ebook img

Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian ... PDF

15 Pages·2015·1.28 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian ...

RESEARCHARTICLE Near Infrared Spectroscopy Facilitates Rapid Identification of Both Young and Mature Amazonian Tree Species CarlaLang1*,FláviaReginaCapellottoCosta2,JoséLuísCampanaCamargo3,Flávia MachadoDurgante4,AlbertoVicentini4 1 GraduatePrograminBotany,InstitutoNacionaldePesquisasdaAmazonia,Manaus,Brazil, 2 DepartmentofBiodiversity,InstitutoNacionaldePesquisasdaAmazonia,Manaus,Brazil,3 Biological DynamicsofForestFragmentsProject(INPA/STRI),Manaus,Brazil,4 DepartmentofEnvironmental Dynamics,InstitutoNacionaldePesquisasdaAmazonia,Manaus,Brazil * [email protected] Abstract OPENACCESS Preciseidentificationofplantspeciesrequiresahighlevelofknowledgebytaxonomists Citation:LangC,CostaFRC,CamargoJLC, andpresenceofreproductivematerial.Thisrepresentsamajorlimitationforthoseworking DurganteFM,VicentiniA(2015)NearInfrared withseedlingsandjuveniles,whichdiffermorphologicallyfromadultsanddonotbearrepro- SpectroscopyFacilitatesRapidIdentificationofBoth ductivestructures.Near-infraredspectroscopy(FT-NIR)haspreviouslybeenshowntobe YoungandMatureAmazonianTreeSpecies.PLoS effectiveinspeciesdiscriminationofadultplants,soifyoungandadultshaveasimilarspec- ONE10(8):e0134521.doi:10.1371/journal. pone.0134521 tralsignature,discriminantfunctionsbasedonFT-NIRspectraofadultscanbeusedto identifyleavesfromyoungplants.Wetestedthiswithasampleof419plantsin13Amazo- Editor:DusanGomory,TechnicalUniversityin Zvolen,SLOVAKIA nianspeciesfromthegeneraProtiumandCrepidospermum(Burseraceae).Weobtained 12spectralreadingsperplant,fromadaxialandabaxialsurfacesofdriedleaves,andcom- Received:March19,2015 paredtherateofcorrectpredictionsofspecieswithdiscriminantfunctionsfordifferentcom- Accepted:July9,2015 binationsofreadings.Weshowedthatthebestmodelsforpredictingspeciesinearly Published:August27,2015 developmentalstagesarethosecontainingspectraldatafrombothyoungandadultplants Copyright:©2015Langetal.Thisisanopen (98%correctpredictionsofexternalsamples),butevenusingonlyadultspectraitisstill accessarticledistributedunderthetermsofthe possibletoattaingoodlevelsofidentificationofyoung.Weobtainedanaverageof75%cor- CreativeCommonsAttributionLicense,whichpermits rectidentificationsofyoungplantsbydiscriminantequationsbasedonlyonadults,when unrestricteduse,distribution,andreproductioninany medium,providedtheoriginalauthorandsourceare themostinformativewavelengthswereselected.Mostspecieswereaccuratelypredicted credited. (75–100%correctidentifications),andonlythreehadpoorpredictions(27–60%).These DataAvailabilityStatement:Dataareavailablefrom resultswereobtaineddespitethefactthatspectraofyoungindividualsweredistinctfrom Figshare:(http://dx.doi.org/10.6084/m9.figshare. thoseofadultswhenspecieswereanalyzedindividually.WeconcludedthatFT-NIRhasa 1483518). highpotentialintheidentificationofspeciesevenatdifferentontogeneticstages,andthat Funding:ThiscontributionispartofaMaster’s youngplantscanbeidentifiedbasedonspectraofadultswithreasonableconfidence. thesisattheInstitutoNacionaldePesquisasda Amazônia(INPA),whichwassupportedbya fellowshipfromtheBrazilianNationalResearch Council(CNPq),theCNPq-PELDprojectandCNPq Universal481297/2011-1.FlaviaRCCostaisthe recipientofConselhoNacionaldePesquisa(CNPq) (http://www.cnpq.br/)Grant#403764/2012-2and Grant#481297/2011-1. PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 1/15 NearInfraredSpectroscopyforYoungPlantIdentification CompetingInterests:Theauthorshavedeclared Introduction thatnocompetinginterestsexist. Speciesidentificationrequiresahighleveloftaxonomicexpertise,confirmationbyspecialists [1]andthepresenceofreproductivematerials[2],factorsthathinderaccurateidentificationof plantsinareaswithhighbiologicaldiversityasinthetropics.Usingthemorphologyofdried plantspecimensinanon-reproductivestatetodefinespeciescangenerateahighrateofmis- identification[3],yetisafrequentprocedureinforestinventories.Theclassicuseofmorpho- logicaltraitsforspeciesidentificationhasseverallimitations,includingphenotypicplasticity andtheexistenceofcryptictaxa.Theidentificationofsterilesamplesofyoungplantsismost oftennotpossiblewithconventionalidentificationkeys,sincemorphology-basedplantkeys arealmostalwaysdesignedforreproductiveadultmaterial[4].Thisrepresentsamajorlimita- tionforthosestudyingseedlingsandjuveniles,whichhavebeengenerallylittlestudiedfor morphology.Theneedfortoolstoidentifyspeciesatalldevelopmentalstageshaslong-been emphasized,butthereisstillmuchtodotoexpandthetaxonomicknowledgeofplantsinthe earlystagesoflife,especiallyinareasliketheAmazonbasin[5].However,emergingtechnolo- giescanhelp,providingeffectiveandaccuratemeanstoidentifyspeciesatanyoftheirdevelop- mentalstages. TheidentificationoftaxausingastandardizedregionofDNA(DNAbarcoding)[6]has receivedattentionrecently,andisbeingdevelopedbyaninternationalinitiative.Molecular datahavebeenveryusefulinsolvingproblemsofdiscriminationofspecies[7,8].Kressetal. [9]showedthatabarcodecontainingthreeDNAlociwaseffectiveinidentifyingwell-defined treespeciesonBarroColoradoIsland,achieving98%correctidentifications.However,for highlydiverseenvironments,suchastheAmazon,DNAbarcoding,initscurrentform,has stilllowpredictivepowerforspecies,evenwhenalargernumberofmarkersareused,because manyspeciesareofrecentoriginandmanygeneradonotformmonophyleticgroups[10].For closelyrelatedspecies,geneticandmorphologicaldifferentiationisdifficultandtheassignment ofaspeciesisambiguous[11].Furthermore,themethodofDNAbarcodingisstillexpensive forlarge-scaleapplicationsinhyperdiverseareas[12].Sinceknowledgeofthechemicaland structuralbasisunderlyingthedistinctivesignalbetweenspeciesisstilllacking,FT-NIRcan notsubstitutemolecularanalysisforsystematics,whichshouldbebasedongeneticdifferences. However,easyandfastspeciesidentificationforvarietyofecologicalandotherstypesofstud- ies,isthegreatestpromiseofFT-NIRandothersrelatedspectraltechniques. Morphologicalandmoleculardataaresimilarinseveralpoints:theycanbebasedonsterile material,useadvancedtechnology,generatealotofdataandneedtaxonomicexpertisetobe calibrated.Nearinfraredspectroscopy(FT-NIR)isanalternativemethodthatishighlycost- effective,quick,non-destructive,andrequiresnopretreatmentofsamples[13].Thecostofa goodFT-NIRspectrometer,whichcanprocessanunlimitednumberofsamples,isaboutthe sameofDNAbarcoding~800samples,andtheonlymaintenancecostistheexchangeof lamps,andgeneralequipmentmaintenance. TheFT-NIRcandetectwithhighaccuracyanymoleculeinwhichtheprincipalchemical bondsareCH,OH,NH,SHorC=O[14,15].Whenanorganicsampleisirradiated,chemical bondscontinuouslyvibratecausingawavemotionthatischaracteristicofthatfunctional group[16].ThecontactoftheincidentFT-NIRlightonleaftissuegeneratesaspectralresponse thatisafunctionofthechemicalcompositionandstructureofcellsandinternalmorphology oftheleaf[17],whichmaybecharacteristicofthespecies. ApplicationsofFT-NIRasatoolfortheanalysisofchemicalandphysicalpropertiescanbe foundinvirtuallyallareasofscience.Inwoodscience,FT-NIRhasbeenusedtopredictthe physical,mechanicalandchemicalpropertiesofwood[18,19,20,21].Therearealsoapplica- tionsfordeterminingthegeographicaloriginofindividualplants[14],andinplanttaxonomy, PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 2/15 NearInfraredSpectroscopyforYoungPlantIdentification recentstudiesthathaveusedthetechniquehaveachievedsuccessfulidentificationratesrang- ingfrom80to100%[22,23,24,25].Otherspectroscopictechniquesbasedondifferentbands ofinfraredradiationhavebeenusedtoidentifyspeciesortheirchemicalproperties[26]. Spectroscopyhas,therefore,beenrevealedasapromisingtoolinthediscriminationand identificationofadultindividualsofplantspecies.Thisencouragedustoaskifyoungandadult plantsofthesamespecieshadsimilarspectralsignature,and,ifso,whetherFT-NIRspectraof well-identifiedadultscouldthereforebeusedtopredictthespeciesidentityofyoungplants. Theabilitytoidentifysaplingsandseedlingsreliablyandswiftlywouldopenmanyavenuesfor studiesofdemographics,lifehistory,dispersal,andothersareasthatarecurrentlylimitedby poorknowledgeofdevelopmentalchangesinthemorphologyofplantspecies. MaterialsandMethods LeafsamplesusedinthisstudycamefromtwoareasclosetothecityofManaus,Amazonas, Brazil:theDuckeForestReserve(2°55'S,59°59'W)andanareawithintheBiologicalDynamics ofForestFragmentsresearchproject(BDFFP)(2°30'S,60°W),locatedca.50kmNofDucke Reserve.BothreservesarecoveredbydenselowlandAmazonianrainforest[27].Duckeand BiologicalDynamicsofForestFragmentsresearchproject(BDFFP)areunderthejurisdiction oftheBrazilianNationalInstituteforAmazonResearch(INPA),whichissuedpermitsforthe samplinginvolvedinthepresentstudy. Samplecollection ThebotanicalmaterialusedwasfromherbariumspecimenscollectedinDuckeReservefrom JanuarytoMarch2013(8.38%ofspecimens),andherbariumspecimensthatwerecollected fromtreestaggedatpermanentplotsbelongingtheBDFFPprojectoverthepast35years (91.6%).Theyrepresentthedevelopmentalstagesofseedlings,juvenilesandadultsofthespe- ciesconcerned.Allleafsamples,boththenewlycollectedandtheBDFFPones,werenotpre- servedinalcoholinthefield;theseleaveswerepreparedfollowingthenormalproceduresused forherbariumspecimens,oven-dried(60°C)for1or2daysuntilcompletelydry.Fruitforthe productionofseedlingsandvouchermaterialforproductionofdriedspecimenswerecollected fromtheDuckeReserve.Fruitswereprocessedtoobtainseeds,whichweregerminatedina greenhouse.Allseedlingsproducedweredriedbythesameprocessdescribeabove.Asgermi- nationandseedlingproductionrateswereverylowformostspecies,itbecamenecessaryto supplementthesebypreviouslycollectedandidentifiedherbariumspecimensofseedlings. MostadultsampleswereidentifiedbyDouglasDalyoftheNewYorkBotanicalGarden,an expertinBurseraceae.IdentificationofseedlingsandjuvenilesampleswasreviewedbyPaul FineoftheUniversityofBerkeley,California. ThespeciesusedinthestudybelongtotheBurseraceae,afamilyknownforthedifficulties encounteredwhenattemptingspeciesidentificationbasedsolelyonmorphologicalcharacters. Thisisnotableinthespecies-richgenusProtium,whereitisespeciallydifficulttoidentifyseed- lingsandjuveniles.Atotalof346specimenswereused,196specimensfromtheadultstage and150atthejuvenileorseedlingstage.Theserepresent13speciesofBurseraceae,12fromthe genusProtium,andonefromthegenusCrepidospermum(Table1).Weconsideredtwoforms ofProtiumhebetatumDCDaly,empiricallydistinctbutnotformallynamed.Theseare"form A"(hairierandwithmorebulbousleaflets)and"FormB"(slenderglabrousleafletsandlightly hairedpetioles)(A.Andrade.comm.).Weusedaminimumnumberof10individualsper species. PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 3/15 NearInfraredSpectroscopyforYoungPlantIdentification Table1. NumberofspecimensusedtoobtainFT-NIRspectra. Species Seedlings/Juveniles Mature ProtiumapiculatumSwart 12 24 Protiumdecandrum(Aubl.)Marchand 10 13 ProtiumgrandifoliumEngl. 7 10 ProtiumhebetatumD.C.DalyformaA 20 19 ProtiumhebetatumD.C.DalyformaB 19 16 ProtiumkrukoffiSwart 18 15 ProtiumoccultumDaly 10 20 ProtiumpallidumCuatrec. 9 15 Protiumpaniculatum(Engl.)var.nova 12 13 Protiumpaniculatumvar.riedelianum(Engl.)Daly 8 13 ProtiumsagotianumMarchand 11 16 Protiumsubserratum(Engl.)Engl. 9 10 Crepidospermumrhoifolium(Benth.)Triana&Planch 5 12 Total 150 196 doi:10.1371/journal.pone.0134521.t001 FT-NIRspectroscopymeasurements Atotalof12FT-NIRspectralreadingswereobtainedforeachspecimen.Weusedthreewhole driedleavespervoucherspecimen.Fourspectralreadingswerecollectedperleaf,withtwo readingseachontheadaxial(upper)andabaxial(lower)surfacesoftheleaf(atotalof12read- ingsperplant).Thereadingpointsincludedthebaseandtheapexoftherespectivesidesofthe leaf.Thisdatawereobtainedfor346samplesfrombothDuckeReserveandBDFFP.Leafspec- trawerecollectedwithaThermoNicolletspectrophotometer,usingtheAntarisFT-NIRII MethodDevelopmentSystem(MDS)[28].Thespectralreadingsareexpressedasabsorbance valuesbetweenthewavelengths1000to2500nminthenear-infraredandeachspectrumcon- sistsof1557absorbancevalues.Eachreadingproducedbytheinstrumentwastheaverageof 16scansatawavelength,aresolutionof8cm-1.Ablackbodywasplacedoverthepointwhere thespectralreadingswerecollectedtoavoidlightscattering.Abackgroundcalibrationreading wasperformedbeforeeachreadingwastaken. Analyses Theanalyseswereperformedusingtwosetsofdata,(1)theabsorbanceatallwavelengthsover theentireFT-NIRspectrum(1000to2500nm),atotalof1557wavelengths,and(2)aselection ofthemostinformativewavelengths. Themostinformativewavelengthswereselectedbydiscriminantanalysis.Theprocedure aimedtocapturethesetofindependentvariablesthatbestpredictedspeciesidentity,sincenot allofthespectraarenecessarilyinformativefordiscrimination.Inspectraldata,itiscommon thatsomespectralregionsvaryinaconsistentfashionbetweensamplestobediscriminated, whileothersdonotvary(andthereforeareuninformative)andsomevaryinconsistently,pro- vidingonlynoise.Cleaningthisnoisemayincreasethediscriminationpower.Weusedastep- wisemethodtoselectthewavelengths,involvingaprocessofinclusionandexclusionof independentwavelengthsinthediscriminantfunctiononeatatime,basedontheirdiscrimina- torypower.TodothisweusedthestepclassfunctionoftheKlarpackage[29],wherethepro- cessiscompletedwhenallindependentwavelengthsareincludedinthefunctionorthe wavelengthsexcludedarejudgednottocontributesignificantlytothediscrimination[30]. However,becauseofthelargenumberofwavelengthsofthespectrum(1557),themaximum PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 4/15 NearInfraredSpectroscopyforYoungPlantIdentification numberofselectedwavelengthswasdefinedasone-thirdofthenumberofsamplesanalyzed, followingthediscriminantanalysispremiseofWilliamsandTitus[31]. Discriminantfunctions(LDA)weregeneratedtoassessthecapacityofthespectratodistin- guishspecies,regardlessofdevelopmentalstage.Discriminantanalyseswereconductedusing eitherabsorbancevaluesatallwavelengthsoftheFT-NIR(1000–2500nm)spectrum,orthose wavelengthsdeterminedbythestepwisemethodtobethemostinformative.Thefunctions weregeneratedfromfourdifferentsetsofleafdatareadings:1)averageof12readings(abaxial +adaxial);2)theaverageofsixadaxialreadings;3)theaverageofsixabaxialreadings,and4) usingonereadingrandomlyselectedfromthe12takenperindividual(Table2). Foreachofthesedatasets,afunctionwasgeneratedusingonlydatafromadultplants (AdultModel).Theexternalsamplesofseedlings/juvenileswereusedtovalidatethemodel. Theconverseprocesswascarriedoutwheretheequationwasconstructedbasedondatafrom juvenileplants(YoungModel),validatedwithexternalsamplesfromadults.Asafurthertest,a functionwasgeneratedwith2/3ofsamplesincludingbothyoungandadults(Combined Model),andusingtheremaining1/3forvalidation.Eachmodelwasrepeated100timeswith randomizationofthesubassembliesandtheaverageofthe100iterationswascompared. Finally,weevaluatedthecapacityofthespectraldatatodiscriminatedevelopmentstages. Forthismodelthespeciesidentitywassuppressed,andthesamplesdividedonlyintoyoung andadultgroups.Themodelwasbuiltwith2/3ofthedataandvalidatedwiththeremaining third. Foreachofthetestsdescribed,weobtainedthepercentageofcorrectidentifications.Analy- seswereperformedinR2.10.0environment[32]. Results Isitpossibletopredicttheidentityofyoungbasedonadults? TestsusingallwavelengthsoftheFT-NIRspectrum(1000to2500nm). Theresultsof thetestseriesareshowninTable3andFig1.WhenusingallFT-NIRwavelengthsthemodels builtwithspectroscopicreadingsfromadultswereabletopredicttheidentityofyoungin48to 57%ofoccasions,averagedoverallspecies.Themodelconstructedwithsamplesofyoung plants,wasabletopredicttheidentityofadultswith75–76%accuracy.Forthemodelcombin- ingadultandyoungindividuals,theaverageprobabilityofsuccesswas98%forthethreesetsof datatested. Theaverageabsorbancevaluesofadaxialleafsurfaceprovidedbetterpredictionsofyoung´s identityfrommodelsbasedonadultsthantheabaxialsurface.However,ingeneral,allmodels basedonthecompletesetofwavelengthsfromadultspoorlypredicted(averageof53%accu- racyoverallmodelsandspecies)theidentityofyoungindividuals.Onlythreespecies(23%) achieved100%accuracywhenweusedtheaveragesof12readings,andonly5species(38.4%) whenweusedtheaveragedreadingsfromtheadaxialsurface.InProtiumpallidumnoaccurate identificationofyoungspecimenswasobtained,whileallindividualswerecorrectlyidentified attheadultstage.Twospecies(ProtiumoccultumandP.paniculatumvar.riedelianum)were consistentlypredictedcorrectlyinbothdevelopmentalstages.Ingeneral,usingallwavelengths, thespecieswerepredictedcorrectlyinonlyonephaseofdevelopment,orwhenyoungusing themodelbasedonadults,orwhenadultusingthemodelbasedonthespectralpropertiesof youngplants. Usingonlyonereadingfromrandomlyselectedindividualreadingreducedpredictiveabil- ity.Themodelbasedonmeasurementsfromadultstopredictspeciesidentitiesinyoungplants hadasimilarlevelofsuccesstothosealreadyobtainedwiththe12readingsaverage(51%accu- racy).ThisalsooccurredwiththeYoungModel,wherethecorrecthitsaveragewas75%.For PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 5/15 NearInfraredSpectroscopyforYoungPlantIdentification Table2. DescriptionoftestsbasedonFT-NIRspectratodiscriminatebetweenBurseraceaespecies. LinearDiscriminantAnalyses(LDAs)Models Dataset AdultModel YoungModel CombinedModel Meanofreadings Adaxial+Abaxial x x x Adaxial x x x Abaxial x x x Singlespectrum x x ModelAdult,functiongeneratedwithsamplesofadultsonly.Validation:samplesofseedlingsandyoungplants;YoungModel,functiongeneratedwith samplesofseedlings/youngonly.Validation:samplesofadults;CombinedModel,functiongeneratedwith2/3ofthetotalsample,alldevelopmental stagescombined.Validation:theremaining1/3ofthetotalsample.Alllistedcombinationsweretestedbothwithallwavelengthcomponents,aswiththose identifiedbystepwiseanalysisasthemostinformative. doi:10.1371/journal.pone.0134521.t002 Table3. ResultsofdiscriminatanalysisusingtheaverageofthereadingsandallwavelengthsofthespectrumFT-NIR. AdultModel YoungModel CombinedModel Dataset Dataset Dataset Species MeanAd MeanAd MeanAb Single MeanAd MeanAd MeanAb Single MeanAd MeanAd MeanAb +Ab Spectrum +Ab Spectrum +Ab Protiumapiculatum 66 50 59 54 100 100 100 96 100 100 100 Swart Protiumdecandrum 71 87 71 86 0 8 31 65 100 100 100 (Aubl.)Marchand Protiumgrandifolium 80 100 100 100 70 50 70 20 100 100 100 Engl. ProtiumhebetatumD. 25 15 30 12 95 100 100 95 100 91 91 C.DalyformaA ProtiumhebetatumD. 47 57 21 53 12 0 19 12 98 98 90 C.DalyformaB ProtiumkrukoffiSwart 22 55 94 47 85 77 73 76 100 100 100 Protiumoccultum 100 100 90 98 100 95 95 100 100 100 100 Daly Protiumpallidum 0 0 0 0 100 100 100 80 100 100 100 Cuatrec. Protiumpaniculatum 66 100 58 27 69 92 69 100 100 100 100 (Engl.)var.nova Protiumpaniculatum 100 100 100 100 92 100 100 73 100 100 100 var.riedelianum (Engl.)Daly Protiumsagotianum 36 36 45 64 100 87 87 86 100 100 100 Marchand Protiumsubserratum 11 33 33 11 80 70 80 70 100 100 100 (Engl.)Engl. Crepidospermum 100 100 100 100 41 58 33 75 100 100 100 rhoifolium(Benth.) Triana&Planch Percentageof 48 57 56 51 76 75 76 75 98.6 98.4 98.6 correct identification MeanAd+Ab,theaverageof12readings;MeanAd,theaverageofthereadingsoftheadaxialsurface;MeanAb,theaverageofthereadingsabaxial surface;Singlereading,arandomlyselectedreading.Hitpercentageforeachspeciesandaveragepercentageformodelsgeneratedwitheachdataset. doi:10.1371/journal.pone.0134521.t003 PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 6/15 NearInfraredSpectroscopyforYoungPlantIdentification Fig1.MatriceswiththeresultsofDiscriminantAnalysisforthethreemodels(Adult,Youngand Combined)andusingaverageof12readings(abaxial+adaxial),andforbothallwavelengths(left)and stepwiseselectedwavelengths(right).Theobservedspeciesnamesaregivenincolumns,whilepredicted namesaregiveninrows.Therefore,thevaluesonthediagonalarecorrectpredictions,andoff-diagonal valuesarewrongpredictions.Abbreviations:C.rho=Crepidospermumrhoifolium;P.api=Protium apiculatum;P.dec=Protiumdecandrum;P.gra=Protiumgrandifolium;P.heb.A=Protiumhebetatum formaA;P.heb.B=ProtiumhebetatumformaB;P.kru=Protiumkrukoffi;P.occ=Protiumoccultum;P.pal =Protiumpallidum;P.pan.n=Protiumpaniculatumvar.nova;P.pan.r=Protiumpaniculatumvar. reidelianum;P.sag=Protiumsagotianum;P.sub=Protiumsubserratum. doi:10.1371/journal.pone.0134521.g001 mostspecies,thepercentageofcorrectresponseswitharandomlyselectedreadingremained similartotheresultspreviouslyobtainedwiththeaverageof12readings. Testsusingthemostinformative,stepwise-selected,wavelengths. Theresultsofthistest seriesareshowninTable4andFig1.Twentyvariableswiththehighestdiscriminatingpower wereselectedbetweenthewavelengths2072.53to2436.77nm,fromtheinitial1557measure- ments.Selectionwasmadeirrespectiveofdevelopmentalstage.Theabilitytopredictspecies identityofyoungindividualsusingtheAdultModelimprovedinthethreedatasetsofaveraged readings,increasingfrom48–57%to60–75%correctidentifications.Mostspecieswerewell PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 7/15 NearInfraredSpectroscopyforYoungPlantIdentification Table4. Resultsofdiscriminantanalysisbasedontheaverageof12readingsandthemostinformativewavelengthsselectedbystepwise modelling. AdultModel YoungModel CombinedModel Dataset Dataset Dataset Species MeanAd MeanAd MeanAb Single MeanAd MeanAd MeanAb Single MeanAd MeanAd MeanAb +Ab Spectrum +Ab Spectrum +Ab Protiumapiculatum 75 100 33 67 91 96 83 96 100 100 100 Swart Protiumdecandrum 100 100 100 93 61 54 69 0 100 100 100 (Aubl.)Marchand Protiumgrandifolium 100 100 100 90 30 20 30 70 87 100 75 Engl. ProtiumhebetatumD. 60 20 65 29 100 100 95 92 91 77 71 C.DalyformaA ProtiumhebetatumD. 84 68 79 47 0 0 6,0 53 60 70 41 C.DalyformaB ProtiumkrukoffiSwart 89 83 89 16 35 40 35 69 100 100 100 Protiumoccultum 60 50 100 100 80 70 95 100 100 100 100 Daly Protiumpallidum 89 11 55 0 80 60 87 80 100 100 100 Cuatrec. Protiumpaniculatum 67 58 92 11 92 85 54 84 100 100 86 (Engl.)var.nova Protiumpaniculatum 75 0 100 98 100 100 100 84 100 100 100 var.riedelianum (Engl.)Daly Protiumsagotianum 27 36 18 45 81 75 75 68 100 87 87 Marchand Protiumsubserratum 89 100 67 44 50 80 10 30 100 100 100 (Engl.)Engl. Crepidospermum 100 100 100 100 80 80 80 43 100 100 100 rhoifolium(Benth.) Triana&Planch Percentageof 75 60 73 52 64 58 61 73 97 94 96 correct identification MeanAd+Ab,theaverageof12readings;MeanAd.theaverageofthereadingsadaxialsurface(Ad);MeanAb,theaverageofthereadingsadaxial surface;SingleReading,arandomlyselectedreading.Hitpercentageforeachspeciesandaveragepercentageformodelsgeneratedwitheachsetof dataaregiven. doi:10.1371/journal.pone.0134521.t004 predicted(75–100%correctidentifications),andonlythreehadpoorpredictions(27–60%). Thepredictionsofadultidentitiesbasedonspectroscopicresponsesofyoungplantsdecreased from75–76%to61–64%acrossallmodels,andthesameoccurredforthemodelcombining youngandadultplants. Themodelforpredictionoftheidentityofyoungbasedonadultspectrawithbestresults wasthatusingtheaverageof12readings(Ad+Ab).Thishadanaverageof75%ofcorrect speciesidentificationsofyoungplants.Onlyonespecies(P.sagotianum)hadlessthan60%of correctidentifications,andthemajority(ninespecies)had75%ormorecorrectresponses. Forarandomlyselectedspectralreading,stepwiseanalysisretained39wavelengthsbetween 1002.60to2495.41nmasbeingthemostinformative.Formostmodelstherewasnosignificant PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 8/15 NearInfraredSpectroscopyforYoungPlantIdentification differencesbetweenthisandtheresultsobtainedpreviouslywithallFT-NIRspectrumwave- lengths(1000to2500nm). DoyoungandadultplantsdifferintheirNIRspectra? Whentestingthecapacityofnear-infraredspectroscopytodiscriminatebetweendevelopmen- talstages,independentofspecies,discriminantanalysishadanaverageaccuracyof99.9%,indi- catingthatdevelopmentalstagesconsistentlydifferintheirspectralsignatures.Alsowithin speciesthedifferenceinspectralvaluesbetweenyoungandadultplantscanbereadilyseen, bothforthefullspectraandforanordinationintwodimensions(Fig2). Discussion Ourresultsindicatedthatnear-infraredspectroscopy(FT-NIR)isaneffectivetoolfordiscrimi- natingtreespeciesatdifferentstagesofdevelopment.Inourstudy,weindicatedthatthebest modelsforpredictingspeciesinearlydevelopmentalstagesarethosecontainingspectraldata frombothyoungandadultplants,butevenusingonlyadultspectraisstillpossibletoattain goodlevelsofidentificationofyoung.Andfinally,wehavedemonstratedthatyoungandadults ofthesameamazontreesspeciesclearlydifferintheirspectra. Canyoungbeidentifiedbasedonlyonspectrafromadults? Inthisstudywehaveshownthatitispossibletoidentifyyoungtreespeciesbasedonspectral signaturesofadultsofthesamespecies,althoughthelevelofaccuracyobtainedisstillnotas highasobservedwhenidentificationsaremadewithinthesamedevelopmentalstage,orwhen bothdvelopmentalstagesareusedtoproducethemodels.Weobtainedanall-speciesaverage of75%correctidentificationsforyoungplantswhendiscriminantequationswereconstructed withthemostinformativewavelengths.Comparingtheseresultswithratesofcorrectidentifi- cationsevenwithinthesamedevelopmentalstageobtainedbytraditionalmethods(40–50% [3,33])orbarcoding(70%,[34]),weconcludethatthecost-benefitofspectroscopy-based methodishigher,givenitsspeed,lowcostandabilitytoachievesuccessfulhits.Wearenot advocatingthatthesemethodsshouldbeabandoned,butthatFT-NIRcanprovidequick answersthatwillmakepossiblealargeexpansionofplantecologystudies. Weexpectedthatarandomreadingperindividualwouldprovidemoreaccuratepredictions, giventhechancethatseveralreadingsfromthesameleafcouldcontainlocalcontamination, epiphylls,thatmightspoilthespectralpatternofaspecies.However,therewasnoimprovement inhitratewiththisprocedure,anditseemsthatuseoftheanaverageofreadingsisamoreeffec- tivewayofsmoothingpossiblelocalvariationsbetweenleaves.Wavelengthselectionindicated themostinformativeregionoftheFT-NIRspectrumlaybetween2000and2500nm.Asimilar range(1666.66to2500nm)wasreportedbyDurganteetal.[22].Thisregionisrelatedtothe presenceofcarbohydratessuchascellulose,ligninandpolysaccharides[35],compoundsthat areassociatedwiththestructureofplantcellwall[36].Asaswhole,wesuggestthatthebestpro- tocolforbuildingawiderangemodelforspeciesdiscriminationbasedonFT-NIRspectraisto useanaverageofreadingsfrombothadaxialandabaxialleafsurfacesofeachspecimen,andthe 2000–2500nmregionofthespectra. Ourstudyindicatedthatthebestmodelsforpredictingspeciesinearlydevelopmentalstages arethosethatcontainspectraldataforyoungandadultplants.Ourbestresultgavea98.6% correctidentificationofthespecies,regardlessofdevelopmentalstage,whenweusedtheaver- agedreadingsandthewholeFT-NIRspectrum(1000–2500nm)forthemodelgeneratedwith samplesofadultsandyoungplants.Earlystudiesofplantsusingdiffusereflectancemeasure- mentsrecognizedthattheplantcuticleandtheunderlyingcellwallaretheprincipalcauseof PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 9/15 NearInfraredSpectroscopyforYoungPlantIdentification Fig2. (a,c,e)GraphicrepresentationofatwodimensionalPrincipalComponentAnalysis(PCA)ofFT-NIR spectraofyoungandadultindividuals.(b,d,f)Representationoffullspectraofindividuals.Spectrais composedof1557wavelengths,fortheaverageof12readingsperindividual.Youngplantsinblack,adult plantsinred.(a,b)Protiumgrandifolium;(c,d)Protiumsubserratum(e,f)Protiumapiculatum. doi:10.1371/journal.pone.0134521.g002 spectralfeatures[37,38].Castro-Esauetal.[39]demonstratethatleavesofthesamespecies, butofdifferentagesorhealth,willvarywidelyintheirspectralreflectanceproperties,and showedthatinternalleafstructureinfluencesleafreflectanceinthenear-infraredregion.From thiswecaninferthatdiscriminantfunctionmodelscontainingsamplesofyoungplantscan bettercaptureallpossiblespectralvariability,bothchemicalorstructural,betweenyoungand adults,andthesemodelswillbemoreefficientinpredictingspeciesidentityatearlystagesof development.However,evenintheabsenceofsamplesofyoungplantsinthemodel,itisstill possibletopredicttheiridentitybasedonadults,withaslightlyhigherdegreeofuncertainty,as demonstratedabove.Becauseitisdifficultandlongtermworktoobtainsamplesofwellidenti- fiedyoungplantsforbuildingcombinedmodels,ourresultsshowingthepossibilityofusing onlyadultsasabaseformodelsshouldprovidethecapacitytoattainahigherlevelofidentifi- cationforseedlingsthanwecurrentlyhave. TheseresultsarecomparabletopreviousstudiesusingFT-NIRforbotanicaltaxonomypur- poses.However,wehavedemonstratedforthefirsttimethatthespectralsignaturesofdifferent developmentalstagescanbeusedforspeciesdetermination.Previousworkhasachieved100% accuracyindiscriminatingleavesEucalyptusglobulusLabillandEucalyptusnitensMaiden[25] PLOSONE|DOI:10.1371/journal.pone.0134521 August27,2015 10/15

Description:
that is a function of the chemical composition and structure of cells and internal morphology haired petioles) (A. Andrade. comm.). following the discriminant analysis premise of Williams and Titus [31] Matrices with the results of Discriminant Analysis for the three models (Adult, Young and.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.