ebook img

Negative Binomial Regression PDF

573 Pages·2011·3.319 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Negative Binomial Regression

This page intentionally left blank NegativeBinomialRegression SecondEdition ThissecondeditionofNegativeBinomialRegressionprovidesacomprehensive discussionofcountmodelsandtheproblemofoverdispersion,focusingattentionon themanyvarietiesofnegativebinomalregression.Asubstantialenhancementfromthe firstedition,thetextprovidesthetheoreticalbackgroundaswellasfullyworkedout examplesusingStataandRformosteverymodelhavingcommercialandRsoftware support.ExamplesusingSASandLIMDEParegivenaswell.Thisneweditionisan idealhandbookforanyresearcherneedingadviceontheselection,construction, interpretation,andcomparativeevaluationofcountmodelsingeneral,andofnegative binomialmodelsinparticular. Followinganoverviewofthenatureofriskandriskratioandthenatureofthe estimatingalgorithmsusedinthemodelingofcountdata,thebookprovidesan exhaustiveanalysisofthebasicPoissonmodel,followedbyathoroughanalysisofthe meaningsandscopeofoverdispersion.SimulationsandrealdatausingbothStataand Rareprovidedthroughoutthetextinordertoclarifytheessentialsofthemodelsbeing discussed.Thenegativebinomialdistributionanditsvariousparameterizationsand modelsarethenexaminedwiththeaimofexplaininghoweachtypeofmodel addressesextra-dispersion.Newtothiseditionarechaptersondealingwithendogeny andlatentclassmodels,finitemixtureandquantilecountmodels,andafullchapter onBayesiannegativebinomialmodels.Thisneweditionisclearlythemost comprehensiveappliedtextoncountmodelsavailable. JOSEPH M. HILBE isaSolarSystemAmbassadorwithNASA’sJetPropulsion LaboratoryattheCaliforniaInstituteofTechnology,anAdjunctProfessorofstatistics atArizonaStateUniversity,andanEmeritusProfessorattheUniversityofHawaii. ProfessorHilbeisanelectedFellowoftheAmericanStatisticalAssociationand electedMemberoftheInternationalStatisticalInstitute(ISI),forwhichheisthe foundingChairoftheISIastrostatisticscommitteeandNetwork.Heistheauthorof LogisticRegressionModels,aleadingtextonthesubject,co-authorofRforStata Users(withR.Muenchen),andofbothGeneralizedEstimatingEquationsand GeneralizedLinearModelsandExtensions(withJ.Hardin). Negative Binomial Regression Second Edition JOSEPH M. HILBE JetPropulsionLaboratory, CaliforniaInstituteofTechnologyand ArizonaStateUniversity CAMBRIDGE UNIVERSITY PRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown, Singapore,Sa˜oPaulo,Delhi,Tokyo,MexicoCity CambridgeUniversityPress TheEdinburghBuilding,CambridgeCB28RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationonthistitle:www.cambridge.org/9780521198158 (cid:1)C J.M.Hilbe2007,2011 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2007 Reprintedwithcorrections2008 Secondedition2011 PrintedintheUnitedKingdomattheUniversityPress,Cambridge AcataloguerecordforthispublicationisavailablefromtheBritishLibrary LibraryofCongressCataloguinginPublicationdata Hilbe,Joseph. Negativebinomialregression/JosephM.Hilbe.–2nded. p. cm. Includesbibliographicalreferencesandindex. ISBN978-0-521-19815-8(hardback) 1.Negativebinomialdistribution. 2.Poissonalgebras. I.Title. QA161.B5H55 2011 519.2(cid:2)4–dc22 2010051121 ISBN978-0521-19815-8Hardback Additionalresourcesforthispublicationatwww.statistics.com/hilbe/nbr.php CambridgeUniversityPresshasnoresponsibilityforthepersistenceor accuracyofURLsforexternalorthird-partyinternetwebsitesreferredto inthispublication,anddoesnotguaranteethatanycontentonsuch websitesis,orwillremain,accurateorappropriate. Contents Prefacetothesecondedition pagexi 1 Introduction 1 1.1 Whatisanegativebinomialmodel? 1 1.2 Abriefhistoryofthenegativebinomial 5 1.3 Overviewofthebook 11 2 Theconceptofrisk 15 2.1 Riskand2×2tables 15 2.2 Riskand2×ktables 18 2.3 Riskratioconfidenceintervals 20 2.4 Riskdifference 24 2.5 Therelationshipofrisktooddsratios 25 2.6 Marginalprobabilities:jointandconditional 27 3 Overviewofcountresponsemodels 30 3.1 Varietiesofcountresponsemodel 30 3.2 Estimation 38 3.3 Fitconsiderations 41 4 Methodsofestimation 43 4.1 DerivationoftheIRLSalgorithm 43 4.1.1 Solvingfor∂LorU–thegradient 48 4.1.2 Solvingfor∂2L 49 4.1.3 TheIRLSfittingalgorithm 51 4.2 Newton–Raphsonalgorithms 53 4.2.1 DerivationoftheNewton–Raphson 54 4.2.2 GLMwithOIM 57 v vi Contents 4.2.3 Parameterizingfromµtox(cid:2)β 57 4.2.4 Maximumlikelihoodestimators 59 5 Assessmentofcountmodels 61 5.1 Residualsforcountresponsemodels 61 5.2 Modelfittests 64 5.2.1 Traditionalfittests 64 5.2.2 Informationcriteriafittests 68 5.3 Validationmodels 75 6 Poissonregression 77 6.1 DerivationofthePoissonmodel 77 6.1.1 DerivationofthePoissonfromthebinomial distribution 78 6.1.2 DerivationofthePoissonmodel 79 6.2 SyntheticPoissonmodels 85 6.2.1 Constructionofsyntheticmodels 85 6.2.2 Changingresponseandpredictorvalues 94 6.2.3 Changingmultivariablepredictorvalues 97 6.3 Example:Poissonmodel 100 6.3.1 Coefficientparameterization 100 6.3.2 Incidencerateratioparameterization 109 6.4 Predictedcounts 116 6.5 Effectsplots 122 6.6 Marginaleffects,elasticities,anddiscretechange 125 6.6.1 MarginaleffectsforPoissonandnegativebinomial effectsmodels 125 6.6.2 DiscretechangeforPoissonandnegative binomialmodels 131 6.7 Parameterizationasaratemodel 134 6.7.1 Exposureintimeandarea 134 6.7.2 SyntheticPoissonwithoffset 136 6.7.3 Example 138 7 Overdispersion 141 7.1 Whatisoverdispersion? 141 7.2 Handlingapparentoverdispersion 142 7.2.1 CreationofasimulatedbasePoissonmodel 142 7.2.2 Deleteapredictor 145 7.2.3 Outliersindata 145 7.2.4 Creationofinteraction 149 Contents vii 7.2.5 Testingthepredictorscale 150 7.2.6 Testingthelink 152 7.3 Methodsofhandlingrealoverdispersion 157 7.3.1 Scalingofstandarderrors/quasi-Poisson 158 7.3.2 Quasi-likelihoodvariancemultipliers 163 7.3.3 Robustvarianceestimators 168 7.3.4 Bootstrappedandjackknifedstandarderrors 171 7.4 Testsofoverdispersion 174 7.4.1 ScoreandLagrangemultipliertests 175 7.4.2 Boundarylikelihoodratiotest 177 7.4.3 R2 andR2 testsforPoissonandnegative p pd binomialmodels 179 7.5 Negativebinomialoverdispersion 180 8 Negativebinomialregression 185 8.1 Varietiesofnegativebinomial 185 8.2 Derivationofthenegativebinomial 187 8.2.1 Poisson–gammamixturemodel 188 8.2.2 DerivationoftheGLMnegativebinomial 193 8.3 Negativebinomialdistributions 199 8.4 Negativebinomialalgorithms 207 8.4.1 NB-C:canonicalnegativebinomial 208 8.4.2 NB2:expectedinformationmatrix 210 8.4.3 NB2:observedinformationmatrix 215 8.4.4 NB2:Rmaximumlikelihoodfunction 218 9 Negativebinomialregression:modeling 221 9.1 Poissonversusnegativebinomial 221 9.2 Syntheticnegativebinomial 225 9.3 Marginaleffectsanddiscretechange 236 9.4 Binomialversuscountmodels 239 9.5 Examples:negativebinomialregression 248 Example1:Modelingnumberofmaritalaffairs 248 Example2:Heartprocedures 259 Example3:Titanicsurvivaldata 263 Example4:Healthreformdata 269 10 Alternativevarianceparameterizations 284 10.1 Geometricregression:NBα=1 285 10.1.1 Derivationofthegeometric 285 10.1.2 Syntheticgeometricmodels 286 viii Contents 10.1.3 Usingthegeometricmodel 290 10.1.4 Thecanonicalgeometricmodel 294 10.2 NB1:Thelinearnegativebinomialmodel 298 10.2.1 NB1asQL-Poisson 298 10.2.2 DerivationofNB1 301 10.2.3 ModelingwithNB1 304 10.2.4 NB1:Rmaximumlikelihoodfunction 306 10.3 NB-C:Canonicalnegativebinomialregression 308 10.3.1 NB-Coverviewandformulae 308 10.3.2 SyntheticNB-Cmodels 311 10.3.3 NB-Cmodels 315 10.4 NB-H:Heterogeneousnegativebinomialregression 319 10.5 TheNB-Pmodel:generalizednegativebinomial 323 10.6 GeneralizedWaringregression 328 10.7 Bivariatenegativebinomial 333 10.8 GeneralizedPoissonregression 337 10.9 PoissoninverseGaussianregression(PIG) 341 10.10 Othercountmodels 343 11 Problemswithzerocounts 346 11.1 Zero-truncatedcountmodels 346 11.2 Hurdlemodels 354 11.2.1 Theoryandformulaeforhurdlemodels 356 11.2.2 Synthetichurdlemodels 357 11.2.3 Applications 359 11.2.4 Marginaleffects 369 11.3 Zero-inflatednegativebinomialmodels 370 11.3.1 OverviewofZIP/ZINBmodels 370 11.3.2 ZINBalgorithms 371 11.3.3 Applications 374 11.3.4 Zero-alterednegativebinomial 376 11.3.5 Testsofcomparativefit 377 11.3.6 ZINBmarginaleffects 379 11.4 Comparisonofmodels 382 12 Censoredandtruncatedcountmodels 387 12.1 Censoredandtruncatedmodels–econometric parameterization 387 12.1.1 Truncation 388 12.1.2 Censoredmodels 395

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.