ebook img

Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials PDF

3.8 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials

Near-field to far-field characterization of speckle patterns generated by disordered nanomaterials ValentinaParigi1,ElodiePerros1,GuillaumeBinard2,3,Ce´line Bourdillon2,3,Agne`sMaˆıtre2,3,Re´miCarminati1,Valentina Krachmalnicoff1,∗andYannickDeWilde1,∗ 6 1ESPCIParisTech,PSLResearchUniversity,CNRS,InstitutLangevin,1rueJussieu, 1 F-75005,Paris,France 0 2SorbonneUniversite´s,UPMCUnivParis06,UMR7588,INSP,F-75005,Paris,France 2 3CNRS,UMR7588,INSP,F-75005,Paris,France n ∗[email protected] a ∗[email protected] J 7 Abstract: ] s Westudytheintensityspatialcorrelationfunctionofopticalspecklepatterns c above a disordered dielectric medium in the multiple scattering regime. i t The intensity distributions are recorded by scanning near-field optical p o microscopy (SNOM) with sub-wavelength spatial resolution at variable . distances from the surface in a range which spans continuously from the s c near-field (distance (cid:28) λ) to the far-field regime (distance (cid:29) λ). The i non-universal behavior at sub-wavelength distances reveals the connection s y between the near-field speckle pattern and the internal structure of the h medium. p [ © 2016 OpticalSocietyofAmerica 1 OCIScodes:(180.4243)Near-fieldmicroscopy;030.6140Speckle;290.4210Multiplescatte- v ring;350.4238Nanophotonicsandphotoniccrystals? 1 8 4 Referencesandlinks 1 1. L.NovotnyandB.Hecht,“PrinciplesofNano-Optics,”2nded.(CambridgeUniversityPress,NewYork,2006). 0 2. D. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: Image recording with resolution λ/20,” Appl. Phys. . Lett.44,651(1984). 1 3. A.DogariuandR.Carminati,“Electromagneticfieldcorrelationsinthree-dimensionalspeckles,”PhysicsReport 0 559,1-29(2015). 6 4. J.BrokyandA.Dogariu,“Complexdegreeofmutualpolarizationinrandomlyscatteredfields,”OpticsExpress 1 Vol.18,Issue19,pp.20105-20113(2010). : v 5. R. Carminati, “Subwavelength spatial correlations in near-field speckle patterns,” Phys. Rev. A 81, 053804 i (2010). X 6. R.Carminati,G.Cwilich,L.S.Froufe-Pe´rez,andJ.J.Sa´enz,“Specklefluctuationsresolvetheinterdistance betweenincoherentpointsourcesincomplexmedia,”Phys.Rev.A91,023807(2015). r a 7. A.ApostolandA.Dogariu,“SpatialCorrelationsintheNearFieldofRandomMedia,”Phys.Rev.Lett.91, 093901(2003). 8. A.ApostolandA.Dogariu,“First-andsecond-orderstatisticsofopticalnearfields,”OpticsLett.29,235-237 (2004). 9. V.Emiliani,F.Intonti,M.Cazayous,D.S.Wiersma,M.Colocci,F.AlievandA.Lagendijk,,“Near-FieldShort RangeCorrelationinOpticalWavesTransmittedthroughRandomMedia,”Phys.Rev.Lett.90,250801(2003). 10. A.ApostolandA.Dogariu,“Non-Gaussianstatisticsofopticalnear-fields,”Phys.Rev.E72,025602(2005). 11. R.L.WeaverandO.I.Lobkis,“UltrasonicswithoutaSource:ThermalFluctuationCorrelationsatMHzFre- quencies,”Phys.Rev.Lett.87,134301(2001). 12. A.Derode,A.Tourin,andM.Fink,“Timereversalversusphaseconjugationinamultiplescatteringenviron- ment,”Ultrasonics40,275(2002). 13. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal”Science315,1120(2007). 14. I.M.VellekoopandA.P.Mosk,“Focusingcoherentlightthroughopaquestronglyscatteringmedia,”Opt.Lett. 32,2309(2007). 15. S.M.Popoff,G.Lerosey,R.Carminati,M.Fink,A.C.Boccara,andS.Gigan,“MeasuringtheTransmission MatrixinOptics:AnApproachtotheStudyandControlofLightPropagationinDisorderedMedia,”Phys.Rev. Lett.104,100601(2010). 16. J.Goodman,SpecklePhenomenainOptics(Roberts&CompanyPublishers2010) 1. Introduction Scanning near-field optical microscopy (SNOM) allows to recover the high spatial frequency components of an electromagnetic field which are normally confined as evanescent waves at sub-wavelength (sub-λ) distances from a surface in the so-called near-field region [1]. The spatialresolutionofthetechniqueisdeterminedbythenano-scaletiporaperturewhichisused tointeractwiththenearfieldatnanometerseparationfromthesample.Sinceitsfirstrealization [2],SNOMhasbeenmainlyusedtostudysamples,whichconsistofsub-wavelengthstructures placedatthesurfaceofhomogeneoussubstrates. Thestudyoffieldcorrelationsinspecklepatternsproducedbythree-dimensionaldisordered materialshasrecentlyevolvedtowardsthequestfornon-universalproperties,whichcouldbe connectedwiththemorphologyofthemediumatsub-λ scale[3].Ithasbeenrecentlyshown that the degree of mutual polarization for different points in speckle patterns depends on the scatteringsample[4],whilespatialfieldcorrelationscanrevealtherelevantlengthscalesofthe mediummorphology[5]orthedistancebetweenpointsourcesembeddedinthesample[6].In particular the speckle pattern in the near field of a scattering medium shows sub-λ grain size whichcanbecorrelatedwiththesub-λ structureofthemedium. The connection between the field spatial correlation function in near-field speckle patterns and the structure of the medium has been analyzed in Ref. [5] using a simple model. In this theoretical approach, the disordered medium is described by a fluctuating dielectric function ε(r)=1+δε(r)consideredasarandomvariable.Thedielectricfunctionsatisfies(cid:104)δε(r)(cid:105)=0 and(cid:104)δε(r)δε(r(cid:48))(cid:105)=C(|r−r(cid:48)|),withC(R)acorrelationfunctionwithawidth(cid:96) thatcharac- ε terizestheinternalstructureofthemedium(herethebracketsdenoteanensembleaverageover the configurations of the random medium). In the regime (cid:96) (cid:28)λ (cid:28)(cid:96), with (cid:96) the scattering ε meanfreepath,thefieldcorrelationfunctionabovetheexitsurfaceofathree-dimensionalscat- teringmediumilluminatedbyaplanewavecanbecalculatedanalytically.Moreprecisely,the modelpredictsthebehaviorofthedegreeofspatialcoherenceγE=∑k(cid:104)Ek(r)Ek(r(cid:48))(cid:105)/(cid:104)|E(r)|2(cid:105), taken as a measure of the overall spatial correlation of the vector field, the subscript k denot- ing a vectorial component. Its width defines the spatial coherence length. In the experiments presentedinthepresentstudy,wehavemeasuredthenormalizedintensitycorrelationfunction γ =(cid:104)I(r)I(r(cid:48))(cid:105)/(cid:104)|I(r)|2(cid:105), whose width is the average size of a speckle spot. In a fully devel- I opedspecklepattern,thefieldexhibitsaGaussianstatistics,sothatγ =1+|γ |2 [3],andwe I E will identify the size of a speckle spot with the spatial coherence length. The model predicts three different regimes for the speckle patterns measured in a plane at a distance z above the exitsurfaceofthemedium.Forz(cid:29)λ (farfield),thebehavioroffullydevelopedspecklepat- ternisuniversal,andthespecklespotsizedependsonlyonthewavelengthandtheillumination geometry(forplane-waveilluminationthesizeisλ/2).Onthecontraryinthenearfieldzone z<λ, the speckle loses its universal behavior, and the speckle spot size decreases linearly with z. Finally, in the extreme near-field regime for which z∼(cid:96) (cid:28)λ, the speckle spot size ε reachesanasymptoticvalueontheorderof(cid:96) ,thatreflectstheinternalstructureofthedisor- ε deredmedium.Asaconsequence,inthisextremenear-fieldregime,thestructuralpropertiesof themediumareencodedinatwo-dimensionalimageofthespecklepattern,providedthatthe measurementisabletoresolvethespecklegrainswithsufficientspatialresolution. Thenon-universalbehaviorofintensityspecklepatterninthenearfieldhasalreadybeenput forward in some previous experimental studies [7, 9, 8, 10], which in particular have shown speckle spot sizes below the diffraction limit at sub-wavelength distance from the surface. In thispaper,weexploreforthefirsttimethecontinuoustransitionfromthefarfieldtotheextreme nearfieldusingSNOM,leadingtoameasurementofthespecklespotsizefordistancestothe mediumsurfacerangingfromafewnanometerstoseveraltensofmicrometers.Thebehavior of the speckle spot size versus the distance reveals different regimes, in excellent agreement with the predictions of the model described above. Besides the possibility of disclosing the relevantlengthscalesofnanostructuredsamples,theinvestigationoffundamentallowerlimits inspecklegrainsizeisanimportantissueforimagingtechniqueswhichrelyonspatialfieldor intensitycorrelations,focusingorwavefrontcontrolindisorderedmedia[11,12,13,14,15]. Asthespatialresolutionisdrivenbythespecklegrainsize,thenon-universalbehaviorinthe near-fieldrangecouldpushtheresolutionbeyondthediffractionlimit. 2. Experiment Ourexperimentalapparatus,schematizedinFig.1a,makesuseofacommercialSNOM(WITec GmbH alpha300S). It is conceived as an atomic force microscope (AFM) combined with an optical confocal microscope with an objective of magnification 20X and numerical aperture NA=0.4. The AFM cantilever includes a hollow metal coated pyramidal tip with a 150nm wide aperture carved at the apex of the pyramid. It is set under the objective, the apex being locatedatfocaldistance.Thelightpassingthroughtheapertureandcollectedbytheobjectiveis convoyedtoamultimodefiberwhichisconnectedwithaphotomultiplier.Thesampleisplaced underthetiponamulti-axispiezoelectrictranslationstageandisilluminatedfrombelowbya monochromaticfieldatλ =633nm,producedbyaHe-Nelaserwithamaximumpowerof20 mW.Thesetup,whichnormallyhasasecondobjectiveinordertofocusthebeaminalimited region under the sample, is slightly modified by replacing the objective with a plano-convex lenswithF=85mm.Thisproducesabeamthatilluminatesthesampleonaregionofdiameter D=40µm. Theapparatuscanworkintwodifferentconfigurations.Inthefirstone(contactmode),the pyramidiskeptincontactwiththesurfaceofthesamplebyanelectronicfeedback,whilethe transducermovesthesampleinthex-yplane.Inthisconfiguration,wesimultaneouslyacquire the topographic (AFM) image of the surface and the spatial intensity distribution of the elec- tromagneticfieldabovethesample,measuredasthenumberofcountsduetophotonsarriving onaphotomultiplier(PM).Theresolutionisdrivenbythediameterofthenanoaperture.Inthe secondconfiguration(constantheightmode),theseparationbetweenthesampleandtheapex ofthehollowpyramid,z,isfixedandthex-yscanisperformedwithoutturningonthefeedback loop, while acquiring only the intensity distribution. The z distance is adjusted by means of thepiezo-transducer itself whichcanretract thesampleupto z=8µmbelow theapexof the hollow pyramid. Larger distances can be reached by rising the microscope above the sample, whilesimultaneouslymovingthepyramidandtheobjective. We investigated two different samples consisting of silica spheres in a disordered arrange- ment.Twoimagesoftheirsurfaces,recordedwithascanningelectronmicroscope(SEM)are showninFig.1b.Thetwosamplesarecomposedofseverallayersofbeadswithdifferentav- eragediameters:statisticsperformedonSEMimagesgiveanaveragediameterofφ =276nm andφ =430nmforsampleAandBrespectively.Multiplescatteringoftheincidentlaserbeam transmittedthroughthesamplegeneratesspecklepatternswithoutresidualballisticcomponent. a) b) MMF A TL 20x 1 μm PM NA 0.4 z B F=85mm 1 μm Fig.1.a)Schemeofthesetup.Thelaserbeamisfocusedonthesampledowntoadiam- eterof∼40µm.Thesampleisplacedonathree-axisstagewhichallowsscanninginthe x-yplaneduringtheacquisition.Thez-stageisusedincontactmodetofollowthesurface topographywiththepyramidwhentheelectronicfeedbackisinoperation.Thelightabove thesamplesurfacepassingthroughthe∼150nmwideholeinthepyramidiscollectedby theconfocalmicroscope(objective20X,NA0.4).Itisinjectedbymeansofthemicroscope tubelens(TL,focaldistance200mm)intoamultimodefiber(MMF)connectedtoapho- tomultiplier(PM)whichmeasuresthelightintensity.Thezdistancebetweenthepyramid andthesamplesurfaceiscontrolledbythesample-stageunitupto8µmandthenbyjointly moving the cantilever and the objective. b) Scanning electron microscope images of the surfacesofthetwoanalyzedsamples. Wetypicallyperformscansof10µm×10µmconsistingof256×256points.Incaseoflarge distancesfromthesample,aswefoundlargerspecklesgrainsizes,wetook20µm×20µmscans with 256×256 points in order to maintain a significant number of grains within the scanned area. Figure2showstwotypicalresultsobtainedincontactmodeonbothsamples.Theleftcol- umn of the figure shows the topographic images, while the right column shows the intensity maps,whichhavebeenacquiredatthesametimeasthetopography.Theycorrespondtofully developed speckle patterns generated by the He-Ne laser transmitted through the disordered volumeofthesample.AscanbenoticedinFig.2theintensitypatternsarenotdirectimagesof thebeadsdistributionatthesurface,sincetheyresultfromthemultiplescatteringprocessinto thevolume.Lookingatthescanscaleonecanalreadynoticethatthetypicalbrightgrainsizeis belowthemicrometerrange.Inordertogetquantitativemeasurements,wedefinethespeckle grainsizeasthehalf-widthofthebaseoftheautocorrelationpeak.Withsuchdefinitionthehalf- width of the autocorrelation function in the far-field, in the case of a fully developed speckle generatedunderplanewaveillumination,isδ =λ/2,correspondingtothefirstzerovalueof 0 γ (r,r(cid:48)).Infact,theautocorrelationhastheformofγ (r,r(cid:48))=sinc(k |r−r(cid:48)|)2=sinc(k ρ)2, I I 0 0 withk =2π/λ.DataanalysisfollowstheproceduredepictedinFig.3:wecalculatethenor- 0 malized autocorrelation function of the intensity scan and we cut it with a plane at 0.2. Note thatthethresholdvalueof0.2hasbeenchosenratherthan0inordertogetridofnoise.Then (cid:112) wekeepasgrainsizetheaverageradiusδ oftheresultingsurfaceSbycalculatingδ = S/π. a) b) 5 5 0 0 -5 -5 -5 0 5 -5 0 5 c) d) 5 5 0 0 -5 -5 -5 0 5 -5 0 5 Fig. 2. Two scans in contact mode for the two samples. a) Topography, and b) intensity imagesmeasuredinonezoneofsampleA.c)andd)thesameforsampleB.Thevertical andhorizontalscalesunitsareµm,whilethevaluesonthecolorbararenumberofcounts ofthePM. a) 5 b) 1.0 1.0 0.5 0.5 0 0.0 0.0 -1.5 1.5 -1.5 1.5 1.0 0 0 0 0 -5-5 0 5 1.5 -1.5 1.5 -1.5 c) 0.5 1.5 0.0 8 8 0 4 4 0 0 -4 -4 -1.5 -8 -8 -1.5 0 1.5 Fig. 3. Evaluation of speckle grain size. a) On upper part left: typical intensity speckles pattern.Bottom:itsautocorrelationwithazoomofthecentralregion(upperright).b)The autocorrelationiscutwithaplaneataheightof0.2.c)Thesurfaceresultingfromthecut: thespecklesizeδ isobtainedastheaverageradiusofthesurface.Scalesunitsontheplane areµm. a) 5 5 5 0 0 0 -5 -5 -5 -5 0 5 -5 0 5 -5 0 5 z = 0 z = 0.150 μm z = 0.450 μm b) γ 5 5 I z = 0 z = 0.150 μm z = 0.450 μm 0 0 z = 0.750 μm z = 10 μm -5 -5 x (μm) -5 0 5 -5 0 5 z = 0.750 μm z = 10 μm Fig. 4. a) Series of intensity speckle patterns in one zone of the sample B at different distancesfromthesurfacerangingfromthenear-fieldtothefar-fieldregime.Thevertical andhorizontalscalesunitsareµm,whilethevaluesonthecolorbararenumberofcounts ofthePM.b)Sectionsalongthexdirectionoftheautocorrelationfunctionobtainedfrom thefivepatterns. 3. Results Figure 4a shows a typical series of measurement, obtained by changing the distance z from a given region of the sample B. The first two measurements, for z=0µm and z=0.150µm, belongtothenearfieldregimez<λ/2.Thetwofollowingmeasurements,atdistanceszclose to λ =0.633µm, show a similar speckle size, while the last picture at larger distance shows a clearly increased grains size. Figure 4b shows the section of the autocorrelation function for each distance and allows us to measure the speckle grain size, obtaining the following seriesδ =(0.208,0.255,0.262,0.273,0.354)µm.Inordertoconfirmthisbehaviorandtostudy the transition between the different regimes, we performed several series of measurements in differentregionsofbothsamples,obtainingthecurveinFig.5,whichspansbetweenz=0and z=30µm.Thisisthemainresultofthiswork.Itconstitutes,tothebestofourknowledge,the first measurement of spatial correlations in speckle patterns continuously spanning from the nearfieldtothefarfield,maintainingthesameexperimentalconfiguration. Inthefarfield,z(cid:29)λ,thespatialpropertiesoffullydevelopedspecklepatternsareuniversal [16,3].BeingDthetransversesizeofthebeamilluminatingthesample,fordistancesz(cid:28)Dthe beamcanbeapproximatedasaninfiniteplanewave.Therefore,theautocorrelationfunctionhas thetypicalsincform,previouslymentioned,correspondingtoagrainsizewhichonlydepends on the illuminating wavelength (δ =λ/2). For distances to the sample of the same order as or larger than the beam size, the autocorrelation function has a more complex, although well known,behavior[16]andthespecklegrainsizevariesasδ =λz/D.Weobservedbothregimes. SinceD(cid:39)40µm,forλ/2≤z≤10µmthegrainsizeismainlyconstantandnotsofarfromthe δ =λ/2value.Fordistancesz>10µmthegrainsizestartstodependonthebeamgeometry andthedistancefollowingtheδ =λz/Dlaw.Fittingondataatdistancesz>10µmwefound D=38.6µmandD=39.3µmforsampleAandBrespectively,whicharecompatiblewiththe estimatedbeamdiameter. We further studied the far field range in order to check the reliability of our experimental apparatus.Atdistancesz>λ,wherethesuper-resolutiongivenbythenanoscaleprobeisnot strictly necessary, we collected the speckle patterns both in SNOM configuration (by collect- inglightthroughtheapertureofthecantilever)andinfar-fieldmicroscopeconfiguration.The secondoneisobtainedbyremovingthecantileverandusingthesetupasaclassicalconfocal microscope in which the fiber core constitutes the pinhole. In that case, in order to achieve a spatialresolutionof≈λ/2,wereplacedthe20Xobjectivebya100X,NA=0.9objectiveand we used a single mode fiber (5µm core) instead of the multimode fiber. In this large distance regime,wefoundnosignificantdifferencebetweenimagesobtainedintheconfocalmicroscope andintheSNOMconfiguration. Thez<λ rangeisthemostinterestingone:itcontainsthefar-fieldtonear-fieldtransition, whichshowsupatz∼λ/2,asitcanbeobservedinFig.6a,whichisazoomofthenear-field zoneofthecurveinFig.5.Belowz=λ/2thespecklesizelosesitsuniversalnatureandstarts decreasing by approaching the surface. Data acquired for samples A and B are close to each otherandhavealineardependencewithz,aspredictedbytheory[5].Intheextremenearfield, i.e.inthelimitofz→0,thetwodatasetsareclearlyseparatedinthelimitoftheexperimental errors,andwemeasureδ =225±10nmandδ =204±10nmforsampleAandBrespectively. Thez=0casecorrespondstotheconfigurationwherethehollowpyramidiskeptincontact by means of the electronic feedback. This is hence the most repeatable configuration and we tookseveralmeasurements:thefirstpointofthetwocurvesistheaveragevalueover9andover 3measurementsforthesampleAandBrespectively.Theerrorbarintheplotiscalculatedas the maximal deviation over the 9 measurements for the sample A. All the other points in the curves are calculated from one single acquisition of speckle pattern at the given distance. In order to evaluate the error in the estimation of the z value we have to take into account that, onceleftthecontactconfigurationwiththefeedbacklocking,thecantileverundergoespossible drifts due to any air flow or thermal and mechanical disturbance. Even if vibrations and air flow are reduced by opportune isolation, thermal drifts are unavoidable due to the proximity ofelectronicpartswhichdissipateheatwithintheenclosureoftheSNOM.Experimentaltests showathermaldriftoftheorderof200nmperhour,whichmeans20nmina6-minuteslong acquisition.Forthisreasonacquisitionsaretakenoneaftertheotherandbyalwayschanging z in the same direction (either increasing or decreasing the value). Thermal drift is anyway difficulttocontrolandwearenotexempttopossiblefluctuations,whichisthereasonwhywe didnotaddhorizontalerrorbarsinFig.5. Wecanreasonablyassumethatthetwoaveragegrainsizesatz=0havebeenestimatedata distancefromthesurfacewhichissmallerthanthetypicallengthscale(cid:96) describingthefluctu- ε ationofthedielectricfunctionofthemediuminasimpletheoreticalapproach[5].Thislength shouldbeconnectedwiththenano-scalestructureofthesample,whichinourcaseshouldbe driven by the size of silica beads and their arrangement within the sample. The presence and the size of air gaps between the beads depend on parameters such as the homogeneity of the beadsizes,homogeneityofthebeadsdistributioninsidethemedium,etc.Theaveragesizeof thebeadsandtheirdispersionaroundthecentralvaluecouldbeinferredfromtheSEMimages ofthesurface,anditisalsopossibletohaveanideaonthearrangementofbeadsonthesurface. However,itisnotpossibletoknowhowthedifferentlayersofbeadsarearrangedinthevolume, so it is not possible to predict the correlation length for the two samples. Nevertheless, from thedifferentvaluesofδ foundexperimentallyonthetwosamplesatz=0,i.e.intheextreme near-fieldregime,onecanclearlyaffirmthatthetwosampleshaveadifferentmicro-structure, independentlyofthedifferentaveragebeaddiameters,provingthatthismethodrevealsmaterial propertiesthatwouldremainhiddenwithotheropticalmicroscopytechniques. δ(μm) z(μm) Fig.5.Measurementofautocorrelationsizefromthenear-fieldtothefar-fieldregimein thecaseofsampleA(redpoints)andsampleB(black)points.Thecurvesarecomposed byseveralseriesofmeasurementsvaryingzindifferentzonesofthesamples. a) b) δ(μm) γ0 z(μm) ρx (μm) Fig.6.a)Near-fieldsubsetofdatainFig.5.Thetwopointsatz=0resultfromaveraging over 9 measurements in the case of sample A (red) and over 3 measurements in case of sampleB(black).b)Sectionalongthexdirectionoftheautocorrelationfunctionsforz=0. Red curve: average over the measurements of sample A, black curve: average over the measurementsofsampleB,yellowcurves:the9measurementsforsampleAatz=0. 4. Conclusion In conclusion we have measured the intensity spatial correlation function in speckle patterns produced by disordered dielectric materials, made of sub-micrometer beads. We have per- formed series of measurements spanning from the near-field (z(cid:28)λ) to the far-field (z(cid:29)λ) regimeusingascanningnear-fieldopticalmicroscope.Theaveragedspecklespotsize,defined as the width of the intensity correlation function, has been measured from the extreme near fieldtothefarfieldonanunprecedenteddistancerange,revealingdifferentregimesinexcel- lentagreementwiththeoreticalpredictions.Inthenearfieldregime,thenon-universalbehavior ofspecklepatternshasbeenclearlydemonstrated,showingtheabilityofnear-fieldspecklesto discriminatebetweenmaterialswithdifferentinternalmicroscopicstructures. Acknowledgment TheauthorsthankC.AydinandL.Greusardforhelpinsettinguptheexperiment.Thiswork was supported by LABEX WIFI (Laboratory of Excellence ANR-10-LABX-24) within the FrenchProgram“InvestmentsfortheFuture”underreferenceANR-10-IDEX-0001-02PSL* andbytheFrenchNationalResearchAgency(ANR“CALIN”andANR“GOSPEL”).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.