theoretical modelling approach, colony lethalconcentrationsformostoftheyear.Thisresultsin failurecanbeunderstoodintermsofobservedprinciples the frequent presence of neonicotinoids in honeybee of honeybee population dynamics [150]. A colony simu- hives.Neonicotinoidsarehighlyneurotoxictohoneybees lation model predicts a critical threshold forager death and wild pollinators. Their capacity to cross the ion- rate above which rapid population decline is predicted impermeable barrier surrounding the central nervous and colony failure is ine vitable.Hig h forage rd eathrates system (BBB , blood– brain barrier) [7(cid:3)] and the ir strong draw hive bees towards the foraging population at much bindingtonAChRinthebee’scentralnervoussystemare youngeragesthannormal,whichactstoacceleratecolony responsible for a unique chronic and sublethal toxicity failure [150]. profile. Neonicotinoid toxicity is reinforced by exposure time. S ome studies indicate a non-mono ton ic [162(cid:3)] Synergistic effects: pesticide–pesticide and dose– respon se curve at doses far below the LD50 . Mass pesticide–in fectious agents bee dying even ts in spr ing fro m acute i ntox ication have A synergy occurs when the effect of a combination of occurred in Germany, Italy, Slovenia and France during stressors is higher than the sum of the effect of each pneumatic sowing of corn seeds coated with neonicoti- stressor alone. When neonicotinoids are combined with noids.Beesthatforagenearcornfieldsduringsowingget certainfungicides(azoles,suchasprochloraz,oranilides, exposedtoacutelethaldoseswhencrossingthetoxicdust such as metalaxyl) or other agrochemicals that block cloud created by the sowing machine. cytochrome P450 detoxification enzymes, their toxicity increases by factor from 1.52 to 1141 depending on the Atfieldrealisticexposurelevels,neonicotinoidsproduce combination[151,152].Thestrongestsynergismhasbeen a wide range of adverse sublethal effects in honeybee foundfortriflumizolemakingthiacloprid1141timesmore colonies and bumblebee colonies, affecting colony per- acutelytoxictohoneybees[151].Thissynergisticeffectis formancethroughimpairmentofforaging success,brood www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2013,5:1–13 Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 8 Openissue2013 andlarvaldevelopment,memoryandlearning,damageto 6. BelzuncesLP,TchamitchianS,BrunetJL:Neuraleffectsof (cid:3)(cid:3) insecticide sin thehoneyb ee .Apido logie 2012, 43:348-3 70. the central nervous system, susceptibility to diseases, Excellent review o f neur al impa cts o f field expo sure of honeybees to hive hygien eetc.Ne onicotino idssynergistic ally reinforce sublethal residue so fneuro toxicinse cti cides inpollena nd nectar.The se impair:fir stlycogn itiv efunctions ,includingl ea rninga ndm emory ,habi- infectiousagentssuchasN.ceranaeandexhibitsynergistic tuation , olfac tion and gustation, navigatio n and o rienta tion; sec ondly toxicity w ith oth er ag ro che micals . Th e large impact of behavio ur,includi ngfo ragingand thirdlyphy siolog icalfunction s,includ- ingthermo regulation andmus cle activity .Timeisake yfactorin insecti- shorttermfieldrealisticexposureofbumblebeecolonies cid etoxicity.Combin ation toxicity ofjointe xpos ur et om ultiple pe sticides on l ong term bumbl ebee que en productio n (85% urge ntlyrequ iresattention . reduction)couldbeakeyfactorcontributingtotheglobal 7. TomizawaM:Chemicalbiologyofthenicotinicinsecticide trendsofb umble be e decl ine.O nlyafewstud ie sas sessed (cid:3) receptor. Adv InsectPh ysiol201 3, 44:6 3-99. Introduction in to th e mol ecular b asis o f binding site interaction and the toxicity to other wild pollinators, but the available explanation of d iffere nt binding affinit y o f neonic otino ids with in sect data suggest th atthey arel ikelytoexhi bits imila rtoxicity and vertebr ate nicotinic acetyl choline re ceptor. Another key factor expl ainingtheh ighinsec ttoxicit yisitsc apacity(st emmingf rom hydro- ntoe aolnl iwcoiltdin ionisdescti psoslltiinllationrcsr.e Tashien gw.oIrlndwviidewe porofdtuhcetiovnit oafl ipnhsoebcitcniteyr) v otou s pseynset termat.e t he ion-i mp er meable b arrier surr oundi ng the importance of the service insect pollinators provide to 8. PalmerMJ,MoffatC,SaranzewaN,HarveyJ,WrightGA, bothnatura lec osys temsan dfarmi ng,theyreq uireahi gh (cid:3)(cid:3) Connol lyCN :Chol ine rgicpestic ide scause m ushro ombody neurona linac tivationinh oneybees. NatCo mmun2013, 4:1634 level of protection. Therefore a transition to pollinator- http://dx.d oi.org/10.10 38 /ncomms264 8. friendlyalternativestoneonicotinoidsisurgentlyneeded UsingrecordingsfrommushroombodyKenyoncellsinacutelyisolated for the s ake of the s us tainability of po ll inator eco system honey bee brain, it is shown that the n eonicoti noids im idaclop rid and clothianidi n,and th eo rganop hosp hate miticidecouma phosoxon,c ause services.TherecentdecisionbytheEuropeanCommis- adepolariza tion- bloc kofneuronalfirin gandin hibitnicotinic respo nses. sion to temp orary b an the use of imidaclop rid, thia- T heseeffectsareobse rv edatcon centr ation sthat areenco unteredby foragin ghone ybee sandwith in thehive,andar ead ditiv ewithcombin ed methoxam and clothianidin in crops attractive to bees applicati on.Exposu reto multip lep estic ides tha ttargetc holin ergicsig- is a first ste p in that directio n [ 163]. nallingwillc auseenha nc edtoxici tytopollin ators . 9. TomizawaM,CasidaJE:Neonicotinoidinsecticidetoxicology: Acknowledgements mechanis mo fselec tive action.AnnuR evPharmac olToxicol 2005,45:247 -26 8. ThismanuscriptbenefitedfromthediscussionsintheIUCNInternational Task ForceonS ystemicP esticid es duringitsp len ary meetin gsinBath 10. SuchailS,GuezD,BelzuncesLP:Discrepancybetweenacute (2011 ),Cam bri dge(2012 ),Padua(2 012)an dL ouvain-l a-Neuve( 20 13).Part andch ron ictox ici tyinduced by imidacloprid andits ofthew orkbyaut horsJvd Sand NSDh asb eenfundedbyag iftbyth e met abolites inApis mellifera .En vironToxicol Chem 2001, Tr iodo sFou nd ation’sS uppo rtFu ndfo rIn depen dentRe sea rc ho nB ee 20:2482-248 6. Decline andSystemic Pesticide s.Th isSu pportFundh asbeencr eat edfrom (dJoanpaatnio),n Us nbiy v eArdsietsesiituUm t rFecohutnd(Natei othne (rTla hned sN),eStth iechrltainndg sT), r Aiocdt oBs eFyoounndd Ta triuosnt 11. Simuicdhaacill oSp, rDide binr aAupwise rm Le, llBifeelrzau.n Pceesst LMPa:n Mage Stacbi o20lis0m4, 6o0f:291-296. (TheN etherlands),G esellsch aftfu¨rSchmet terlingssc hutz(Ge rmany), 12. CasidaJE:Neonicotinoidmetabolism:compounds, M.A.O .C.Gravinva nBylandtSt icht ing(TheNetherlands ),Zukunft substit uen ts,pathways,e nzymes,org anisms,andrelevance. StiftungL andwir tscha ft(Germ any),Bee keep ersUnionABT B JAgricFoodC hem2010 ,59:2923-2 931http://d x.doi .org/ (Netherl ands),StudyAs sociationSto rm(Student Assoc iation 1 0.1021 /jf102 438c. Environmental Scien cesUtrecht Univer sity)and citizens.Thefundershad npore rpoalrea tiino nst uofd yt h dee msigann,u dscartiap tc.oll ection and a naly sis, decis ion t o publish , or 13. Lmveiuor sdGueYsli, n rJgau.t JXnLiMc, ooCtlihnMeicno gda eJcl:e 2St0yel1cl0eh,co1tli6ivn:i9tey9 r3oe-fc1 eI0mp0t2ido.arsc lboyp rmido floecr ufrlaurit fly References and recommended reading 14. LiuZ,YaoX,ZhangY:Insectnicotinicacetylcholinereceptors (nA Ch Rs): im portan t amino acidresid uescontribut ingto Papersofparticul arinter est,publishedwithinthe periodofreview, neonicotin oidinsect icidess elec tivityand resistance.A frJ havebe en highlighte das: Biotechnol200 8,7:4935-493 9. (cid:3) of special interest 15. CPiutttelerrn aP,T S,laPtaelr SR,, PEadumluVn-Ld,sG JoFo, MdcahieildnfiJs,cBh laPc, kHearllM R,GH, aEgamrleayn nGPL,, (cid:3)(cid:3)ofoutstandinginterest Crossth wa iteA J: Inve stiga tingthem od eofact ion of sulfoxaflor:a fou rth-generatio nne onicot ino id.Pes tManagSci 2013,69:607 - 619http://dx.doi.or g/10.1002/ps.34 13. 1. TomizawaM,CasidaJE:Neonicotinoidinsecticides:highlights ofasymp osi umon stra tegicmolecula rdesigns.JA gricFood 16. CasidaJE,DurkinK:Neuroactiveinsecticides:targets, Ch em 2011,59:2 883 -2886http ://dx.doi.or g/10.1021 /j f1038 56c. selecti vity, resista nc e,andsecon daryeffects. AnnuRev Entomol201 3,58:99-117 http ://dx.doi.org /10.1146 /annu rev-ento- 2. BromilowRH,ChamberlainK,EvansAA:Physicochemical 120811- 15364 5. aspectso fph loemtranslo cat ionof herb icides.WeedSci1990, 38:305-3 14 . 17. PollakP:FineChemicals:TheIndustryandtheBusiness.John Wiley &S ons; 2011. 3. BuckinghamSD,LapiedB,LeCorroncH,GrolleauF,SattelleDB: Imidacloprid act ionson in se ctneuro na lacetylc ho line 18. ShaoX,LiuZ,XuX,LiZ,QianX:Overallstatusofneonicotinoid receptors.J ExpBiol 199 7,200 :2685-269 2. insec tic ide si nC hi na :p rodu ct ion,app lication a nd innovation.J P estSci 2013,38:1-9 http://dx.do i.org/10.1584/ 4. MatsudaK,BuckinghamSD,KleierD,RauhJJ,SattelleDB: jpestics.D12 -0 37. Neonico tino ids:insectic ides actin go nins ect nicotini c acetylcholinere ceptors.Tren dsPha rma colSci 2001, 19. EuropeanFoodSafetyAuthority:statementonthefindingsin 22:573-580. recentstu diesin vestig atingsub-l ethaleffec tsin be esofsom e neonic otinoids inconsidera tionofthe usesc ur rently 5. MatsudaK,ShimomuraM,IharaM,AkamatsuM,SattelleDB: authorisedinE uro pe.EFSAJ20 12 ,10 :2752 http://dx.doi.org/ Neonico tino idsshows ele ctive and diversea cti onson their 10.2903/j.ef sa .2012.275 2. nicotinicrecept ortar gets:elec troph ysiolog y,molec ula r biology, andrecep tormod elingstudies.Biosc iBiotechnol 20. SurR,StorkA:Uptake,translocationandmetabolismof Biochem 200 5,69:1442 -1452. imid ac loprid in plants. BullInsectol20 03, 56:35-40. CurrentOpinioninEnvironmentalSustainability2013,5:1–13 www.sciencedirect.com Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 Neonicotinoids,beedisordersandpollinatorservicesvanderSluijsetal. 9 21. VandeMeentD,HollanderA,PeijnenburgW,BreureT:Fateand 38. MainiS,MedrzyckiP,PorriniC:Thepuzzleofhoneybeelosses: tran spo rtofc on taminants .I n Ecologic alIm pacts of Toxic abrie fr eview.Bul lIn sectol 20 10,6 3:153-1 60 . Chemicals .E ditedbySa´nche z- BayoF,Van denBrin kP ,Mann RM.Bentha m;201 1. 39. VidauC,DiogonM,AufauvreJ,FontbonneR,Vigue`sB,BrunetJ- (cid:3)(cid:3) L,Tex ier C,Biro nD G,BlotN ,E lAlaouiH et al.:Exp os ureto 22. GuptaS,GajbhiyeV,KalpanaT,AgnihotriNP:Leachingbehavior su bletha ld oseso ffip roni lan d thiaclo p rid hig hlyincrea ses ofimid ac lopridfo rm ulations in soil.Bull Env ironConta mToxicol mortality ofhon eyb eespre viou slyinfected byNo sema 20 02,68:502-50 8. ceranae. PL oSONE201 1,6:e21550 http://dx .do i.org/10.1371/ journal.po ne.00 21550 . 23. HaithDA:Ecologicalriskassessmentofpesticiderunofffrom Synergism was found between neurotoxic insecticides and Nosema grass sur faces.Envi ronS ciTechnol20 10 ,44:6496- 6502. ceranae in fectio ns: Su blethal do ses of fipr onil and thia clop rid make honeybe es more p rone to N osema ce ranae i nfect ions and in duces 24. Ss1o7e5ililm:s3: 7 Hm5M-i3s,8c J1ibe.loen dgi sCpYla, cEelbmanean tT eAx: pTerraimnsepnotrst. oSfo iiml Sidcia 2c0lo1p0r,id in itinnoc bureena ldisneekrdse tdma tnoodr aitna dgliet yct hroeefa nsinoe ts eoerfma t chate-io ibnnefseec doteef dtof abxceifiteocsras.t iTo jhoniis ns tyelysffteepcmrto .d dA ou sectsien pn g ofotc rsoweloaenrmdy de population. 25. MirandaGRB,RaetanoCG,SilvaE,DaamMA,CerejeiraMA: Ethneviirropnom teenntitaal l rfisaktes otof nheypoon igceoatni n,oe ipdysg aenad n ,calan sdssifiucrafatcioe nw oafter 40. Mstaaxkiemh oLl,d Vearsn’ ddeerb Saltueijss? JAP:n aUlnycsiesrtoafinatyc:a csaeussteu doyr :etfhfeecrti sokffor ecos ystems in Braz il. Hum Ecol R isk Assess 201 1, 17:98 1-995. 3h7o6n:e1y-1 b7e.es of the insect icide Gau ch o W. Sci Total E nviro n 20 07, 26. KurwadkarST,DewinneD,WheatR,McGahanDG,MitchellFL: Timedepe nde ntsorpti on behavi or ofdinotef uran , 41. SuryanarayananS,KleinmanDL:Disappearingbeesand imida clopridand thiameth oxam.J En vironSciHealthB2013, reluctantregula to rs.Issues Sci Technol2011, 27:33 . 48:237-242h ttp:// dx.doi.org/10.108 0 /036012 34.2 013.74 24 12. 42. MaximL,VanderSluijsJP:Seed-dressingsystemic 27. VanDijkT,VanStaalduinenM,VanderSluijsJP:Macro- (cid:3)(cid:3) insecti cid esa ndH oney bee s.LateLessons fromEarlyWarnings: inve rteb rat ede clineinsur fac ewa ter pollut edw ith Science,Pre cauti on,Innovatio n.Eu ropeanE nviro nmen tAgency imidacloprid .PLoSO N E2013,8 :e6237 4http://d x.doi.org/ (EEA);20 13:.p.401– 438. 10.1371/journa l.pone .0062 374. Usingtheb ansof im idaclopridinFranceforsunflower(1999)andmaize (2004) as a ca se study, the s oc ial pro ces ses that u ltimate ly le ad to 28. S8Cim8taa:il3drinf1aoe6crr-nl 3oKi2ap, 1,rG i Udho SthitnAp K :,s/S /u2d:0r xDf1a.ed0ct–oee2i .c0wot1riago1t/n.e1 sBr0s .uo1 lofl0 ftE0 ht7nhe/vr siner0oee0no 1a n2Cgi8cor-ionc0ttu1ainl1mto-u0 irTd5ao 1li xn5riesc-5geo.icl o2tni0cs1i d2oe,f waucposaenpydtl.ir c oTba vhytee iosr s tnaay nko. aefEl hytihgsoehilsd tp eflreoresscc suaaosnunedt ssi od aonernace ritysdh irpoeanr wiwn-mnca iyaapsbkl eeoin raus rtw etgoh ao icinvnhaefl lruysnezcaeninedc cne etin ifipo acof lvcfiiceonyrdny dti nriu nogrsvisnieg gwrhs et tihferueesl 29. KreugerJ,GraafS:PesticidesinSurfaceWaterinAreaswith relatedtoch emica lrisks. OpenG rou ndan dG reenhouse H orticultu ralCro ps inSw eden 2008. 2010. 4(cid:3)(cid:3)3. Scounrytaronaverarysaynoavne Sr,i nKsleeicntmicaind eDs: iBnet(hee)choomnienyg beexepecrotslo tnhye 30. AndersonTA,SaliceaCJ,EricksonaRA,McMurryST,CoxaSB, collapsedis order .SocStudSc i2 013 ,43:21 5-24 0http:// SmithLM :Eff ectsof land useand prec ipitation onp estic ides dx.doi.org /10.1177/ 0306 3127 1246 6186. andw ater quality in playa lak eso fthesouthern hi ghplains. Thispaperexploresthepoliticsofexpertiseinanongoingcontroversyinthe Che mosph ere2013 ,9 2:84-9 0http ://d x.d oi.org/10.1 016/ Unite dSta tesovert her oleofn eo nicotinoid si nc olonyco llapsedisord e r.A j.chemosphere .2013 .02.054. setofr esearc hnor ms and pra cticesfromag ric ulturale ntomolo gycamet o dom in atethein vestiga tion ofthelink sbe tweenpesti cidesandho neyb ee 31. DoeringJ,MausC,SchoeningR:ResiduesofImidaclopridWG5in health. Th e e pistemologic al dom inan ce of the se norms and pract ices Blossom S ample so fRhodode nd ronsp(var iet yNovaZemb la)a ft er served tom arginalizethekn owledgeclai ms andp olicypo sitio nsofbee- SoilTrea tmentint he FieldApplicati on: 2003,S ampl ing2003 and keeper sin thecolony coll apsedisord ercont rove rsy. 200 4,BayerCr op scie nceA G.ReportN oG20 1806/32. 2004. 44. BuchmannSL,NabhanGP:TheForgottenPollinators.Island 32. RexrodeM,BarrettM,EllisJ,GabeP,VaughanA,FelkelJ, Press;1997 . Melende zJ: EFEDR isk Ass es sment for theSeedT reatm entof ECnlovtihroiannmide inn t 6a0l 0PFroSt eocnt ioC no rAng aenndc yC; a2n0 o Flae . bUrun aitreyd 2 S0 t0a3t.es 45. KCpoluelnilninn iAnagMtoh,ra sVmain iSsscAihe,` arKenr geBmiEne,g nCl aaCnn,d eT sJscHcah,p aSerntsetkfffoear nT-w:D oIemrwlpdeoncrtrteoarpn Ics,.eP orfocBiol 33. NPIC(NationalPesticdeInformationCenter):Imidacloprid Sci2007,27 4: 303-313ht tp://dx.doi.or g/1 0.1098 /rspb.20 06.3 721. Techn icalFact Sheet.201 3:.http://ww w.npic. orst.edu/factsheets/ imidaclop rid.pd f (acce ssed 17.02.13). 46. BRraubsbsianagred RL,, BCaabroinn DP,, PCuallmempbaenllM B:, RLeipcpoenr cLi,li nMgaibnikoad iSv,ersity 34. BonmatinJM,MoineauI,CharvetR,ColinME,FlecheC, conserva tion andf oo dsecurity :sc ientificchall engesforanew BengschE R:B ehaviou ro fimida clo pridi nfie lds.To xicityfor agriculture.C urrO pinE nvironS ustain201 0,2:34-42. honeybe es. Environmen tal Chemistry–G re enChe mistryan d Polluta nts in Ecosystems. B erlin: Sprin g er; 200 5, 483-494 . 47. SV,eKtteloletz JS, ,PKenu¨ehvn LI,( EGdeso):rgAietvla Ts, oGfrBabioaduivme rRsi,t GyrRoibske.lnSiko fiVa, :HPaemnsmoeftn; 35. GreattiM,SabatiniAG,BarbattiniR,RossiS,StravisiA:Riskof 20 10. environ me ntalcon tam inationby th eacti ve ingredi ent imidaclopridus edforcornsee dd res sing.P reliminaryresults. 48. LautenbachS,SeppeltR,LiebscherJ,DormannCF:Spatialand BullInsectol2 003, 56:6 9-72 . (cid:3)(cid:3) temporaltr end sofglo ba lpollinati on benefit.P LoS ONE2 012, 7:e35954 http://d x.d oi.org/1 0.1371/jour nal.pone .0035 954. 36. KrupkeCH,HuntGJ,EitzerBD,AndinoG,GivenK:Multiple The first spati ally explicit map of pollination demands at world level (cid:3)(cid:3) routes ofp estici dee xposu ref orhone yb eesliv in gnear iden tifies theareas thatbe nefit and dependth emoston po llinatio n.On agricul tur alfields.P LoSONE 201 2,7:e2 9268 http://d x.doi.org/ thebasis ofth ismap sthe depen denc yofagric ultu reon pol linationism uch 10.1371/jour nal.pon e.0029 268. high er th an wh at has be en so far de sc ribed. Incr eas es in the pr ice of Beesareexposedinmanywaystoneonicotinoidsinagriculturalfields pollina tiond epend ent crops we rec onsidereda sanearly wa rning tool on throu ghou tthefora gi ngpe riod.D ur ingspring,extr em elyhighlev elsof the abund ance of po llinato rs. St ill the effec ts of i ntern ational t rade of clothianidin and thiamet hoxam were fo und in planter exh aust mater ial poll ination-depe nd entcropsha ven otb eentak en intoaccount, inwh ich producedd uring theplantingof treate dmaiz es eed.Ne onicotino idswere casethedependencyo fdeve loped cou ntries would beh ighertha ns hown. foundinso ilalso ofu nplanted fi elds.Da ndelio nsvisi tedbyforaging bees growin g nea r th es e fields c ontaine d neonicot inoids: 1. 1–9.4mg kg(cid:2)1 49. GallaiN,SallesJM,SetteleJ,Vaissie`reBE:Economicvaluation clothinid inand 1.1–2 .9mgk g(cid:2)1thiame thoxam. ofthe vu lnerab ility ofwor ld agricultu rec onfronted with po llina tordecline.E co lEcon 2009,68:810 -821http://d x.doi.org/ 37. BonmatinJM,MarchandPA,CharvetR,MoineauI,BengschER, 10.1016/j.e colecon. 2008 .06.01 4. ColinME: Qua ntification ofim idaclop rid uptakei n maizecro ps. JAgr icFo odChem2005 ,5 3:5336-5341 http://dx .d oi.org/ 50. WinfreeR,GrossBJ,KremenC:Valuingpollinationservicesto 1 0.1021 /jf047 9362. agricult ure .Ecol Eco n2011, 71 :80-88. www.sciencedirect.com CurrentOpinioninEnvironmentalSustainability2013,5:1–13 Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007 COSUST-311;NO.OFPAGES13 10 Openissue2013 51. MaesJ,HauckJ,ParacchiniML,Ratama¨kiO,HutchinsM, 70. BurkleLA,MarlinJC,KnightTM:Plant-pollinatorinteractions Terma ns enM, Fu rmanE,Pe´ rez-S obaM,B raa tL,Bidog lioG: over1 20y ears:l oss ofspec ies, co-occurrence, andfunction. Mainstream in gecosy ste mservices into EUp ol icy.Curr Opin Scien ce2 013,3 39:16 11 -1615htt p://dx.doi.org/10. 1126 / EnvironSustain 2013,5:128- 134http: //dx.d oi.o rg/10.1 016/ science. 12327 28. j.cosust .2013.01 .002. 71. UNEP:GlobalHoneyBeeColonyDisordersandOtherThreatsto 52. KevanPG,MenzelR:Theplightofpollinationandtheinterface Insects .Agricu ltureU nited Nation sEnvironm enta lProg ram;20 10. ofneu robi ology,e co logy andf oo dsecurity. Env ironm entalist 20 12,32:300-310 http://dx .doi.o rg/10 .1007/s10 669-012-9394-5. 72. vanderZeeR,PisaL,AndonovS,BrodschneiderR,ChleboR, (cid:3) Cof feyM F,C ra ilshe im K,Dahle B, GajdaA,GrayA e tal.: 53. OllertonJ,WinfreeR,TarrantS:Howmanyfloweringplantsare Manag edh oneybeec olo nylos se sinCa na da,C hi na ,Europe, pollinat ed byanim al s? Oiko s 2011, 120:3 21-326htt p:// Israeland Turke y,fo rthew inters of 2008–9a nd200 9–10. dx.doi.org/ 10. 1111/j.160 0-0706 .2010. 18644.x. JApic Res 2012,51 :10 0-11 4http:// dx .doi.org /10.3 896/ IB RA.1 .51.1 .12. 54. EilersEJ,KremenC,SmithGreenleafS,GarberAK,KleinAM: This publication gathers the to-date most harmonised information on (cid:3) Contr ibut ionofp oll inator- mediated cr opsto nutr ients inthe colo ny losses w orldwide . Co lony bee loss es are volunt arily commu ni- humanfoods up ply.PLoSONE2011, 6:e213 63 http://dx.d oi. org/ cated by bee keepers th rough a co mmon wor ldwide qu estionnaire 10.1371 /journ al.pone .0021 363. design ed bythescient ificnetwo rk COLOSS. Pollinator mediated crops account for >90% of vitamin C, 100% of lycopene, almost10 0%of theantiox ida ntsb-cr ypt oxanthin an db-toc o- 73. VanEngelsdorpD,MeixnerM:Ahistoricalreviewofmanaged pherol,the majorit yofthe lip id, vitaminAand relatedcaroteno ids, calcium honeybeepop ula tionsin Eu ro peandth eUnited S tatesand andfluo rid e,anda lar ge portio noffol ic acid .Ongo ingpollinator decline thefac tors thatmayaf fec tthem. JInv erte brPath ol2010 , may thusput the p rovisio nofan ut rition allya dequate dietforthe global 103 :S80-S9 5http ://dx .doi.org /10.10 1 6/j.jip.200 9.06.01 1. hum anpo pul ation atrisk. 74. VanEngelsdorpD,CaronD,HayesJ,UnderwoodR,HensonM, 55. DamsLR:Beesandhoney-huntingscenesintheMesolithic SpleenA,Andre eM ,And ree M,Sn yde rR,LeeK, Roc casecca K, rocka rto feast ern Spain.BeeWor ld1978, 59 :43- 53. Wilson M, Wilkes J,L engeric hE ,Pettis J: Ana tio nalsurveyo f manag ed honey be e2010–11 wi nterc olo ny lossesi ntheU SA: 56. PattinsonD:Pre-modernbeekeepinginChina:ashorthistory. resultsfro mthe Bee Informe dPartn ership .JApic R es2 012, AgricHist 20 12,86:235-2 55. 51:115- 124h ttp:/ /dx.d oi.org/10.3 896/IBRA.1.5 1. 1.14. 57. BlochG,FrancoyTM,WachtelI,Panitz-CohenN,FuchsS, 75. TaniguchiT,KitaY,MatsumotoT,KimuraK:Honeybeecolony Mazar A: Industri alap iculture in theJordanv all eydur ing (cid:3) lossesdu rin g20 08 –2010caus ed bypes tic ideapplica tionin Biblica lt imeswithA natolianh on eyb ees.Pro cNatlA cadSciUS Japan. JApic 2012,27:15 -27. A2010, 107:11 240- 11244. Asurveycar rie dou ttobe ekeepersoverthreeconsecutiveyearsidenti- fie dlarge numbe rso fb eelossesdu etoa cute intoxications toput atively 58. EbertA:Nectarforthetaking:thepopularizationofscientific neo nicotin oids.The co loni esarou ndri ce ando rangefieldsw ere themost beec ult ureinE ngla nd, 1609–1 809. AgricHist2011 ,85 :322-343. affected. 59. BreezeTD,BaileyAP,BalcombeKG,PottsSG:Pollination 76. YamadaT,YamadaK,WadaN:Influenceofdinotefuranand service sin theU K:H owimport ant areho ney bees? Agric clothian idi nonabe e colony .J pnJClinE co l2012,21:10 -23. EcosystE nv iron 201 1,142 :137-143h ttp:/ /dx.doi.org/10 .1016/ j.agee.2 011.03.0 20. 77. MaximL,VanderSluijsJP:Expertexplanationsofhoneybee losses in area so fexte nsiv eagric ultureinFran ce :GauchoW 60. GaribaldiLA,Steffan-DewenterI,WinfreeR,AizenMA, compa red with oth ersuppos edcausalfa cto rs.Envir onResLett Bommarc oR ,CunninghamSA, K remenC ,C arvalh eiroLG, 2010,5:014 006 http:// dx.doi.org/ 10.1088 /1748-93 26/5/1/ 0140 06. HarderLD, Afik O,Bartomeu sI,B enjamin Fe tal.:Wildpo llinators enhanc efr uits et ofcropsre ga rdlessof h on ey beea bundance. 78. RunckelC,FlennikenML,EngelJC,RubyJG,GanemD,AndinoR, Science2 013, 339 :1 608-16 11http://dx .d oi.org/ 10.11 26/ DeRisiJ L: Temporal ana lysis ofth eho ney beemi cro biome science. 12302 00. reveal sfo urnovelvi rusesan ds eas onalpr evale nceofknown viruses, nose ma,a ndcrith idia. PLoSONE 2011,6:e20 65 6http:// 61. BanskotaAH,TezukaY,KadotaS:Recentprogressin dx.doi.or g/10.1371 /jou rnal.pone .00206 56. pharmaco log icalres ear chofp rop olis.Ph ytotherRe s2001, 15:561-571. 79. FarooquiT:Apotentiallinkamongbiogenicamines-based (cid:3) pesticide s, le arningan dm emory, andcolon ycollapse 62. JullAB,RodgersA,WalkerN:Honeyasatopicaltreatmentfor disorder:a uniqueh ypoth esis.Neu roch emInt2 012,62:122-136 wou nds .Cochra ne Databas eS ystRev 20 0 9,4art.n o.CD0050 83. http://dx.d o i.org/10 .1016/j.neuin t.2012.09.02 0. Aninsightfuldiscussionofahypotheticallinkamongbiogenicamines- 63. SPgurhinyidsiveioadls Raflneig vMh 2tV,0 :1 nH1ao,v ni9ge1ay:4tbi1oe3ne-,s4 a 6an0sd. a b mioolodgeilc faollry t hines sptiureddy roofb voistiucasl.ly ehbfoafens ecedtysb peoeenss t.ibcT iidohgeeseh n(ynicpe ooatnmhice inosiets i ntso hiigdantsa calihnnrdgo nfocicarmue saximpngoi d siuonrlefeasc)d taios nrrydu p tdthsyesinrf uedun isrcartuilopcnth ivoine- 64. RogersJ,SleighC:Hereismyhoney-machine:Sylviaplathand linergicand octo paminergic sign alingin honeybees issupp ortedb ythe theme reo logyo ft heBe eh ive .RevEnglStud2 012,63 :293- 310. fact tha t ab normality in bio genic am ine s-mediated n euronal sig na ling impa irst heirolfactory lea rningand memory.Thisex plainswhy foragers 65. BiesmeijerJC,RobertsSPM,ReemerM,Ohlemu¨llerR, expose dton eonicotin oidsfailt oretu rntothei rhive —apos sible causeof EdwardsM ,Pe etersT, Schaf fersPet al.: Parallelde clinesin CCD. pollinato rsa ndinse ct -pollinated p la nts inBritai nandthe 1N0e.t1h1e2r6la/sncdi esn. cSec .i1e1n2c7e8 26030.6, 313:3 51-354 htt p://dx.d oi.or g/ 80. Sadbxto.odkuostti .aolodrwg E/-1: d0Ao.g1sr1ei2c p6u/elstsuctriieecn iFdcieees.l3d. 3 Sr5ec.6sie0en7ac6rec.1 h25 0o515n2. b, e33e5s: 1ra5i5s5e sh tctpo:n//cern 66. HoldenC:Ecology:reportwarnsofloomingpollinationcrisisin sNcoiertnhc Ae .m31 e4r.i5c7a9. 8S.c3i9 e7n.ce 20 06, 314 :3 97 http:// dx.doi.org/1 0.112 6/ 8(cid:3)(cid:3)1. WNanehdoitneqihucoeoretnin nPopRird,o Opd’euCscottiinconindo.er S Srce,i edWnuaccceeks2e 0rbs1u 2Fm:L3b,5 l1Ge ohbutetlpseo: /cn/do Dxlo.:dnoyi .gorrgo/wth 67. GoulsonD,LyeGC,DarvillB:Declineandconservationof 10.1 126/sci ence.121502 5. bumbleb ee s.A nnR evEnto m ol2008, 53:19 1-208. Coloniesofbumblebees(Bombusterrestris)exposed tofieldrelevant doses of im idaclop rid sh owed sig nificantly lower gro wt h rat e and a 68. PottsSG,BiesmeijerJC,KremenC,NeumannP,SchweigerO, reduct ion of85%ofnew queenp roduction.Th ismea nsasev eren egati ve Kunin WE :Globalpo llina tordec line s:trends, im pactsand impacton th ebu mb lebe es’po pulation. driver s.Tr endsEc olEvol201 0,25:345 -353http ://dx.doi .org/ 10.1016 /j.tree.2 010.0 1.007 . 82. HenryM,Be´guinM,RequierF,RollinO,OdouxJF,AupinelP, (cid:3)(cid:3) Aptel J,T chamitc hia nS,Dec ou rtyeA :A comm onp esticide 69. CameronSA,LozierJD,StrangeJP,KochJB,CordesN,SolterLF, decre as esforagings uc cessand sur vi valinhon eybees. Griswold TL:P attern so fwidesp rea ddec line inNort hA meric an Science20 12,336:34 8-350ht tp://d x.doi.org /1 0.1126/ science. bumbleb ee s.ProcN atl AcadSciU SA201 0, 108:66 2-667. 1215039 . CurrentOpinioninEnvironmentalSustainability2013,5:1–13 www.sciencedirect.com Pleasecitethisarticleinpressas:vanderSluijsJP,etal.:Neonicotinoids,beedisordersandthesustainabilityofpollinatorservices,CurrOpinEnvironSustain(2013),http://dx.doi.org/10.1016/ j.cosus t.201 3.05 .007

Description:
In less than 20 years, neonicotinoids have become the most widely used class of insecticides with a global market share of more than 25%. For pollinators, this has transformed the agrochemical landscape. These chemicals mimic the acetylcholine neurotransmitter and are highly neurotoxic to insects.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.